
CRSPU: Exploit Commonality of Regular Sparsity
to Support Various Convolutions on Systolic Arrays
Jianchao Yang, Mei WenB, Junzhong Shen, Yasong Cao, Minjin Tang, Renyu Yang, Xin Ju and Chunyuan Zhang

College of Computer, National University of Defense Technology, Changsha, China
{yangjianchao16, meiwen, shenjunzhong, caoyasong, tangminjin14, yangrenyu, jx, cyzhang}@nudt.edu.cn

Abstract—Dilated convolution (DCONV) and transposed con-
volution (TCONV) are involved in the training of GANs and
CNNs and introduces numerous regular zero-spaces into the
feature maps or kernels. Existing accelerators typically pre-
reorganize the zero-spaces, and then perform sparse computation
to accelerate them, resulting in huge hardware resource overhead
and control complexity. While the systolic array has proven
advantages when it comes to accelerating convolutions, counter-
measures for deploying DCONV and TCONV on systolic arrays
are rarely proposed. Therefore, we opt to improve the traditional
im2col algorithm to make full use of the regular sparsity and
avoid data reorganization, thereby facilitating the use of systolic
arrays in this context. Public Dimension Compression and Simi-
lar Sparsity Merging mechanisms are also designed to implement
sparse computing, eliminating unnecessary computing caused
by zero-spaces. We propose a systolic array-based processing
unit, named CRSPU. Experiments show that CRSPU exhibits
more competitive performance than the state-of-the-art baseline
accelerator GANPU. Furthermore, CRSPU’s ability to avoid
zero-space data reorganization represents a huge advantage for
bandwidth-unfriendly accelerators.

Index Terms—convolutions, im2col, systolic array

I. INTRODUCTION

Convolutional neural networks (CNNs) and generative ad-
versarial networks (GANs) have been widely deployed in
the fields of image classification, image super-resolution, and
video prediction. The kernel operation during the procedure of
inference and training of CNNs and GANs will unavoidably
involve convolution (CONV), dilated convolution (DCONV)
and transposed convolution (TCONV), as detailed in TA-
BLE I. Different from the downsampling CONV, DCONV
and TCONV insert large numbers of zeros into the feature
map and the convolving kernel (see Fig. 1), thereby realizing
upsampling and increasing the receptive field size in cost-
efficient ways respectively. Notably, these three types of con-
volution require complicated computation and large amounts
of memory, resulting in significant resource overhead and
power consumption. However, the large numbers of inserted
zeros involved in DCONV and TCONV further aggravate this
problem. Previous accelerators have realized the acceleration
of DCONV and TCONV by supporting sparse computation.

The CNN accelerators SIGMA [1], along with the GAN ac-
celerators FlexiGAN [2] and Kn2row [3], all of which support
sparse computation, can realize zero-skipping computation by
inserting zeros into the input feature map or kernel in advance.

* Supported by National Nature Science Foundation of China under NCM
No. 61802420 and 62002366.

B Corresponding Author.

However, hardware that supports zero-skipping generally re-
quires indexes, while the complexity of the data preprocessing
involved is difficult to avoid introducing resource and power
overheads [4]. In addition, some GAN accelerators [2], [3],
[5], [6] do not fully exploit the prior knowledge of the regular
sparsity(RS; sparsity introduced by regularly inserted zeros) of
DCONV and TCONV. Moreover, the perceptual zero-skipping
greatly increases the computational delay. DT-CNN [6] and
GANPU [7] achieve imprecise computation by skipping the
Multiply-Accumulate operations (MACs); as a result of this,
the input or output feature map (IMP or OMP) is predicted
to involve zeros, resulting in reduced inference accuracy. The
cold buffer of GNA [8] is used to handle the overlap of partial
sums without a zero-skipping mechanism, which not only
leads to higher hardware overhead during data preprocessing,
but also increases the complexity of control. TDC [9] attempts
to convert TCONV into CONV, but the insertion of zeros in
the weight blocks leads to unbalanced calculation load. F-
DNA [10] requires more complex overall logic than TDC to
eliminate the unbalanced calculation load. In addition, due to
the complexity of zero-skipping logic, most GAN accelerators
[3], [6], [11], [12] have no or only partial data multiplexing in
their PE (processing element) arrays, with some even adopting
broadcast mode [6], [11], [12], resulting in dramatically in-
creased bandwidth requirements and low PE utilization. Most
importantly, the zero pre-insertion computing mode requires
users to be familiar with the underlying algorithm, which
makes it difficult to build a complete accelerator ecosystem.
Basically, the GAN accelerators cannot make full use of data
multiplexing and improve PE utilization, for the reason that
they mostly adopt direct-convolution to accelerate DCONV
and TCONV.

CNN accelerators [1] have effectively proved that converting
CONV into GEMM through im2col and mapping it on systolic
arrays can reduce the bandwidth and memory resources re-
quired. Moreover, systolic arrays increase the on-chip resident
time of the data, thereby increasing the PE utilization. Since
im2col+GEMM has a high degree of coupling to the data flow,
the zero-skipping computation is not suitable for direct map-
ping on a systolic array; in addition, simply designing three
sets of hardware to support CONV, DCONV and TCONV
respectively results in seriously inefficient resource utilization.
Therefore, it is necessary and urgent to combine the RS
characteristics of the three convolutions, the high data mul-
tiplexing of the systolic array, and the optimization of implicit
im2col for collaborative design. Our main contributions can

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

TABLE I
CONVOLUTION TYPES INVOLVED IN INFERENCE AND TRAINING OF

DNNS.
Feedforward Backpropagation Weight Updating

CNN CONV TCONV DCONV

GAN DCONV DCONV CONV
TCONV CONV TCONV

Fig. 1. Convolution operations of single-channel IMP and OMP.

be summarized as follows:
• We summarize the challenges faced by existing sparse

accelerators in supporting DCONV and TCONV, and exploit
the commonality of their regular sparsity during im2col to
propose a systolic array-based accelerator, CRSPU.

• We deploy CRSPU with Public Dimension Compression and
Similar Sparsity Merging mechanisms to skip the invalid
calculations caused by regular sparsity, while utilizing the
high data reusability of the systolic array.

• Compared with sparse GANPU, CRSPU achieves a 8.43×
speedup in the training performance of CycleGAN, and
the PE efficiency is increased by 44.23×. Additionally, it
reduces the on-chip bandwidth required by DCONV and
TCONV by up to 31.66% and 54.63%, respectively. CRSPU
also has huge advantages in PE utilization and memory
savings.
For clarity, TABLE II lists explanations for the notations

used in this paper.
TABLE II

EXPLANATION OF THE NOTATIONS.
Notation Explanation
Kh ×Kw Kernel size of convolutions.
B,C,N Batch size, the input and output channel of convolutions.
Oh ×Ow Height and width of the OMP.

δ Dilation coefficient of DCONV.

II. COMMONALITY REDUCES COMPLEXITY

Due to the high data coupling of the systolic array, con-
volutions need to be converted into GEMM through im2col.
Fig. 2(a) shows that traditional im2col mainly supports the
feedforward in CONV. To support DCONV and TCONV, it
must insert zeros in the IMP, such that the sparsity reaches
75% with a stride of 2 (see TABLE IV). Furthermore, the
intensive memory access involved incurs huge delays that
cannot be sufficiently hidden during computation. Our previ-
ous work, BP-im2col [4], improved the im2col algorithm by
avoiding zero-insertion and restoring zeros during computation
by means of on-chip address mapping units. However, the units
cause a 10× increase in area overhead while failing to solve
the core problem, namely the low throughput and high energy
consumption of accelerators incurred by invalid calculations.

Fig. 1 illustrates the regular sparsity in the IMP and kernel.
Here, the sliding order of the kernel contained in the im2col

Fig. 2. Im2col with zero-skipping mechanism. All inserted zeros have been
eliminated, and the white squares in the figure are all padded zeros. The red
boxes corresponds to the sliding window in Fig. 1.

Fig. 3. The lowered matrix generated with traditional im2col for TCONV
shown in Fig. 1(c). The elements marked by the four differently colored boxes
are divided into four groups shown in Fig. 2(c).

process will extend this regular sparsity to the lowered matrix.
This rule can be explained as follows: (1) the lowered matrix
of DCONV generates large amounts of invalid calculations
in the public dimension of GEMM due to the regular zero
distribution of the kernel; (2) the lowered matrix of TCONV
yields many similarities that can be merged in the column
direction, while the merged sub-matrices also contain large
numbers of invalid calculations in their public dimension. With
this feature in mind, we design the following mechanisms to
exploit the commonality of the lowered matrices in an attempt
to reduce the complexity of the calculation.

A. Public Dimension Compression (PDC)

The lowered matrix of DCONV obtained by traditional
im2col will contain numerous invalid calculations across the
entire row of elements, because it will perform multiplication
involving the entire column of zeros in the kernel that is
stretched into N rows. The zeros of the entire column of the
stretched kernel are all located in the public dimension of
GEMM. Therefore, we skip the entire column of zeros in the
public dimension of the stretched kernel and the corresponding
row of elements in the lowered matrix, thereby ensuring
we can complete the compression of the invalid calculation
in the public dimension. In fact, the skipped elements are
eliminated from the entire row of the lowered matrix, and
the dilation coefficient of DCONV allows us to solve this
problem at the algorithm level. Compared to accelerators
that support sparse computation, the mechanism of Public
Dimension Compression can be easily incrementally scaled on
traditional CONV-enabled im2col, as detailed in Algorithm 1.

B. Similar Sparsity Merging (SSM)

TCONV has more complex sparsity distribution, as its
IMP needs to execute the im2col and be inserted with ze-
ros simultaneously, as shown in Fig. 3. Therefore, Public

Algorithm 1: Im2col with zero-skipping mechanism.
Input: Position of a pixel in lowered matrix, row and col.
Output: Address in the original IMP, addrout.

1 b, temp1 = bcol/(Oh ·Ow)c, col%(Oh ·Ow);
2 ||temp2, wk = brow/Kwc, row%Kw; // Parallel with 1.
3 c, hk = btemp2/Khc, temp2%Kh;
4 ||hI , wI = btemp1/Owc, temp1%Ow; // Parallel with 3.
5 if CONV or DCONV then
6 δ = 1 if CONV else dilation ; // Zero-Skipping.
7 ∆h = hI · S + hk · δ − Ph and ∆w = wI · S +wk · δ − Pw;
8 if ∆h < 0 or ∆h >= Ih or ∆w < 0 or ∆w >= Iw then
9 addrout = NULL ; // Invalid Padded Zeros.

10 else
11 channeloffset = b · C · Ih · Iw + c · Ih · Iw;
12 ||imgoffset = ∆h · Iw + ∆w; // Parallel with 11.
13 addrout = channeloffset + imgoffset;
14 end
15 else if TCONV then
16 ∆h = hI + hk − Ph and ∆w = wI + wk − Pw;
17 if ∆h < 0 or ∆h >= Ih or ∆w < 0 or ∆w >= Iw then
18 addrout = NULL ; // Invalid Padded Zeros.
19 else
20 if ∆h%S 6= 0 or ∆w%S 6= 0 then
21 addrout = NULL ; // Invalid Inserted

Zeros.
22 else
23 channeloffset = b · C · Ih · Iw + c · Ih · Iw;
24 ||imgoffset = ∆h

S
· Iw + ∆w

S
;

// Zero-Skipping.
25 addrout = channeloffset + imgoffset;
26 end
27 end
28 end

Dimension Compression is no longer suitable for TCONV.
However, noted that the sparsity distribution in the lowered
matrix generated by TCONV through traditional im2col (see
Fig. 3) is extended from that of the original feature map. For
TCONV with a stride of S, all columns in the lowered matrix
can be divided into S2 groups, at which time the zeros in all
columns of each group are distributed over the entire row. The
columns marked with the same color in Fig. 3 all belong to the
same subgroup. The zeros within the subgroups are distributed
in the public dimension, which provides the possibility of
performing Public Dimension Compression; the compressed
subgroup series is shown in Fig. 2(c). Since the column order
in the lowered matrix is changed, that of the kernel must
also be reorganized accordingly. The reorganized kernel and
lowered matrix perform the grouping matrix multiplication to
calculate the OMP. The calculated OMP then needs to perform
reorganization before being used as the input of the next layer.
The order of reorganization is opposite to the order of merging
of the lowered matrices, which we will introduce in Section III.

III. PROPOSED ARCHITECTURE

A. System Architecture

The architecture of the proposed CRSPU (illustrated in
Fig. 4) consists of a systolic array, a shared memory, and a
host processor. The accelerator consists of a master control
unit, a computing configuration unit, 6 MB on-chip buffers
(the IMP buffer, kernel buffer, and OMP buffer are all 1
MB dual-buffers), the local router, two address generation

Fig. 4. Proposed accelerator architecture and loading order of blocks.

units, and a 16×16 PE array. The master control unit is
responsible for activating the computing configuration unit and
controlling data transmission off- and on-chip. The computing
configuration unit generates the configurations required for
CRSPU according to the parameters of convolutions issued by
the master control unit. The PE array adopts a tight coupled
input-stationary data flow, which ensures very good reusability.
The two address generation units execute the implicit im2col
calculation, along with the address issuance of the stationary
and dynamic matrices. The addresses of the partial-sum matrix
are directly generated by the OMP buffer.

The total accelerator is managed by the master control unit.
Instructions can be divided into configuration and execution,
both of which are obtained from the host through I/O and
decoded in the master control unit, which in turn determines
when the accelerator will start and execute. The configuration
instruction is transmitted to the computing configuration unit,
after which the mode of computing is configured. At the
same time, the buffers begin to pre-fetch data, the address
generation units start to generate addresses, and the PE array
will load data from the buffers for calculation. Rather than
skewing the address of the dynamic matrix, we design 16
FIFOs with different depths between the kernel buffer and
the PE array to skew the data layout. The implementation of
Public Dimension Compression and Similar Sparsity Merging
is executed by the cooperation of the master control unit,
the calculation configuration unit, and the address generation
units. The inserted zeros will not be stored in buffers or
loaded into the PE array to participate in the calculation, which
enables the acceleration effect to be achieved. To ensure that
DCONV and TCONV can fetch the correct non-zeros from
on-chip buffers without inserting zeros into the kernel or IMP,
we improve the traditional im2col algorithm, as detailed in
Algorithm 1.

B. PDC and SSM Mechanisms

The address generation units focus on generating the ad-
dresses of data that participate in valid calculations. For the
DCONV-oriented PDC mechanism, the data of the lowered
matrix is fetched and sent to the PE array; however, it should
be noted that only the data involved in valid calculations is
stretched into one column of the lowered matrix. As shown
in Fig. 5, the im2col process (see Algorithm 1) is controlled
to skip the generation of invalid addresses via the dilation

Fig. 5. The im2col process of DCONV corresponding to Algorithm 1.

coefficient of DCONV. The kernel can be directly stretched
into N rows to perform GEMM with the lowered matrix. The
traditional im2col only increases the dilation coefficient δ to
support DCONV, which has almost no hardware overhead.

As the SSM mechanism changes the order of GEMM
for TCONV, the address generation logic is more complex.
The address generation of S2 sub-matrices is detailed in
Algorithm 2, while several of the important symbols used
in this algorithm are defined in Fig. 3. Once a valid address
is generated, the im2col algorithm is called to map it to the
on-chip buffer. Note that while generating the address of the
sub-matrix, the tuple (row, col) that identifies the position of
non-zeros (see Algorithm 2) is the absolute position in the
lowered matrix generated by the traditional im2col, which we
have marked in Fig. 3 up to this point. An important advantage
of this approach is that the hardware can write the partial sum
calculated on the PE array for each sub-matrix back to the
correct OMP buffer address based on this absolute position.
This not only avoids repeating the logic of address calculation
in the OMP buffer, but also greatly reduces the latency of data
write-back. While ensuring that the address generation logic
of TCONV is independent will generate additional hardware
and control overhead, this is acceptable in light of the speedup
ratio brought about by the huge sparsity.

IV. IMPLEMENTATION RESULTS

CRSPU was synthesized with a 7 nm predictive PDK
library, and it occupies a chip area of 3.78 mm2. It operates at a
2 GHz clock frequency with 0.7 V supply voltage, consuming
5395.8 mW of power. CRSPU is equipped with 256 64-bit
wide cross-multiply FP16-PEs, and the instruction throughput
of each PE is 16/cycle. Note that the performance evaluations
of all other accelerators below do not include the time required
to pre-insert zeros into data; for its part, CRSPU does not
require pre-insertion of zeros.

A. Performance Comparison

TABLE III shows the peak performance comparison of
several start-of-the-art accelerators that support DCONV or
TCONV based on the FPGA or ASIC platforms. Compared
with the direct convolution (or Kn2row) route adopted by other
accelerators, CRSPU uses im2col+GEMM (with zero-skipping
mechanism) to map CONV, DCONV, and TCONV onto the
systolic array. The peak throughput of CRSPU achieves 7736
GOPS without computing the values of the virtual zeros
included by DCONV and TCONV, which is higher than
all other compared accelerators except for NVIDIA V100
GPU. Moreover, the area efficiency of CRSPU is as high
as 2046.56 GOPS/mm2, which is much higher than NVIDIA

Algorithm 2: Similar Sparsity Merging for TCONV.
Input: The size of the stationary lowered matrix (Brow, Bcol).

1 for in range(S2) do
2 rS, cS, channelid = b /Sc, %S, 1;
3 tmp1 = 0 if (rS == 0) else (S − rS);
4 tmp2 = 0 if (cS == 0) else (S − cS);
5 startr, startc = tmp1 ·Kw + tmp2, rS ·Ow + cS;
6 row, col, RKw = startr, startc, startr%Kw;
7 changeKwNum, COw = bstartr/KW c, startc%Ow;
8 while not (row ≥ Brow) do
9 while not (col ≥ Bcol) do

10 Call Im2col(row, col); // Call Algorithm 1.
11 if COw + S ≥ Ow then
12 col +=

Ow − COw + (S − 1) ·Ow + startc%Ow;
13 COw = startc%Ow;
14 else
15 col, COw = col + S, COw + S;
16 end
17 end
18 col = startc;
19 if RKw + S ≥ Kw then
20 row += Kw −RKw + (S − 1) ·Kw + startr%Kw;
21 RKw = startr%Kw;
22 changeKwNum = changeKwNum+ S;
23 if changeKwNum ≥ Kh then
24 changeKwNum = bstartr/Kwc;
25 row = channelid ·Kh ·Kw + startr ;
26 channelid = channelid + 1;
27 end
28 else
29 row, RKw = row + S, RKw + S;
30 end
31 end
32 end

V100 GPU and other accelerators based on the ASIC platform.
Furthermore, the energy efficiency of CRSPU reaches 1.43
GOPS/W, indicating obvious advantages over all FPGA-based
accelerators. In addition, CRSPU has the highest PE efficiency
of 30.22 GOPS/PE among all accelerators.

TABLE IV shows the benchmark configuration on the
training sequence of CycleGAN [13] with a batch size of 4
and FP16 data type. GANPU [7] provides two versions of the
performance evaluation on CycleGAN, which support dense
and sparse computing respectively. The performance compari-
son between CRSPU and GANPU is illustrated in TABLE V.
Compared with the dense and sparse versions of GANPU, the
performance of CRSPU is significantly improved: more specif-
ically, CRSPU exhibits an average performance improvement
of 11.20× and 8.43× during training, along with an average
improvement of 58.80× and 44.23× on the PE efficiency. The
PE efficiency can also reach 5.88× and 4.42× with frequency
normalized.

TABLE VI presents the performance comparison between
CRSPU and GPU; the results on GPU are obtained on CUDA
Cores with a batch size of 16. Due to the substantial disparity
in the quantity of PEs, the V100 achieves a significant speedup
compared to CRSPU. Notably, however, the number of CUDA
cores in the V100 is 5120, and its instruction throughput of
FP-16 data type is 256/cycle per core, while CRSPU has only
256 PEs and its instruction throughput is 16/cycle per PE. In

TABLE III
PEAK PERFORMANCE COMPARISON WITH STATE-OF-THE-ART ACCELERATORS.

[14] [9] [12] [10] [15] [3] NVIDIA [8] [6] [11] [5] [7] OursTRETS’18 TCSVT’18 FPL’19 VLSI’20 J.Imaging’21 HiPC’21 V100 GPU TCAD’18 ISCAS’19 SSCL’19 VLSI’20 JSSC’21
Route Direct Direct Direct Direct Direct Kn2row Multiple Direct Direct Direct Direct Direct Im2col

Training X X X X X
Platform FPGA FPGA FPGA FPGA FPGA FPGA Software ASIC ASIC ASIC ASIC AISC ASIC

Zero-skipping X X X X X X X X X X X X
Support C/D/T C/T C/T C/T C/T C/T C/T C/D/T C/T C/D/T C/D/T C/D/T C/D/T C/D/T

Technology (nm) \ \ \ \ \ \ 7 28 65 65 65 65 7
Area (mm2) \ \ \ \ \ \ 826 1.387 6.8 0.703 2.56 32.44 3.78
Power (mW) 9600 5380 32000 3710 4000 9000 300000 142 196 20.3 50.1 647 5395.8

Frequency (MHz) 200 130 200 200 250 300 1410 200 200 200 200 200 2000
Voltage (V) \ \ \ \ \ \ \ 0.9 1.2 1.1 1.2 1.1 0.7

Throughput (GOPS) 107 780 1578 824 721 1125 624000 410 640 38 196 538 7736
Area Efficiency \ \ \ \ \ \ 755.44 295.31 94.07 53.34 76.64 16.58 2046.56(GOPS/mm2)

Power Efficiency 0.01 0.15 0.05 0.22 0.19 0.13 2.08 2.88 3.26 1.84 3.92 0.83 1.43(TOPS/W)
Total PEs 900 1512 1688 576 1296 2176 5120 256 60 48 128 1344 256

PE Efficiency 0.12 0.52 0.93 1.43 0.56 0.52 3.81 1.60 10.66 0.78 1.53 0.40 30.22(GOPS/PE)
Precision (W-A) INT 16 INT 13 INT 8 INT 16-8 INT 16-10 INT 16 FP 16 INT 8 INT 8 FP 8/16 mix INT 2-16 FP 16 FP 16

* Note: 1. Direct represents direct convolution; CDT represents convolution, dilated convolution and transposed convolution, respectively.
2. CRSPU uses 64-bit wide cross-multiply PEs, which have not been optimized, resulting in excessive power.

(a) Performance and memory savings. (b) Reduced bandwidth occupation. (c) Average PE utilization.
Fig. 6. (a) Effect of regular sparsity on performance and memory savings. The configuration in the figure represents K-S-Co. The IMP size and number of
input channels are 256 and 64 respectively, while the total amount of operation is all 25.77 GOP. (b) The reduced bandwidth occupation of TCONV and
DCONV performed on the CRSPU accelerator. The parameter of convolutional layers represents I-K-S-Ci-Co. (c) Average PE utilization for GAN models.

TABLE IV
LAYERS OF PERFORMANCE COMPARISON FROM CYCLEGAN [13].

Layer Configuration Dense OPs (GOP) Regular Sparsity (%)
(I-K-S-Ci-Co) FF BP WU FF BP WU

CONV 0 256-7-1-3-64 4.93 4.93 4.93 1.33 1.33 1.33
CONV 1 256-3-2-64-128 9.66 38.65 38.65 1.04 75.07 75.07
CONV 2 128-3-2-128-256 9.66 38.65 38.65 2.07 75.13 75.13

TCONV 3 64-3-2-256-128 38.65 9.66 38.65 75.13 2.07 75.13
TCONV 4 128-3-2-128-64 38.65 9.66 38.65 75.07 1.04 75.07
CONV 5 256-7-1-64-3 4.93 4.93 4.93 1.33 1.33 1.33

theory, the V100 should achieve a peak speedup of 5120×256
256×16 =

320×. However, the average speedup of the V100 relative to
CRSPU during feedforward and training is only 51.76× and
37.33× respectively. Accordingly, the PE efficiency of CRSPU
is higher than that of V100 GPU, even though V100 may not
be able to run at full capacity on our selected benchmarks.

B. Effect of Regular Sparsity on Performance

Fig. 6(a) shows the effect of regular sparsity on the perfor-
mance and memory-saving capacity of CRSPU. We have cho-
sen CNN convolutional layers with different strides to perform
backpropagation (TCONV) and weight updating (DCONV)
with a batch size of 4 and FP16 data type. Different strides
provide different regular sparsity: as the stride increases, the

sparsity of TCONV and DCONV also increases. At the same
time, the suitable number of output channels ensures all layers
that perform backpropagation (TCONV) and weight updating
(DCONV) have the same amount of operations. Fig. 6(a)
shows that with the increase of sparsity, the speedup of
TCONV and DCONV on the CRSPU accelerator gradually
increases; when the sparsity is about 75%, 88%, and 93%, the
speedup can reach 2.48×, 4.40×, and 6.19×, respectively. The
memory saving is mainly due to the inserted zeros of the loss
feature map, which means it is affected by both the output
channel and the stride; the proportion of memory saved by
each convolutional layer is approximately equal to its regular
sparsity.

C. Reduced Bandwidth Occupation

Fig. 6(b) shows the bandwidth occupation of CRSPU when
performing the backpropagation (TCONV) and weight up-
dating (DCONV) processes of some common CNN convo-
lutional layers. The techniques adopted by CRSPU to avoid
the need to transmit large numbers of zeros reduce the
bandwidth requirements of on-chip buffers. Compared with
GANPU, CRSPU reduces the bandwidth occupation of the
on-chip stationary matrix buffer by 2.34%∼54.63% during

TABLE V
PERFORMANCE COMPARISON WITH GANPU [7] ON CYCLEGAN [13].

Layer FF (ms,GOPS/PE) BP (ms,GOPS/PE) WU (ms,GOPS/PE)
Latency PE EFF Latency PE EFF Latency PE EFF

G
A
N
P
U
N

CONV 0 34.69 0.11 34.74 0.11 42.19 0.09
CONV 1 78.79 0.09 78.79 0.36 30.76 0.93
CONV 2 78.93 0.09 78.92 0.36 49.95 0.58

TCONV 3 78.94 0.36 79.00 0.09 41.80 0.69
TCONV 4 78.77 0.37 78.85 0.09 53.62 0.54
CONV 5 30.78 0.12 30.73 0.12 28.82 0.13

Total 380.9 0.21 381.03 0.21 247.14 0.50
FF+BP+WU Latency: 1008.17 ms PE EFF: 0.28 GOPS/PE

G
A
N
P
U
H

CONV 0 34.23 0.11 34.28 0.11 42.19 0.09
CONV 1 77.97 0.09 19.67 1.46 29.39 0.98
CONV 2 77.30 0.09 19.63 1.46 48.58 0.59

TCONV 3 19.63 1.46 77.36 0.09 39.14 0.73
TCONV 4 19.67 1.46 78.03 0.09 52.53 0.55
CONV 5 30.37 0.12 30.32 0.12 28.36 0.13

Total 259.17 0.31 259.29 0.31 240.19 0.51
FF+BP+WU Latency: 758.65 ms PE EFF: 0.23 GOPS/PE

O
u
r
s

CONV 0
2.32 8.28 10.24 1.88 1.82 10.56

14.94× 75.27× 3.39× 17.09× 23.15× 117.33×
14.74× 75.27× 3.35× 17.09× 23.15× 117.33×

CONV 1
4.41 8.56 4.27 35.36 3.74 40.36

17.87× 95.11× 18.45× 98.22× 8.22× 43.40×
17.68× 95.11× 4.61× 24.22× 7.86× 41.18×

CONV 2
5.43 6.96 4.28 35.24 4.03 37.44

14.54× 77.33× 18.43× 97.89× 12.39× 64.55×
14.24× 77.33× 4.58× 24.14× 12.05× 63.46×

TCONV 3
4.28 35.24 5.46 6.92 3.57 42.28

18.43× 97.89× 14.48× 76.89× 11.71× 61.28×
4.58× 24.14× 14.17× 76.89× 10.96× 57.92×

TCONV 4
4.27 35.36 4.44 8.48 3.85 39.24

18.44× 95.57× 17.76× 94.22× 13.94× 72.67×
4.61× 24.22× 17.57× 94.22× 13.65× 71.35×

CONV 5
10.21 1.88 2.31 8.32 11.10 1.72
3.02× 15.67× 13.30× 69.33× 2.60× 13.23×
2.98× 15.67× 13.12× 69.33× 2.56× 13.23×

Total
30.92 20.76 31.00 20.72 28.11 22.84

12.32× 98.86× 12.29× 98.67× 8.79× 45.68×
8.38× 66.97× 8.36× 66.84× 8.54× 44.78×

FF+BP+WU Latency: 90.03 ms PE EFF: 16.38 GOPS/PE
11.20×, 8.43× 58.80×, 44.23×

* Note: N represents dense version of GANPU; H represents sparse version
of GANPU, with only inserted zeros (regular sparsity) are skipped.

TABLE VI
PERFORMANCE COMPARISON WITH NVIDIA V100 GPU.

NVIDIA V100 GPU (ms) Ours (ms)
FF Speedup BP+WU Speedup FF BP+WU

CONV 0 0.22 42.06× 0.81 59.55× 9.29 48.25
CONV 1 0.56 31.49× 0.94 34.03× 17.64 32.04
CONV 2 0.46 47.61× 1.36 24.53× 21.71 33.26

TCONV 3 0.25 68.68× 1.34 26.98× 17.13 36.11
TCONV 4 0.45 37.70× 0.97 34.33× 17.08 33.15
CONV 5 0.45 90.79× 0.92 58.12× 40.82 53.63

Total 2.39 51.76× 6.33 37.33× 123.67 236.44

the backpropagation process; moreover, during the weight
updating process, CRSPU reduces the bandwidth occupation
of the on-chip dynamic matrix buffer by 19.17%∼31.66%. In
general, the effect of reducing the bandwidth occupation of
on-chip buffers becomes more obvious as the stride of the
convolutional layers increases.

D. PE Utilization

Fig. 6(c) presents a comparison in terms of PE utilization
between Eyeriss [16], Uniform [17], GANAX [18], and CR-
SPU when performing the training of DCGAN, 3D-GAN, and

GP-GAN. As a traditional CNN accelerator, Eyeriss has no
ability to deal with zero-skipping computation; moreover, the
GAN accelerators Uniform and GANAX adopting a direct
convolution route does not fully utilize the regular sparsity
of TCONV and DCONV, resulting in a lower PE utilization
than CRSPU. The average PE utilization of CRSPU can reach
93.27% when performing training of the above GAN models.

V. CONCLUSION

This paper proposes a co-design for accelerating various
convolutions based on systolic arrays, while analyzing the
shortcomings of previous sparse accelerators when it comes to
accelerating DCONV and TCONV. The proposed accelerator,
CRSPU, improves the traditional im2col to avoid the reor-
ganization of zero-spaces. PDC and SSM mechanisms make
full use of the regular sparsity; thus, CRSPU can skip invalid
calculations during im2col. Compared with state-of-the-art
accelerators, CRSPU facilitates significant improvements in
the training performance of various models, and also offers
the significant advantages in reducing the bandwidth of on-
chip buffers and saving on-chip memory.

REFERENCES

[1] E. Qin et al., “Sigma: A sparse and irregular gemm accelerator with
flexible interconnects for dnn training,” in HPCA, 2020.

[2] A. Yazdanbakhsh et al., “Flexigan: An end-to-end solution for fpga
acceleration of generative adversarial networks,” in FCCM, 2018.

[3] Y. Meng et al., “How to avoid zero-spacing in fractionally-strided
convolution? a hardware-algorithm co-design methodology,” in HiPC,
2021.

[4] J. Yang et al., “Bp-im2col: Implicit im2col supporting ai backpropaga-
tion on systolic arrays,” in ICCD, 2022.

[5] Q. Chen et al., “An efficient accelerator for multiple convolutions from
the sparsity perspective,” IEEE Trans. VLSI Syst., 2020.

[6] D. Im et al., “Dt-cnn: Dilated and transposed convolution neural network
accelerator for real-time image segmentation on mobile devices,” in
ISCAS, 2019.

[7] S. Kang et al., “Ganpu: An energy-efficient multi-dnn training processor
for gans with speculative dual-sparsity exploitation,” IEEE J. Solid-State
Circuits, 2021.

[8] J. Yan et al., “Gna: Reconfigurable and efficient architecture for gener-
ative network acceleration,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., 2018.

[9] J.-W. Chang et al., “An energy-efficient fpga-based deconvolutional
neural networks accelerator for single image super-resolution,” IEEE
Trans. Circuits Syst. Video Technol., 2020.

[10] W. Mao et al., “F-dna: Fast convolution architecture for deconvolutional
network acceleration,” IEEE Trans. VLSI Syst., 2020.

[11] J. Lee et al., “An energy-efficient sparse deep-neural-network learning
accelerator with fine-grained mixed precision of fp8–fp16,” IEEE J.
Solid-State Circuits, 2019.

[12] S. Liu et al., “Towards an efficient accelerator for dnn-based remote
sensing image segmentation on fpgas,” in FPL, 2019.

[13] J.-Y. Zhu et al., “Unpaired image-to-image translation using cycle-
consistent adversarial networks,” in ICCV, 2017.

[14] S. Liu et al., “Optimizing cnn-based segmentation with deeply cus-
tomized convolutional and deconvolutional architectures on fpga,” ACM
Trans. Reconfigurable Technol. Syst., 2018.

[15] C. Sestito et al., “Design of flexible hardware accelerators for image
convolutions and transposed convolutions,” J. Imaging, 2021.

[16] Y.-H. Chen et al., “Eyeriss: An energy-efficient reconfigurable acceler-
ator for deep convolutional neural networks,” in ISSCC, 2016.

[17] D. Wang et al., “Towards a uniform architecture for the efficient
implementation of 2d and 3d deconvolutional neural networks on fpgas,”
in ISCAS, 2019.

[18] A. Yazdanbakhsh et al., “Ganax: A unified mimd-simd acceleration for
generative adversarial networks,” in ISCA, 2018.

	Select a link below
	Return to Previous View
	Return to Main Menu

