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Abstract—Effective resistance, which originates from the field
of circuits analysis, is an important graph distance in spectral
graph theory. It has found numerous applications in various
areas, such as graph data mining, spectral graph sparsification,
circuits simulation, etc. However, computing effective resistances
accurately can be intractable and we still lack efficient methods for
estimating effective resistances on large graphs. In this work, we
propose an efficient algorithm to compute effective resistances on
general weighted graphs, based on a sparse approximate inverse
technique. Compared with a recent competitor, the proposed
algorithm shows several hundreds of speedups and also one
to two orders of magnitude improvement in the accuracy of
results. Incorporating the proposed algorithm with the graph
sparsification based power grid (PG) reduction framework, we
develop a fast PG reduction method, which achieves an average
6.4X speedup in the reduction time without loss of reduction
accuracy. In the applications of power grid transient analysis and
DC incremental analysis, the proposed method enables 1.7X and
2.5X speedup of overall time compared to using the PG reduction
based on accurate effective resistances, without increase in the
error of solution.

Index Terms—Effective resistances, power grid reduction, DC
incremental analysis, transient analysis.

I. INTRODUCTION

Effective resistance is an important metric that measures the
vertex similarity in a graph. It has found tremendous applica-
tions in a variety of areas, including graph data mining [1]–[3],
spectral graph sparsification [4]–[7] and circuit simulation [8]–
[10], etc. Computing effective resistances for many node pairs
on large graphs is a computationally challenging task. There
are several methods for estimating effective resistances in the
literature. A random projection based method was introduced
in [1], but it still takes a huge amount of time to compute
effective resistances with high accuracy. The methods based
on random walk or random spanning tree generation were
proposed in [2], [3], but they can only handle unweighted
graphs. A method based on infinity mirror techniques was
presented in [10], but it is under the assumption that the graph
is of two-dimensional grid structure. Despite of the importance
of effective resistances, we still lack efficient methods for
computing effective resistances on general large graphs.

The goal of power grid (PG) reduction is to reduce the orig-
inal large power grid to a smaller one which can preserve the
electrical behavior of port nodes. There are mainly three types
of PG reduction methods in the literature: moment matching
based methods [11], [12], node elimination based methods [13],
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[14] and multigrid-like methods [15], [16]. Moment matching
based methods [11], [12] cannot reduce power grids efficiently
because there are hundreds of thousands of port nodes in typical
power grids. Node elimination based methods [13], [14] have
been successful for reducing tree-like RC networks, but they
tend to generate much denser models with even more edges
than original models when dealing with mesh-like power grids.
The multigrid-like methods [15], [16] can generate realizable
and sparse reduced models, but their error is hard to control.

Effective resistances have been utilized for developing more
efficient PG reduction methods [8], [9]. They employ the
effective resistances based sampling approach [4] to sparsify
the dense reduced models. The method proposed in [9] does
not scale well to large problems due to the high computational
complexity, as admitted in [9]. The method proposed in [8] is
more scalable since it leverages the techniques of graph parti-
tioning and effective resistances based port merging. However,
it computes effective resistances accurately, which still takes a
large amount of time for large-scale power grids.

In this paper, we aim to develop an efficient algorithm for
computing effective resistances on large graphs and also a fast
PG reduction method. Our main contributions are summarized
as follows.

1) We propose an efficient algorithm for computing effective
resistances on general weighted graphs, which is based on a
sparse approximate inverse technique for the Cholesky factor
of Laplacian matrix.

2) Incorporating the proposed algorithm for computing ef-
fective resistances with the PG reduction framework proposed
in [8], we develop a fast PG reduction method.

Extensive experiments have been conducted to validate the
efficiency and the accuracy of the proposed algorithm for
computing effective resistances, which shows an average 168X
speedup and also significant reduction in errors over the recent
competitor [1]. The proposed algorithm is highly scalable. For a
graph with 6.0E7 nodes and 1.0E8 edges, effective resistances
of all edges can be computed within about 8 minutes, with
an estimated average relative error of only 0.17%. It also
derives a fast PG reduction method, which achieves an average
6.4X speedups over the method based on accurate effective
resistances, with no increase in reduction errors. The resulted
fast PG reduction method can be utilized in many downstream
applications. For example, it brings 1.7X and 2.5X speedups
of overall time for power grid transient analysis and DC
incremental analysis, respectively.
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II. BACKGROUND

A. Effective Resistances and Their Applications

Suppose G = (V,E,w) denotes a weighted undirected
graph, where V and E are the sets of vertices (nodes) and
edges, w is a positive weight function. Let n = |V | and
m = |E|. The incidence matrix B is defined to be an m × n
matrix such that each row of B corresponds to an edge in E
and each column of B corresponds to a node in V . The entries
of B satisfy:

B(e, v) =


1, v is e′s head

− 1, v is e′s tail

0, otherwise .

(1)

Let W denote an m × m diagnoal matrix with W (e, e) =
w(e). Then the Laplacian matrix LG ∈ Rn×n is defined as:

LG = BTWB . (2)

Given two nodes p and q, the effective resistance RG(p, q)
across p and q refers to the voltage difference between p and q
when a unit current flows into G through p and leaves through
q. Formally, it can be defined as:

RG(p, q) = eTp,qL
†
Gep,q . (3)

Here L†
G denotes pseudo-inverse of LG and ep,q = ep − eq ,

where ep is the p-th column of the identy matrix. LG is singular
as the smallest eigenvalue is 0. To handle the singularity
of LG, we introduce a ground node and connect it to a
randomly selected node in each connected component of G.
It corresponds to adding some small positive values to the
diagonal elements of LG. To simplify the notations, we still
use LG to denote the resulted symmetric diagonally dominant
(SDD) matrix.

Below we briefly review the power grid reduction method
proposed in [8], which employs effective resistances based
graph sparsification.

Power grid reduction aims to reduce the original large power
grid to a small one which contains all the port nodes. A
port node is defined to be a node which is connected to a
voltage or current source. The voltage drops of port nodes
can be obtained by analyzing the reduced model, enabling
more efficient analysis for large power grids. Schur complement
based method [14] is adopted to eliminate the non-port nodes
without loss of accuracy but tends to generate much denser
models. To address this issue, a graph sparsification based
power grid reduction approach was introduced [8], which
consists of circuits partitioning, Schur complement based re-
duction, effective resistances based port merging and effective
resistances based graph sparsification. We remark that all the
port nodes have important physical information and should
be preserved. Although at least half of the port nodes were
eliminated in [8], the algorithm can be easily extended to the
case where all the port nodes should be kept. We summarize
the modified version as Alg. 1.

Among all these steps, computing effective resistances is
the most time-consuming one. So, to obtain a fast power

Algorithm 1 Power Grid Reduction via Effective Resistances
Based Graph Sparsification [8]
Input: The original power grid.
Output: The reduced power grid.

1: Partition the original power grid into many blocks. The
nodes are classified into three types: port nodes, non-port
interface nodes and non-port interior nodes.

2: For each block, eliminate the non-port interior nodes using
Schur complement based method.

3: For each reduced block, compute effective resistances
exactly using (3) for all the edges.

4: For each reduced block, merge the nodes based on effec-
tive resistances and then sparsify the reduced grid using
effective resistances based sampling approach.

5: Stitch all the reduced and sparsified models together to
form the final reduced power grid.

grid reduction algorithm, more efficient methods for computing
effective resistances are demanded.

B. Methods for Computing Effective Resistances
Computing effective resistances accurately is computational

challenging. For each query (p, q), computing RG(p, q) re-
quires solving linear equations whose coefficient matrix is LG.
It should be noted that many applications require computing
effective resistances for every edge (p, q) ∈ E. Solving |E|
linear equations takes at least Ω(|E|2) time, which can be
prohibitive for large-scale problems.

To compute effective resistances more efficiently, a random
projection based method was proposed in [4]. It is based on
the fact that the effective resistance RG(p, q) can be written as
the distance between two vectors:

RG(p, q) = eTp,qL
†
Gep,q = eTp,qL

†
GLGL

†
Gep,q

= eTp,qL
†
GB

TWBL†
Gep,q

= ∥W 1/2BL†
Gep −W 1/2BL†

Geq∥
2
2 .

(4)

For each node p, W 1/2BL†
Gep is an m-dimensional vector.

With the Johnson-Lindenstraus Lemma, these vectors can be
projected into a k-dimensional space, such that:

RG(p, q) ≈ ∥QW 1/2BL†
Gep −QW 1/2BL†

Geq∥
2
2 , (5)

where k = O(logm) and Q ∈ Rk×m is a random matrix whose
elements are uniformly sampled from ± 1√

k
. Note that using (5),

only k linear equations need to be solved to construct the matrix
QW 1/2BL†

G and then each effective resistance query can be
answered in O(k) = O(logm) time. A more practical version
of this algorithm was presented in [1], which incorporates the
random projection based method and fast linear equation solver
[17]. However, due to the big hidden constants, it still takes a
huge amount of time to compute effective resistances on large
graphs with reasonably high accuracy.

III. EFFICIENTLY COMPUTING EFFECTIVE RESISTANCES
BASED ON APPROXIMATE INVERSE OF CHOLESKY FACTOR

A. The Idea
Suppose LG is factorized with Cholesky factorization:

LG = LLT , (6)
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where L is a lower triangular matrix. Then the effective
resistance of query (p, q) can be written as:

RG(p, q) = eTp,qL
−1
G ep,q = eTp,qL

−TL−1ep,q

= ∥L−1ep,q∥22 = ∥L−1ep − L−1eq∥22 .
(7)

Eq. (7) shows that the effective resistance RG(p, q) can be
written as the distance between the p-th column and the q-th
column of L−1. If L−1 is available, the effective resistances can
be computed efficiently, but computing and storing the dense
L−1 explicitly can be prohibitive for large-scale problems. So,
our idea is to derive a sparse and approximate inverse of L.

B. Sparse Approximate Inverse of Cholesky Factor

Based on the observation that most elements in L−1 are
very small, we develop a method for computing a sparse
approximation of L−1. Let Z = L−1 and zj be the j-th column
of Z. Recall that L is the Cholesky factor of LG, it can be
shown that all the diagonal elements in L are positive and all
the off-diagonal elements in L are nonpositive [18].

The matrix Z has some useful structural properties which
are summarized as the following lemma. Here a matrix is
nonnegative means that all the elements in it are nonnegative.

Lemma 1. Suppose Z = L−1, where L is the Cholesky factor
of Laplacian matrix. Then, Z is nonnegative and the columns
of Z satisfy:

zj =
1

Lj,j
ej +

∑
i>j&Li,j ̸=0

−Li,j

Lj,j
zi , (8)

Proof. Eq. (8) can be derived by multiplying L on both sides.
Suppose zi is nonnegative. Since Li,j ≤ 0 and Lj,j > 0, Eq. (8)
implies zj is nonnegative. So it can be proved by a simple
mathematical induction that Z is nonnegative.

Eq. (8) suggests that we can first compute the n-th column
of L−1 and then compute the (n-1)-th, (n-2)-th, · · · , and
the 1st columns one by one. Suppose we have some sparse
approximations to zi, denoted by z̃i. Then zj can be computed
approximately by:

zj ≈ z∗j =
1

Lj,j
ej +

∑
i>j&Li,j ̸=0

−Li,j

Lj,j
z̃i . (9)

The z∗j can be computed efficiently because the z̃is are sparse.
Note that many elements in z∗j are very small, which can be
set to 0. Here we adopt a prunning strategy to control the error
in the sense of 1-norm. Note that for a vector x, the 1-norm
of x, denoted by ∥x∥1, is defined as the sum of absolute value
of each element. Let trunck(x) denote the vector obtained by
setting the k smallest elements (in the sense of absolute values)
in x to 0. Our strategy is to find the largest k and to set z̃j =
trunck(z

∗
j ), such that:

∥z̃j − z∗j ∥1
∥z∗j ∥1

≤ ϵ , (10)

where ϵ is a user-defined threshold. It can be implemented by
first sorting the nonzero elements in z∗j and then finding the
largest k which satisfies the above constraint. We summarize

the algorithm for computing sparse approximate inverse of
Cholesky factor as Alg. 2.
Algorithm 2 Sparse Approximate Inverse of Cholesky Factor
Input: Cholesky factor of LS : L, a user-defined threshold ϵ.
Output: A sparse approximation to L−1: Z̃.

1: for j = n to 1 do
2: Compute z∗j = 1

Lj,j
ej +

∑
i>j&Li,j ̸=0

−Li,j

Lj,j
z̃i .

3: if nnz(z∗j ) ≤ log n then
4: z̃j = z∗j .
5: Continue.
6: end if
7: Find the largest k such that

∥trunck(z∗
j )−z∗

j ∥1

∥z∗
j ∥1

≤ ϵ . Set
z̃j = trunck(z

∗
j ).

8: end for

Now we analyze the errors caused by approximating L−1

with Z̃. Formally, we give a theorem below, which relates the
approximation error ∥zp − z̃p∥1 to the depth of node p in the
filled graph. The filled graph of G refers to the undirected graph
corresponding to the matrix L [18]. Let GL = (V, F ) denote
the filled graph, where F = {(i, j)|i ̸= j and Li,j ̸= 0}. The
depth of node p, denoted by depth(p), is defined as:

depth(p) =

{
0, L(p+ 1 : n, p) = 0

1 + max
i>p&L(i,p)̸=0

depth(i), otherwise . (11)

Theorem 1. Suppose L and Z̃ = [z̃1, z̃2, ..., z̃n] are the input
and output of Alg. 2. Z = L−1 = [z1, z2, ..., zn]. The depth(p)
is defined as (11). Then, for any node p:

∥zp − z̃p∥1
∥zp∥1

≤ depth(p)× ϵ . (12)

Proof. We prove the theorem by induction. First note that, for
node q with L(q + 1 : n, q) = 0 or depth(q) = 0, we have:

zq = z∗q = z̃q =
1

Lq,q
eq , (13)

so ∥zq− z̃q∥1 = 0, which satisfies (12). Now we consider node
p with L(p + 1 : n, p) ̸= 0. It is hypothesized that for node i

with i > p and L(i, p) ̸= 0, we have ∥zi−z̃i∥1

∥zi∥1
≤ depth(i)× ϵ.

The error ∥zp − z̃p∥1 can be divided into two parts:

∥zp−z̃p∥1 = ∥(zp−z∗p)+(z∗p−z̃p)∥1 ≤ ∥zp−z∗p∥1+∥z∗p−z̃p∥1 .
(14)

For the second part, Alg. 2 ensures that ∥z∗p−z̃p∥1 ≤ ϵ×∥z∗p∥1.
Recall that zp is a vector with all elements nonnegative and z∗p
is a truncated version of zp, it is easy to show ∥z∗p∥1 ≤ ∥zp∥1,
so we have:

∥z∗p − z̃p∥1 ≤ ϵ× ∥zp∥1 . (15)

Now consider the first part. Recall that:

z∗p =
1

Lp,p
ep +

∑
i>p&Li,p ̸=0

−Li,p

Lp,p
z̃i . (16)
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Here Li,p < 0, Lp,p > 0 and
∑

i
−Li,p

Lp,p
≤ 1. In the rest of this

proof, we use
∑

i to replace
∑

i>p&Li,p ̸=0. Then

∥zp−z∗p∥1 = ∥
∑
i

−Li,p

Lp,p
(zi− z̃i)∥1 ≤

∑
i

−Li,p

Lp,p
∥(zi− z̃i)∥1.

(17)
By the inductive hypothesis, we have

∥zp − z∗p∥1 ≤
∑
i

−Li,p

Lp,p
∥zi∥1 × depth(i)× ϵ

≤ max
i

depth(i)× ϵ×
∑
i

−Li,p

Lp,p
∥zi∥1 .

(18)

Note that for nonnegative vectors zis, we have∑
i

−Li,p

Lp,p
∥zi∥1 = ∥

∑
i

−Li,p

Lp,p
zi∥1 ≤ ∥zp∥1 . (19)

Substituting (19) into (18), we obtain

∥zp − z∗p∥1 ≤ max
i

depth(i)× ϵ× ∥zp∥1 . (20)

So
∥zp − z̃p∥1

∥zp∥1
≤ (max

i
depth(i) + 1)× ϵ = depth(p)× ϵ . (21)

By mathematical induction, Eq. (12) is true for all nodes.
This ends the proof.

Note that for most graphs that stem from real world, the
maximum node depth in the filled graph is not very large, as
reported in the next section. By setting a sufficiently small ϵ,
Z̃ approximates L−1 very well.

C. The Overall Algorithm and Discussion

Based on the approximate inverse technique, the effective
resistance RG(p, q) can be computed as:

RG(p, q) = ∥L−1ep − L−1eq∥22 ≈ ∥z̃p − z̃q∥22 . (22)

Now we analyze the errors of effective resistances. Let zp,q =
zp − zq , z̃p,q = z̃p − z̃q , ∆zp = z̃p − zp, ∆zq = z̃q − zq and
∆zp,q = z̃p,q − zp,q . Eq. (12) indicates that:

∥∆zp,q∥1 ≤ ∥∆zp∥1 + ∥∆zq∥1
≤ (∥zp∥1depth(p) + ∥zq∥1depth(q))ϵ

(23)

We can assume that ∥∆zp,q∥1 is very small and ∆zp,q is close
to 0. Then by ignoring the second-order terms, we have:

∥z̃p,q∥22 = ∥zp,q +∆zp,q∥22 ≈ ∥zp,q∥22 + 2zTp,q∆zp,q . (24)

Let R̃p,q = ∥z̃p,q∥22 denote the approximate effective resistance,
then we obtain:

| R̃p,q

Rp,q
− 1| ≈ |

2zTp,q∆zp,q

∥zp,q∥22
| ≤ 2∥zp,q∥1∥∆zp,q∥1

∥zp,q∥22

≤ 2∥zp,q∥1(∥zp∥1depth(p) + ∥zq∥1depth(q))
∥zp,q∥22

ϵ .

(25)
If we denote αp,q =

2∥zp,q∥1(∥zp∥1depth(p)+∥zq∥1depth(q))

∥zp,q∥2
2

, then

1− αp,qϵ ≤
R̃p,q

Rp,q
≤ 1 + αp,qϵ . (26)

This implies that the relative error of effective resistance scales
linearly with the parameter ϵ. The smaller ϵ is, the closer R̃p,q

is to Rp,q .
Computing effective resistances using (22) requires Cholesky

factorization on LG. However, for large-scale graphs, espe-
cially for graphs that stem from social networks, Cholesky
factorization on LG can be very expensive. In this work, we
propose to use incomplete Cholesky factorization instead. In
incomplete Cholesky factorization, some fill-ins with very small
absolute values are dropped, which corresponds to set some
branches with large resistances to open and does not introduce
large errors to effective resistances. We summarize the overall
algorithm for computing effective resistances as follows.
Algorithm 3 Computing Effective Resistances Based on Sparse
Approximate Inverse of Cholesky Factor
Input: A weighted undirected graph: G, a set of effective

resistance queries Qr.
Output: Effective resistances for each query in Qr.

1: Run incomplete Cholesky factorization on LG to obtain:
LG ≈ LLT .

2: Compute the sparse and approximate inverse with Alg. 2
for L: Z̃ ≈ L−1.

3: for each query (p, q) in Qr do
4: Compute effective resistance: RG(p, q) ≈ ∥z̃p − z̃q∥22.
5: end for

The time complexity of the proposed algorithm is closely
related to the number of nonzeros in Z̃. In our experiments, the
number of nonzeros in Z̃ is about Cnlogn where C is a small
constant (e.g. C < 20). The reason behind this phenomenon
may be the decay property of L−1 [19]. Here we just assume
the average number of nonzeros in one column of Z̃ is O(logn).
Incomplete Cholesky factorization takes O(n) time and the
number of nonzeros in L is O(n). Each iteration of Alg. 2
takes O(nnz(L)

n logn + logn · loglogn) = O(logn · loglogn)
time and the time complexity of Alg. 2 is O(nlogn · loglogn).
So the overall time complexity of Alg. 3 is O(nlogn·loglogn)+
O(|Qr|logn).

IV. NUMERICAL RESULTS

We first compare the proposed algorithm for computing
effective resistances (Alg. 3) with the algorithm proposed in
[1]. Because the codes shared by the authors of [1] are written
in MATLAB, we also implement our Alg. 3 in MATLAB.
Then we implement the graph sparsification based power grid
reduction (Alg. 1) and compare the scenarios where effective
resistances are computed accurately, approximately using the
random projection based method [1] and using the proposed
Alg. 3. Finally, the resulted fast power grid reduction algorithm
is leveraged to solve problems of DC incremental analysis
and transient analysis. These programs are written in C++.
All experiments are conducted using a single CPU core of a
computer with Intel Xeon E5-2630 CPU @2.40 GHz and 256
GB RAM.

A. Results on Computing Effective Resistances
In this subsection, we compare the proposed algorithm

(Alg. 3) with the random projection based method [1], whose
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results are obtained by running the codes shared on [20]. We do
not compare the algorithms in [2], [3] because these algorithms
can only handle unweighted graphs. The results are listed in
Table I. The test cases cover a great variety of graphs obtained
from social networks, finite element analysis and circuit simu-
lation problems [21]–[23]. For each case, effective resistances
of all edges are computed, i.e. the set of effective resistance
queries Qr = E. T denotes the runtime for computing effective

TABLE I
RESULTS FOR COMPUTING EFFECTIVE RESISTANCES ON LARGE GRAPHS.

Case |V |(|E|) dpt
WWW15 [1] Alg. 3

T (s) Ea Em
nnz(Q)
nlogn

T (s) Ea Em
nnz(Z̃)
nlogn

com-DBLP 3.2E5(1.0E6) 464 517 2.6E-2 1.4E-1 108 4.14 7.1E-5 1.9E-3 5.40
com-Amaz 3.3E5(9.3E5) 590 719 2.2E-2 1.4E-1 149 4.71 8.0E-5 3.9E-3 7.47
com-Yout 1.1E6(3.0E6) 1370 926 3.5E-2 2.1E-1 32.6 21.0 1.5E-4 2.1E-2 1.63

coAuDBLP 3.0E5(1.0E6) 1040 513 2.5E-2 1.1E-1 108 3.87 7.1E-5 4.0E-3 5.43
coAuCite 2.3E5(8.1E5) 774 414 2.4E-2 1.0E-1 129 2.32 5.6E-5 7.9E-3 6.45
fe tooth 7.8E4(4.5E5) 1892 322 1.8E-2 7.4E-2 304 1.73 8.6E-4 1.1E-2 15.2
fe rotor 1.0E5(7.6E5) 2448 488 1.7E-2 7.0E-2 344 2.84 8.3E-4 2.1E-2 17.2

NACA0015 1.0E6(3.1E6) 543 2447 2.2E-2 7.5E-2 163 12.1 1.0E-3 3.6E-3 8.17
ibmpg5 1.1E6(1.6E6) 513 691 2.2E-2 1.2E-1 123 3.16 1.7E-3 2.7E-2 6.17
ibmpg6 1.7E6(2.5E6) 602 934 2.3E-2 1.2E-1 109 4.64 1.8E-3 2.2E-2 5.44
thupg1 5.0E6(8.2E6) 1097 7158 1.8E-2 8.1E-2 122 36.6 1.7E-3 1.4E-2 6.10

G2 circuit 1.5E5(2.9E5) 720 214 2.0E-2 1.2E-1 166 1.15 1.3E-3 4.4E-2 8.30
G3 circuit 1.6E6(3.1E6) 1237 2388 2.0E-2 9.8E-2 140 13.3 3.1E-3 4.0E-2 7.02
thupg10 6.0E7(1.0E8) 3725 - - - - 481 1.7E-3 1.7E-2 1.24

resistances. Ea and Em denote the average and the maximum
relative errors, which are estimated by randomly selecting 1000
edges, computing accurate effective resistances for these edges
and then computing the errors. For Alg. 3, T includes the time
for incomplete Cholesky factorization, computing approximate
inverse and computing effective resistances. The drop tolerance
in incomplete Cholesky factorization is set to 1E-3 and the
parameter ϵ in Alg. 2 is also set to 1E-3. We also record the
maximum depth of the filled graph, which is defined in the last
section and denoted by dpt, and the number of nonzeros in the
random projection matrix Q and in the appproximate inverse
matrix Z̃, both of which are divided by nlogn. “-” means that
it takes more than 10 hours.

From the results we see that, the proposed Alg. 3 achieves
an average 168X speedup over the random projection based
method [1]. Although the number of nonzeros in the random
projection matrix Q is much larger than that in the approximate
inverse matrix Z̃, the proposed algorithm shows one to two
orders of magnitude improvement in the avarage relative error
and also significant reduction in the maximum relative error.
For the largest case named “thupg10”, with 6.0E7 nodes and
1.0E8 edges, effective resistances for up to 1.0E8 node pairs can
be computed within just 481 seconds, while the average relative
error is about 0.17%, which demonstrates the extremely high
scalability of the proposed algorithm.

B. Results on Graph Sparsification Based PG Reduction

Combining the proposed algorithm for computing effective
resistances (Alg. 3) with the graph sparsification based power
grid reduction framework (Alg. 1), we obtain a fast power grid
reduction algorithm. Test cases are from the well-known IBM
power grid benchmarks [22]. For graph partitioning, we use the
widely adopted graph partitioner METIS [24] and the number
of blocks are set to #ports

50 . For transient analysis, each case
is simulated for 1000 fixed-size time steps and both original

models and reduced models are analyzed with the direct solver
CHOLMOD [25] (performing just once matrix factorization).
For DC incremental analysis, 10% blocks of each benchmark
are modified to mimick the design process where the initial
power grid is modified to fix violations. We compare three
power grid reduction methods, which only differ in comput-
ing effective resistances. The first method computes effective
resistances accurately, while the other two compute effective
resistances approximately, using the random projection based
approach [1] and the proposed approach (Alg. 3) respectively.

The results are listed in Table II. |V | and |E| denote the
number of nodes and resistors. Tred denotes the time for power
grid reduction. Note that in the application of DC incremental
analysis, only the modified blocks need to be reduced, so
the Tred in incremental analysis is just about 10% of that
in transient analysis. Ttr and Tinc are the time for transient
analysis and DC incremental analysis, respectively. Err is the
average absolute error and Rel is the relative error, which is
computed by dividing the Err by the maximum voltage drop.

From the results we see that, with the proposed algorithm for
computing effective resistances (Alg. 3), the time for power
grid reduction can be reduced largely, showing an average
6.4X speedup over the power grid reduction approach based
on accurate effective resistances. In terms of the reduction
accuracy, there is almost no increase in reduction errors. This
validates the efficiency and the effectiveness of the proposed
power grid reduction approach. On the other hand, with the
random projection based method, it still takes a large amount
of time to generate reduced models. Meanwhile, the reduction
accuracy is also deteriorated, which is due to the large errors
of effective resistances.

As for the total time of transient analysis, which includes the
time for power grid reduction and the time for analyzing the re-
duced power grid, the proposed method achieves 1.7X speedup
averagely over the power grid reduction approach based on
accurate effective resistances. Compared with analyzing the
original power grid, the proposed method shows an average
2.9X speedup, with the relative error below 1.51% for all cases.
The transient waveforms of node n0 20706300 8937900 and
node n1 29561400 9521100 in case “ibmpg3t” are plotted in
Fig. 1. They validate the accuracy of transient simulation using
the proposed fast power grid reduction method.

In the application of DC incremental analysis, the proposed
method shows significant improvement in the incremental
power grid reduction stage, thus achieves an average 2.5X
speedup for the total time over the power grid reduction
method based on accurate effective resistances. Compared with
analyzing the modified power grid directly using CHOLMOD
(”Original” in Table II), the proposed method shows 4.2X
speedups on average, while the relative error is below 1.34%
for all cases.

V. CONCLUSIONS

In this paper, we propose an efficient algorithm for com-
puting effective resistances on massive weighted graphs. The
proposed algorithm is based on a sparse approximate inverse
technique for Cholesky factors and achieves 168X speedups on
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TABLE II
RESULTS ON GRAPH SPARSIFICATION BASED POWER GRID REDUCTION FOR TRANSIENT ANALYSIS (UPPER) AND DC INCREMENTAL ANALYSIS (LOWER).

Case Original w/ Acc. Eff. Res. w/ App. Eff. Res. ( [1]) w/ App. Eff. Res. (Alg. 3)
|V |(|E|) Ttr |V |(|E|) Tred Ttr Err(mV) Rel(%) |V |(|E|) Tred Ttr Err(mV) Rel(%) |V |(|E|) Tred Ttr Err(mV) Rel(%)

ibmpg2t 1.3E5(2.08E5) 13.3 5.1E4(1.49E5) 6.55 4.33 0.801 1.52 5.1E4(1.47E5) 3.51 4.23 2.300 4.28 5.1E4(1.49E5) 0.951 4.20 0.796 1.51
ibmpg3t 8.5E5(1.40E6) 201 3.0E5(8.59E5) 67.2 35.1 0.153 0.78 3.0E4(8.54E5) 29.4 34.7 0.253 1.29 3.0E4(8.59E5) 7.70 35.8 0.162 0.83
ibmpg4t 9.5E5(1.55E6) 310 4.0E5(1.35E6) 81.9 132 0.006 0.93 4.0E5(1.35E6) 36.3 133 0.034 4.85 4.0E5(1.35E6) 10.6 129 0.006 0.93
ibmpg5t 1.1E6(1.62E6) 141 5.1E5(1.04E6) 24.1 48.0 0.124 0.87 5.1E5(1.03E6) 21.5 47.4 0.137 0.96 5.1E5(1.04E6) 5.59 48.8 0.125 0.87
ibmpg6t 1.7E6(2.48E6) 179 7.7E5(1.64E6) 39.4 67.7 0.173 1.02 7.7E5(1.66E5) 33.5 67.0 0.334 1.97 7.7E5(1.64E6) 8.76 67.5 0.173 1.02

Case Original w/ Acc. Eff. Res. w/ App. Eff. Res. ( [1]) w/ App. Eff. Res. (Alg. 3)
|V |(|E|) Tinc |V |(|E|) Tred Tinc Err(mV) Rel(%) |V |(|E|) Tred Tinc Err(mV) Rel(%) |V |(|E|) Tred Tinc Err(mV) Rel(%)

ibmpg2 1.3E5(2.08E5) 0.627 5.1E4(1.49E5) 0.784 0.159 6.052 1.21 5.1E4(1.47E5) 0.381 0.149 14.10 2.81 5.1E4(1.49E5) 0.115 0.158 6.020 1.20
ibmpg3 8.5E5(1.40E6) 20.4 3.0E5(8.59E5) 6.73 1.54 1.612 0.66 3.0E4(8.54E5) 2.66 1.46 3.004 1.22 3.0E4(8.59E5) 0.769 1.57 1.734 0.71
ibmpg4 9.5E5(1.55E6) 36.3 4.0E5(1.35E6) 8.85 11.7 0.093 0.76 4.0E5(1.35E6) 3.94 11.5 1.159 9.45 4.0E5(1.35E6) 1.04 11.6 0.089 0.73
ibmpg5 1.1E6(1.62E6) 10.5 5.1E5(1.04E6) 2.32 1.78 0.929 1.34 5.1E5(1.03E6) 2.11 1.74 5.257 7.59 5.1E5(1.04E6) 0.538 1.81 0.929 1.34
ibmpg6 1.7E6(2.48E6) 8.68 7.7E5(1.64E6) 3.98 2.42 1.503 0.73 7.7E5(1.66E5) 3.53 2.45 3.181 1.54 7.7E5(1.64E6) 0.888 2.41 1.512 0.73
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Fig. 1. The transient simulation results of a VDD node (up) and a GND node
(down) in case “ibmpg3t”, obtained by analyzing the original power grid and
the reduced power grid.

average and also significant reduction in errors, compared with
the random projection based method. Combining the proposed
algorithm with the graph sparsification based power grid reduc-
tion framework, we obtain a fast power grid reduction method,
which shows 6.4X speedups averagely and almost the same
reduction accuracy. Utilized for the downstream applications
of power grid transient analysis and incremental analysis, the
proposed fast power grid reduction method brings 1.7X and
2.5X speedups of overall time, compared to using the reduction
method based on accurate effective resistances. Given the wide
range of applications of effective resistances, we hope that this
work can promote progress in more fields in the future.
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