
TPP: Accelerate Application Launch via Two-Phase
Prefetching on Smartphone

Ying Yuan†, Zhipeng Tan†,Shitong Wei†, Lihua Yang†, Wenjie Qi†, Xuanzhi Wang†, Cong Liu†
†WNLO, Huazhong University of Science and Technology

Corresponding Email: tanzhipeng@hust.edu.cn∗

Abstract—The fast app launch is crucial to users’ experience and
it is one of the eternal pursuits of manufacturers. Page fault is a
critical factor leading to long app launch latency. Prefetching is the
current method of reducing page faults during app launch. Before
app launch, prefetching all demanded pages of the target app can
speed up the app launch effectively, but it always uses the memory
of several hundred MB, leading to low memory and slowing other
apps’ launch. Prefetching during application launch uses memory
effectively, however, current methods are not aware of the order
of pages accessed, causing noticeable accessing-prefetching order
inversions, which results in limited acceleration of app launch.

In order to accelerate the application launch effectively with little
memory usage, we propose a Two-Phase Prefetching schema (TPP),
which performs prefetching via two phases: 1) Before the app
launch, to increase the efficiency of memory usage in prefetching,
TPP prefetches few critical pages with app prediction, which is
based on Long Short-Term Memory (LSTM) with high accuracy.
2) During app launch, TPP prefetches the rest of the critical pages
via an order-aware sliding window method, resolving the accessing-
prefetching order inversions and significantly reducing the app
launch latency. We evaluate TPP on Google Pixel 3, compared to
the state-of-the-art method, TPP reduces the application launch
time by up to 52.5%, and 37% on average, and the data prefetched
before the target application started is only 1.31 MB on average.

I. INTRODUCTION

Providing a huge number of useful functions, smartphones
have gone deep into people’s daily life, work, and study.
According to the most recent study from IDC, worldwide
smartphone shipments are 2.86 billion in the second quarter of
2022 [1], and 85% of them use Android system [2]. Android
users have always suffered the problem of system lag, especially
during the app launch. The interaction between users and
smartphones begins with an app launch, and the fast app launch
is a precondition a the good user experience. In addition, users
are used to launching applications more than 100 times a day
[3], resulting in frequent experiences with system lag.

During the app launch, the app accesses a large amount of
pages with small I/O. The speed of reading data from memory
is 1000 times greater than that of flash storage [4], which will
be longer when the read I/Os wait for direct reclaims to free
memory or wait to get scheduled in the block layer. Research
shows that the read I/O latency contributes to more than 75%
of the time spent during lagging rendering processes [5].

Most of the data accessed during app launch is invariant [6,
7], and prefetching the invariant data is effective in reducing app
launch latency. One current prefetching method is to perform
Prefetching Before the App Launch (PBAL), which preloads
the context that the launch process needs [8, 9], reduces all
of the latency caused by reading data from flash storage, and

accelerate app launch effectively. This method must be aware
of which app to be used next by app prediction. However, the
prediction is not accurate, and the accuracy of the advanced
studies is less than 70% [10, 11, 12]. The memory overhead of
preloading is up to hundreds of megabytes. If the prediction
is wrong, the prefetched data will not be accessed and the
memory is used ineffectively, leading to extra latency for other
apps’ launch. Another current prefetching method is to perform
Prefetching During the App Launch (PDAL). This method only
prefetches the data of the app which is launching, most of the
prefetched data will be accessed by the app launch process, and
the memory is used effectively[6, 7]. However, it isn’t aware of
the order of read I/Os, the page accessed first may be prefetched
later. That is, accessing-prefetching order inversions occur. In
this case, when the pages are accessed, they have not been
loaded to the memory, leading to long read I/O latency and
ineffective accelerating app launch.

There is a contradiction between the effect of acceleration
and memory usage. We propose a Two-Phase Prefetching
schema (TPP) to effectively accelerate the app launch with
minimal memory consumption. TPP is based on the following
two observations.

Observation1: few key launch pages are accessed in
a burst at the beginning of app launch. We trace the
read I/Os during app launch with popular apps on Google
Pixel3. At the beginning of the app launch, the apps demand
several megabytes of pages in a short time. If these pages are
prefetched during the app launch, it will be too late to load
these pages into memory before they are accessed, slowing
down the process of application launch. These pages are few
but critical to accelerate app launch, and we call them key
launch pages. To effectively accelerate app launch, these pages
should be prefetched before app launch instead of during
app launch. Based on this observation, we perform predictive
prefetching, prefetching the few key launch pages before the
target application launch based on app prediction, effectively
decreasing launch latency with little memory consumption.

Observation2: except at the beginning of app launch, the
read traffic is gentle and sequential. We record the read I/Os
during app launch according to their arrival time. In spite of
the beginning, the read traffic is gentle mostly, which is 1/70 of
key launch pages’ traffic on average. The observation gives us
a chance to prefetch the pages (except the key launch pages)
by sliding window. The prefetching process has enough time
to load the pages to memory before they are demanded for the
gentle traffic, and we call these pages common launch pages.

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

Fig. 1: Application launch latency and page faults count/size during app launch with popular apps, YK: Youku, TW: Twitter, TT:
TikTok.
What’s more, the pages in the same time window are demanded
during the same time range. The sliding window prefetching
loads pages by the order they are accessed, resolving accessing-
prefetching order inversions during app launch and effectively
accelerating app launch.

We implemented TPP on the Android kernel, and TPP
includes three parts: 1) App Prediction (AP), predicting which
application to be used next based on LSTM; 2) Launch Pages
Management (LPM), collecting which pages are demanded dur-
ing application and the order they are accessed; 3) Prefetching
Management (PM), performing two-phase prefetching: predic-
tive prefetching reads key launch pages before app launch to
decrease the memory overhead, sliding window prefetching
reads common launch pages to effectively accelerate app launch.

This paper is organized as follows. Section II introduces the
related work for accelerating application launch and discusses
their effects. Section III describes the motivation of our work.
Section IV details the design of TPP. Section V evaluates
performance of TPP with public application usage dataset and
we conclude this paper with section VI.

II. RELATED WORK

Accelerate app launch via PBAL. POA [8] identifies app
usage patterns by analyzing the app usage log, and prelaunches
the app which will be used next. FALCON [9] predicts the next
app based on the location and application usage sequences and
preloads apps from storage. If the target app is not used, PBAL
will consume the memory of several hundred megabytes. App
usage prediction has been researched by several works [18, 19,
20], and the studies show that app usage is sensitive to context-
info including time of the day [18] and app usage sequences
[19, 20]. However, the accuracy of the advanced studies is less
than 70% [10, 11, 12], and the prelaunching and preloading
based on prediction consume a large amount of memory when
the prediction is wrong.

Accelerate app launch via PDAL. FAST [6] collects all
of the block requests during application launch and prefetches
these requests. ASAP [7] tracks the switch footprint for file
page faults and anonymous page faults and reduces the switch
time via adaptively prepaging. However, PDAL is not aware
of the order of data access, which leads to a large amount
of accessing-prefetching order inversions, and it has a limited
effect on improving application launch latency.

Accelerate app launch via other methods. Many Studies
improve app launch speed via memory management, reducing
the direct reclaim count and refault count [15], avoiding making
swap during the application launch [13, 14]. Some studies

focus on I/O management [16, 17], accelerating app launch via
giving higher priority to foreground app I/Os. Both of memory
management and I/O management are orthogonal to PBAL and
PDAL.

III. MOTIVATIONS

A. Key Factors that delay app launch

Page faults prolong app launch latency. We record the
page faults during app launch with three popular apps (YK:
Youku, TW: Twitter, TT: TikTok). We evaluate app launch with
a different count of page faults. We evaluate high count of page
faults with start app from scratch, and the pages accessed are
all in the flash storage, which presents the highest count of page
faults. Besides, we evaluate low count with start the app twice
in a raw, and most of the pages accessed during the second
launch are in memory, which presents the lowest count of page
faults. Fig. 1 (a) shows that the latency of the high count is
much longer than which of low count for all applications. Fig. 1
(b) and Fig. 1 (c) show that the page faults count and size
of the high count are larger than those of low count, which
indicates that page fault is the crucial factor in delaying app
launch. When the pages accessed by the app launch task are
not in memory, page faults occur, and the CPU proceeding with
the app launch task waits until the pages are read from storage,
which increases the app launch latency.

B. Observations on the read I/Os during app launch

Few key launch pages give an opportunity to minimal
memory overhead. We trace the read I/Os during the app
launch with three popular apps (YK: Youku, TW: Twitter, TT:
TikTok). As shown in the orange circles of Fig. 2, for all apps,
read I/Os arrives in a burst at the beginning of the app launch,
which leads to page faults occurring in a burst, delaying app
launch, and we call these pages key launch pages. The read size
is little (1-2M), but the read I/Os are busy, they arrive during
the first 5ms of the app launch process. If the prefetching task
fetches them during the app launch, the prefetching task doesn’t
have enough time to fetch the key launch pages before they
are demanded, which fails to accelerate the app launch. If the
key launch pages are prefetched before the app launch, it will
be effective in accelerating the app launch, which gives us an
opportunity to minimize memory overhead on accelerating the
app launch.

Common launch pages give an opportunity to effectively
accelerate app launch. As shown in the dot-lines of Fig. 2,
the read I/Os are not busy for the rest of the app launch, and

!

!

0.0 0.2 0.4 0.6 0.8 1.00

300

600

900

R
ea

d
si

ze
(K

B
)

YK

avg115.04

14121036

0.0 0.2 0.4 0.6 0.8 1.00

500

1000

1500

Normalized launch time

TW

avg117.44

2128

avg309.16

0.0 0.2 0.4 0.6 0.8 1.00
500

1000
1500
2000

TT

Fig. 2: Read size during cold app launch.

the average read size in a time window(5ms) is 100-300KB,
which is about 1/70 of key launch pages, and we call these
pages common launch pages. That gives us an opportunity to
prefetch the pages via sliding window prefetching, the pages
in the same time window can be prefetched before they are
demanded. Most important of all, the pages in the same time
window are demanded during the same interval, and the sliding
window prefetching fetches the pages according to the order of
access, reducing page faults caused by accessing-prefetching
order inversions. In the ideal condition, the effect of sliding
window prefetching is the same as low page faults in Fig. 1.

IV. DESIGN AND IMPLEMENTATION OF TPP

Based on the observation above, we propose a Two-Phase
Prefetching schema (TPP), in order to effectively accelerate
app launch with minimal memory overhead. TPP consists of
three components: 1) App Prediction (AP), accurately predicting
app. 2) Launch Pages Management (LPM), tracking exactly
which pages are accessed and the order of access. 3) Prefetching
Management (PM), prefetching few but critical launch pages
before app launch via predictive prefetching to minimize the
memory overhead, and prefetching common launch pages
during app launch via sliding window prefetching to effectively
accelerate app launch. Fig. 3 shows the overall design of the
TPP, where the core components of the TPP are shown in
orange. AP is implemented in user space and consists of a log
collector and app usage predictor. The log collector records app
usage information and the app usage predictor trains the app
prediction model and accurately predicts the app to be used
next based on historical app usage sequences, and sends the
prediction results to PM for prefetching.

LPM and PM are implemented in kernel space. LPM tracks
the key and common launch pages during app launch and
records the order of access. Based on app prediction results,
PM prefetches few but critical pages before app launch. During
app launch, the PM prefetches the common pages into memory
in the order of they are accessed.

A. App Prediction based on Word-LSTM

Users have a specific pattern of using the app. App usage
patterns are closely related to historical app usage sequences
[12]. Example 1: Amy uses PayPal to pay for her order after
placing it with Amazon Shopping. Example 2: when Amy is
browsing videos using TikTok, she receives a Facebook message.
Amy switches to Facebook for viewing the message and re-
launches TikTok to continue browsing videos. For user Amy,

Apps App uasge
predictor

Linux kernel

page fault
handler

swap cache page cache

App usage
log

Launch
 pages list

Prepaging
manager

page
fault

Update
log

Train
model

 Predict app to be used next

 Update page list

swap area storage

 Prefetch pages

Fig. 3: TPP desgin overview.
after using Amazon Shopping, she is probably using PayPal, and
after using TikTok, she may frequently switch back to TikTok.
From the two examples, the target app is determined by the
historical app usage sequences.

Problem Formulation. App usage prediction based on
historical app usage sequences can be described as (1), where
Am is the sequence (a0, a1, . . . , am−1) of the most recent
historical usage with m apps, ai means the i-th app used, ai ∈ A,
and A is the given set of apps. P denotes the probability that
each app is to be used. The app with the highest probability is
the one most likely to be used.

P = h(Am) (1)

Word2Vector

Full-connected Feedforward
Softmax

... LSTM LSTMLSTM LSTM

-0.1
0.1

...
0.1

-0.1
-0.1

...
0.1

-0.1
0.1

...
-0.1

-0.1
0.1

...
-0.1

an-m an-m-1 an-2 an-1

0.40.1 ... 0.1 0.9 0.5
App ID 0 1 n-2 n-1...

...App
sequence

App
vectors

time steps

Target apps
0.2 0.2

Fig. 4: Illustration of Word-LSTM Model.
Word-LSTM prediction model. As shown in Fig. 4, the

App prediction model is mainly composed of two components,
including the embedding layer and the prediction component.
The embedding layer maps the app to a d-dimensional vector va.
Long Short-Term Memory (LSTM) is adopted as the prediction
component. The results of the LSTM modeling app sequence
(v0, v1, . . . , vm−1) are input into the full-connected layer with
the activation function tanh. Since our prediction objective is

!

!

to obtain the probability that each app to be used, softmax
is used as the final activation function. The k apps with the
highest probability are selected as the target apps. In Fig. 4, the
target apps are TikTok, Twitter, and Chrome.

Embedding layer. The task of the embedding layer is to map
the app to the d-dimensional vector space. There are millions
of apps in the app market, and a fast and efficient solution is
needed to map the apps. The traditional one-hot coding method
is simple and fast, but it does not identify the relationship
between apps. For example, Facebook and WeChat are similar,
but one-hot can only simply map these apps into different vectors.
In natural language processing, Word2vec is able to perform
training quickly on millions of dictionaries and data, and it can
capture the correlation between words properly to obtain the
word vector. Inspired by this, each app can be viewed as a word
in a document, and we use Word2vec for app embedding to
make full use of the context in the app sequence and preserve
the rich semantic information of the app.

Prediction component. Currently there are many app pre-
diction studies using Markov [20] or Bayesian [13, 19]models.
Markov model is capable to identify the correlation of adjacent
apps, but it assumes that the target app is only correlated with
the previous one, ignoring the impact of historical app sequences
on the target app, and it is not able to identify the usage pattern
of Example 2. The Bayesian model can identify contextual
information, but it assumes that each app usage record is isolated
and fails to identify the relationship between app usage records
[12]. Long short-term memory neural network (LSTM) is able to
capture time dependence and process time series data efficiently.
We predict reserved files based on historical information via
Markov, Bayesian and LSTM, the performance of different
methods is shown in Table II. We use LSTM for app usage
prediction based on historical app usage sequences for the high
accuracy of LSTM.

B. Launch Page Management (LPM)

The object of LPM is to accurately capture pages that
are repeatedly accessed during app startup in different turns,
including file pages and anonymous pages. The access pattern is
related to the type of files. Most file pages are invariant during
app startup [7], such as executable files with extension of .bak,
.vdex, .odex, .so, etc. The cache files and database files of the
app are gradually changed as the users use the apps. Besides,
the anonymous page is closely related to the running state of
the app and the user’s operation on the app, and the anonymous
page is variant over multiple launches. In order to record the
repeated accessed pages accurately, LPM generates a candidate
table (CT) and a target table (TT) for every app.

Data structures. The data structure of TT is the same as CT.
For file pages, every entry of CT is a file I/O list, and each
item of the list is a pair (index, len), which represents the first
accessed page’s index in the file and the count of pages to be
read. For anonymous pages, every entry of CT is the swap-in
pages list, and each item of the list is a pair (pid, vaddr), which
presents the process the page belongs to and the virtual address
of the anonymous page. The CT is divided into n time windows
(TW) with the same timezone. The pages accessed in the same

interval are recorded in the same TW. The management of CT
and TT is the same for file pages and anonymous pages.

TW1

TW2

TW3

TW1

TW2

TW3

j init
CT

Page faults log of launch1
T1

T2

T3

A1 A2 A3 A4 A5
B1 B2 B3
C1

B4
C2 C3

Page faults log of launch2
T1

T2

T3

A1 A2 A3 A4 C1
B1 B2 B3
C2

B4
C3 C4

TT
A1 A2 A3 A4 C1
B1 B2 B3
C2

B4
C3

...

CT
A1 A2 A3 A4 C1
B1 B2 B3
C2

B4
C3 C4

...

...

l insert to TT

m delete from TT

The file or process that pages belong to

Fig. 5: Profiling pages for prefetching.
Trace read I/Os and swap-in pages during app launch

via logger. We build logger in kernel to record the read
I/Os and swap-in pages. For file pages, we insert routines to
the Virtual File System (VFS) to trace read I/Os during app
launch. During App startup, LPM traces mmap read I/Os via
the filemap_fault() function and traces non-mmap read I/Os
via do_generic_file_read() function. For anonymous pages, we
modified the do page_fault() function to trace the anonymous
pages to be accessed during startup. The logger records the
pages’ metadata: (index, len, interval) for file pages, (pid, vaddr,
interval) for anonymous pages, where the interval presents the
duration from the beginning of the app launch to the pages
accessed.

Record all demanded pages and the order of access. CT
records all the demanded pages as the candidate for pretching.
For file pages, when the app is installed or updated, LPM deletes
the old CT/TT and builds a new one for the app. Because the
files app accessed are changed and the pages recorded in old
CT/TT are invalid. Similarly, for anonymous pages, when the
app starts from scratch, LPM deletes the old CT/TT and builds
a new one. Because the anonymous pages are bound to the
process, new processes are created when the app starts from
scratch. When app is launched, CT is inited with the data in
the logger. Record the pages in different TW according to the
interval of pages to identify the order of access, and the TW
number of pages is (2). As shown in Fig. 5 1 , during the
first app launch, the pages A1-A5 are accessed at T1, the TW
number is 1 according to (2), and the CT records A1-A5 in
TW1. Besides, if a page is accessed for times during the same
launch, CT only records it once with the smallest interval. That
is, record when the page is first accessed during one launch.

TWnumber = interval/timezone (2)
Update variant pages and evict inactive pages. In order to

increase the hit rate and accuracy of prefetching, fresh active
pages should be identified timely, and the recorded inactive pages
should be evicted on time. If the logged pages are recorded in
CT, these pages are accessed before, which means that these
pages are fresh and active, and they are most likely to be
accessed again during subsequent app launches. In order to
increase the hit rate of prefetching, these active pages’ metadata
should be inserted into TT timely. If the pages traced are not
recorded in CT, these pages are not repeatedly accessed before
and should be inserted into CT as candidates for prefetching

!

!

pages, as shown in Fig. 5 2 3 .If the page recorded in TT is
not accessed during two consecutive launches, the page becomes
an inactive page, which indicates that the page is most likely not
accessed during future app launches. After the app is launched,
these inactive pages’ metadata is removed from TT, as shown
in Fig. 5 4 , to increase the accuracy of pre-reading.
C. Prefetching management

PM is the critical component for TPP to achieve effective
acceleration with little memory overhead.

Prefetching of key launch pages. After AP predicts the
target app to be used next, PM reads the TT of the target app
to get the key launch pages’ metadata. Based on observation
1, PM only prefetches key launch pages (pages within the first
k time windows) before the target app launch to prevent page
faults burst at the beginning of the app launch, as shown in
Fig. 6. Compared to traditional PBAL, the memory waste of
TPP is negligible.

CPU CPU CPU

Prefetcher I/O wait wait wait

App launch I/O
App launch start App launch

completed

Read system call Cache hit CPU CPU computation

j Predictive prefetching k Sliding window prefetching
Fig. 6: Prefetching diagram of TPP.

Prefetching of common launch pages. When the target app
starts, the prefetching of common launch pages (pages after k-th
time windows) is triggered immediately. Based on observation
2, prefetch common pages in the order they were accessed, i.e.,
time window order. Prefetching is performed concurrently with
multiple threads, where one thread is assigned one time window
at a time to speed up the prefetching task. Compared with
traditional PDAL, TPP is aware of the order of pages accessed,
and the page accessed first is prefetched first, which solves
the problem of access-pre-reading order reversal, effectively
reducing page faults during app launch.

V. EVALUATION
A. Device

We implement TPP in Android for Google Pixel 3 (see Table
I for the spec and configurations). In this section, we evaluate
modules of TPP separately, which includes (1) analyzing app
usage prediction accuracy, (2) evaluating the performance of
application launch acceleration, and (3) measuring TPP overhead,
the metadata size in LPM, and the memory overhead in PM.

TABLE I: Device Specifications.
Device Google Pixel3
CPU Snapdragon 845

DRAM 4GB LPDDR4X
Storage 64GB eMMC 5.1

OS Android9.0(r21) Linux 4.9.124
ZRAM 2GB

B. Prediction

To evaluate the app usage prediction, we use traces of
LSApp[21]. We merge the logs of the same app in LSApp
to extract the app history usage records. After pre-processing,
there are 61564 app usage records from 292 users, and the
training set and test set are divided by 7:3. The prediction takes

m historical app usage records as input sequence, and Word2Vec
is used to map each app to a d-dimensional vector, and in the
experiment, d = 10.

We only concern whether the app that the user actually uses is
in the list of predicted results, so the precision of the algorithm
is evaluated using recall. To determine the number m of apps in
the app history sequence, we test the prediction accuracy with
different m. When m < 6, the prediction accuracy increases
rapidly with the increase of m, and is almost unchanged when
m > 6. Therefore, in the experiment m = 6. App prediction
results are shown in Table II, Recall@3 of Word-LSTM is
82.99%, which is much higher than other methods.

TABLE II: Performance Comparison with Baselines.
Method Recall@1 Recall@2 Recall@3
Bayesian 0.191196 0.329098 0.384015
Markov 0.350325 0.515617 0.60127
Word-LSTM 0.645011* 0.77721* 0.829869*

C. Performance

The workloads are shown in Table III. We separately evaluate
the impact of the predictive prefetching size and the time window
size on the app launch time by Twitter. To evaluate the effect
of predictive prefetching size, we set the time window size
to 1ms. We prefetch pages before the app launch in the first
n time windows and use the number of time windows n to
represent the pages’ size. The experimental results show that
when n < 10, the launch delay decreases significantly as n
increases, and when n > 10, the launch delay changes little. It
is because when the predictive prefetching size is small, most of
the key launch pages are prefetched during the app launch, and
as the predictive prefetching size increases, more key launch
pages are prefetched before the app launch, effectively reducing
the app launch latency. When n = 10, all of the key launch
pages are prefetched before the app launch. So, we take 10ms
as the predictive prefetching size in the following experiments.
Similarly, the experimental results show when the time window
size is 10ms, the app launch speed is the fastest, and we set
the time window size as 10ms.

TABLE III: Workloads.
Application Action

Twitter (TW) Browse and read posts
TikTok (TT) Watch videos

Candy Crush (CC) Play a stage
Amazon Shopping(AS) Browse products

Firefox (FF) Search via keyword and browse
Earth (ET) Search via keyword and browse

Based on the prediction results, select three apps with the
highest probability as target apps. Before the target app launch,
prefetch the key launch pages accessed during the first 10ms by
the launch process. During app launch, the time window size
is set as 10ms, and prefetch the common launch pages via 8
threads in the order of time windows.

App launch latency.As shown in Fig. 7, compared to the
Android 9.0 origin prefetching, TPP reduces app launch latency
by up to 67.8% and 41% on average. Compared to the most
advanced accelerate app launch method ASAP, TPP reduces
app launch latency by up to 52.5% and 37% on average.

!

!

TW TT CC AS FF ET
0

200
400
600
800

La
un

ch
 la

te
nc

y(
m

s)

Apps

 Android
 ASAP
 TPP

Fig. 7: App launch latency on popular Apps.

To verify the efficiency of TPP in reducing page faults, we
chose three apps (TT, AS, and ET) to measure the count and
size of page faults during app launch with different prefetching
methods. As shown in Fig. 8 (a), TPP reduces the page faults
count by 57.3% - 97.3% compared to the Android 9.0 native
prefetching and 54.5% - 87.1% compared to ASAP. As shown
in Fig. 8 (b), TPP reduces the page faults size by 91.5% - 99.5%
compared to the Android 9.0 native prefetching and 72.3% -
96.7% compared to ASAP.

TT AS ET
0

1200
1500

C
ou

nt

 Android
 ASAP
 TPP

Apps
(a) Page fault count

Apps
(b) Page fault size

TT AS ET
0

20

80

Si
ze

 (M
B

) Android
 ASAP
 TPP

Fig. 8: Page faults count and size during app launch for different
prefetching schema.

D. Overhead

Memory is a scarce resource on mobile devices. Besides, as
an interactive device, the mobile is latency sensitive. Therefore,
we evaluate the memory usage and latency of each module
in TPP. App usage prediction. We train the prediction model
100 times, the prediction model average size is 109KB, and the
model offline training latency is 100.798s on average. We predict
ten thousand sequences in batch 100 times, the model online
prediction latency is 30.04µs on average, which is negligible
for users. Launch Page Management. The prefetching metadata
of per app is 338.45KB on average, which can be resident in
memory.

Prefetching Management. As shown in Fig. 9, the predictive
prefetching method preloads data with an average size of 1.31M,
which is much lower than the traditional PBAL. For time-sharing
prefetching, the average number of pages recorded in a time
window is 45.1, i.e. 180.4KB, and the average delay of reading
the pages in a time window is 2.12ms.

TW TT CC AS FF ET
0
2
4

150
200
250
300

M
em

or
y

ov
er

he
ad

 (M
B

)

Apps

 PBAL
 TPP

Fig. 9: Memory Overhaed.

VI. CONCLUSION

In this paper, we explored the temporal characteristics of the
read I/Os during app launch, and first propose the predictive
prefetching for the little but crucial pages, avoiding preloading
all of the launch pages. Besides we design a novel time-sharing
prefetching method, to resolve the problem of access-prefetching
order reversal, effectively reducing the number of page faults
that occur during app startup. The experimental results show that
TPP effectively accelerates app launch with minimal resources.

ACKNOWLEDGMENT

This work was supported by Key Laboratory of Information
Storage System and Engineering Research Center for Data
Storage Systems and Technology, Ministry of Education, China.

REFERENCES

[1] “Smartphone Market Share,” https://www.idc.com/promo/smartphone-
market-share. 2022.

[2] Umar Farooq and Zhijia Zhao, “Runtimedroid: Restarting-free runtime
change handling for android apps,” in MobiSys, 2018, pp. 110–122.

[3] Deng et al, “Measuring smartphone usage and task switching with log
tracking and self-reports,” in Mobile Media & Communication, vol. 7, no.
1, 2019, pp. 3–23.

[4] Al Maruf, Hasan, and Mosharaf Chowdhury, “Effectively prefetching
remote memory with leap,” in ATC, 2020, pp. 843–857.

[5] Li, Changlong, et al, “SEAL: User experience-aware two-level swap for
mobile devices,” in TCAD, vol. 39, no. 11, 2020, pp. 4102–4114.

[6] Joo, Yongsoo, et al, “FAST: Quick Application Launch on Solid-State
Drives,” in FAST, 2011, pp. 259–272.

[7] Son, Sam, et al, “ASAP: Fast Mobile Application Switch via Adaptive
Prepaging,” in ATC, 2021, pp. 365–380.

[8] Song, Wook, et al, “Personalized optimization for android smartphones,”
in TECS, vol. 13, no. 2, 2014, pp. 1–25.

[9] Yan, Tingxin, et al, “Fast app launching for mobile devices using predictive
user context,” in MobiSys, 2012, pp. 113–126.

[10] Shen, Zhihao, et al, “Deepapp: a deep reinforcement learning framework
for mobile application usage prediction,” in SenSys, 2019, pp. 153–165.

[11] Tian, Yuan, et al, “What and how long: Prediction of mobile app
engagement,”, in TOIS. vol. 40, no. 1, 2021, pp. 1–38.

[12] Zhao, Sha, et al, “Appusage2vec: Modeling smartphone app usage for
prediction,” in ICDE, 2019, pp. 1322–1333.

[13] Zhu, Xiao, et al, “SmartSwap: High-performance and user experience
friendly swapping in mobile systems,” in DAC, 2017, pp. 1–6.

[14] Lebeck, Niel, et al, “End the senseless killing: Improving memory
management for mobile operating systems,” in ATC, 2020, pp. 873–887.

[15] Liang, Yu, et al, “Acclaim: Adaptive memory reclaim to improve user
experience in android systems,” in ATC, 2020, pp. 897–910.

[16] Hahn, Sangwook Shane, et al, “FastTrack: Foreground App-Aware I/O
Management for Improving User Experience of Android Smartphones,”
in ATC, 2018, pp. 15–28.

[17] Kim, Sangwook, et al, “Enlightening the I/O Path: A Holistic Approach
for Application Performance,” in FAST, 2017, pp. 345–358.

[18] Liao, Zhung-Xun et al, “On mining mobile apps usage behavior for
predicting apps usage in smartphones,” in CIKM, 2013, pp. 609–618.

[19] Zou, Xun, et al, “Prophet: What app you wish to use next,” in UbiComp,
2013, pp. 167–170.

[20] Parate, Abhinav, et al, “Practical prediction and prefetch for faster access
to applications on mobile phones,” in UbiComp, 2013, pp. 275–284.

[21] Aliannejadi, Mohammad, et al, “Context-aware target apps selection and
recommendation for enhancing personal mobile assistants,” in TOIS, vol.
39, no. 3, 2021, pp. 1–30.

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

