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Abstract—This work proposes a ReRAM-based Computing-
in-Memory (CIM) architecture for Neural Architecture Search
(NAS) acceleration, ENASA, so that the compute-intensive NAS
technology can be applied to various edge devices to customize the
most suitable individual solution for their cases. In the popular
one-shot NAS process, the system must repetitively evaluate
the sampled sub-network within a large-scale supernet before
converging to the best sub-network architecture. Thereby, how
to map these iterative network inference tasks onto the CIM
arrays makes a big difference in system performance. To realize
efficient in-memory supernet sampling and evaluation, we design
a novel mapping method that tactically executes a group of sub-
nets in the CIM arrays, not only to boost the sub-net concurrency
but also to eliminate the repetitive operations shared by these
subnets. Meanwhile, to further enhance the subnet-level operation
concurrency and sharing in the CIM arrays, we also tailor
a novel CIM-friendly one-shot NAS algorithm that purposely
samples those operation-sharing subnets in each iteration while
still maintaining the convergence performance of NAS. According
to the experimental results, our CIM NAS accelerator achieves an
improvement of 196.6× and 1200× in performance speedup and
energy saving respectively compared to the CPU+GPU baseline.

Index Terms—CIM, DNNs, NAS, ReRAM

I. INTRODUCTION

One-shot NAS [1] is a popular technology aiming at the
automatic search for high-performance neural networks. In one-
shot NAS, a supernet containing all candidate architectures
is trained only once, so the architecture sampled from it
can inherit the pre-trained supernet parameters [2], [3] before
being evaluated on tasks. Nevertheless, finding the optimal
network for tasks still takes hundreds of GPU hours [1]. The
computation overhead prevents NAS from being applied to the
edge and terminal devices, which are supposed to customize the
best network architecture for their application scenarios. One
of the major sources that cause tedious one-shot NAS time is
the frequent dynamic network switches and memory access.

CIM is an emerging technology to overcome the well-
known memory wall problem. [4] It carries out in-situ multiply-
accumulate(MAC) operation efficiently [5], [6], which is ideal
for NN acceleration. For NAS acceleration on edge, we can
preload the supernet weights on the CIM arrays to reduce
weight re-access. However, most of the current CIM NN
accelerators are dedicated to single or batched neural network
acceleration and they have problems supporting an efficient
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NAS search process. First, most CIM mapping strategies do
not optimize the online mapping process for the networks
generated dynamically. Second, prior scheduling methods for
CIM do not explore the intermediate computing result-sharing
opportunity between multiple sub-networks. Lastly, the current
NAS search strategy is not aware of the CIM architecture, and
it will generate sub-networks with poor locality and result in
low utility in the CIM arrays.

Based on the above observation, we propose ENASA, an ef-
ficient NAS accelerator based on CIM architecture and evaluate
the proposed architecture on the ReRAM-based CIM design.

Specifically, this work makes the following contributions:
• We develop ENASA, a CIM-based accelerator to accel-

erate the one-shot NAS search process and enable secure
and lightweight network customization on edge devices.

• We design a novel CIM architecture for NAS support and
also the mapping algorithm for efficient NAS deployment
on CIM crossbars.

• We propose a CIM-friendly stage-wise network search
strategy.

II. CIM-BASED EFFICIENT NAS ACCELERATOR

A. workflow

Fig. 1 shows the workflow of ENASA. We divide the acceler-
ation process into three parts that are respectively CIM-oriented
network generation, Crossbar mapping, and CIM evaluation.

CIM-oriented Network generation gears the evolutionary
algorithm towards the network architectures that produce the
most network weight replication chances on the ReRAM arrays
for higher CIM computation throughput while still keeping the
convergence performance of the NAS algorithm. As shown in
Fig.1 part I, for the CIM-friendly networks generated by our
improved stage-wise search strategy that alternately fixes the
top and bottom layers of sub-nets during network generation,
the CIM accelerators have a bigger chance of higher-level
computation parallelism.

After network generation, we introduce a novel mapping
method to further promote the sub-network level concurrency
to enhance the CIM crossbar array utility. Specifically, we
employ the operator-parallel scheduler to achieve fast online
subnetwork mapping on crossbars and boost the execution
concurrency of subnetworks generated dynamically. As Fig. 1
part II shows, we will schedule all schedulable operators if
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Fig. 1: Accelerator workflow overview. Numbers in the computation unit mean those PEs preload the weight of the corresponding
operations.
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Fig. 2: Overview of ENASA

sufficient crossbars are unoccupied. However, when the chosen
operators conflict, we will rank the combinations of operators.
Different operators from one layer and the parallel operators
that share the same input will be prioritized together to boost
sub-net concurrency while reducing the memory access time.

Finally, we obtain the performance of all sampled networks
on the given tasks through CIM evaluation.

B. Hardware Implementation

As Fig.2 shows, ENASA includes a CIM-oriented network
generation unit, a mapping unit, and a CIM evaluation unit
according to the workflow.

The network generation unit efficiently performs the stage-
wise based evolutionary algorithm to produce new networks.
The generation controller randomly selects two networks in
the parent buffer, performs the genetic operation on them, and
replaces half the layers with the corresponding ones of the
current best-performing sub-net.

Then, the on-chip mapping unit optimizes the operators’
mapping order and accelerates the mapping process. As Fig.
3 shows, the operator-parallel scheduler (OPS) completes the
hardware implementation of the parallel scheduling algorithm,
which mainly includes an operator status register, a scheduling
operators buffer, the arithmetic logic of operator parallel and
data reuse score and the judgment logic.

For higher operator-level parallelism and fast address conver-
sion, the CIM evaluation unit uses a hierarchical ReRAM-based
architecture similar to [5]

III. EVALUATION

We evaluate ENASA on two one-shot NAS frameworks,
SPOS [1] and FairNAS [2]. We extract 10000 images from Ima-
geNet [7] as our test set. We use the DNN NeuroSim v1.3 sim-
ulator [8] to measure the ReRAM arrays and the system-level
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Fig. 3: Operator-parallel scheduler

performance of the ENASA. For the other logic components,
we implement them in RTL and synthesize it by the Synopsys
design compiler with the TSMC 22nm technology. The result
shows that compared with GPU-CPU systems, our accelerator
achieves 196.6× in performance speedup and 1200× in energy
consumption while 6.5× and 9× compared with state-of-the-
art specialized NAS accelerator design [9]. This improvement
is attributed to OPS, which optimizes the dynamic network
mapping process and fully explores the sub-net level parallel.
As CIM can preload the weights on the independent crossbars,
stage-wise search and parallel scheduling allow maximum
utilization of the crossbars, actually more than 90%.
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