
Optimizing Data Migration for Garbage Collection
in ZNS SSDs

Zhenhua Tan1, Linbo Long1*, Renping Liu1, Congming Gao2, Yi Jiang1, and Yan Liu1

1College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
2School of Information Science and Engineering, Xiamen University, Xiamen 361005, China

Abstract—ZNS SSDs shift the responsibility of garbage collec-
tion (GC) to the host. However, data migration in GC needs to
move data to the host’s buffer first and write back to the new
location, resulting in an unnecessary end-to-end transfer overhead.
Moreover, due to the pre-configured mapping between zones and
blocks, GC needs to perform a large number of unnecessary
block-to-block data migrations between zones. To address these
issues, this paper proposes a simple and efficient data migration
method, called IS-AR, with in-storage data migration and address
remapping. Based on a full-stack SSD emulator, our evaluation
shows that IS-AR reduces GC latency by 6.78× and improves
SSD lifetime by 1.17× on average.

I. INTRODUCTION

NVMe Zoned Namespace (ZNS) interface is emerging as a
promising interface standard for flash-based SSDs [1, 2]. To
eliminate device garbage collection (GC), ZNS SSDs allow
applications to write data sequentially to different zones with
an efficient data placement [3]. However, the space occupied
by invalid data in a zone can only be released after all data in
the zone is invalid, resulting in low space utilization. Usually,
the host GC is still required to ensure there is enough free
space. Most existing related studies focus on reducing the
number of data migrations, but their data migration methods
are inefficient [4, 5].

On the one hand, data migration on ZNS SSDs triggers an
unnecessary end-to-end transfer overhead. During GC, valid
data in the victim zone needs to be first moved to the host’s
buffer and then written back to the new location in the target
zone. On the other hand, block-to-block data migrations be-
tween zones are highly expensive, causing significant rewrite
overhead. Ideally, blocks with valid data in the victim zone
can be remapped to the target zone, avoiding the higher block-
to-block rewrite overhead. However, the mapping between
zones and blocks in ZNS SSDs is pre-configured based on the
parallelism between chips [6].

Therefore, this paper proposes a simple and efficient data
migration for GC in ZNS SSDs, termed IS-AR. First, a new
ZNS command, named Zone MD, is designed to implement
in-storage data migration, avoiding the end-to-end transfer
overhead. Then, a remapping strategy based on parallel physical
blocks is proposed to reduce the high block-to-block rewrite
overhead. Based on a full-stack SSD emulator with typical
workloads, our evaluations exhibited that IS AR achieved
6.78× the reduction of GC latency and 1.17× the improvement
of SSD lifetime on average.

*Corresponding author: Linbo Long. E-mail: longlb@cqupt.edu.cn.

II. IS-AR: IN-STORAGE DATA MIGRATION AND ADDRESS
REMAPPING

A. In-storage data migration (IS)

Write-After-Read Zone_MD(Src,Dst, Size)

Linux kernel

Data Migration

Physical

Blocks

Physical

Blocks

Read Write

Victim

 Zone
Src Src+Size Dst Dst+Size

Channel

Target

 Zone

Valid Page
In-storage Data Migration

Garbage Collection

Host

ZNS

SSDs

Zone ResetZone Selection

Fig. 1. The method of in-storage data migration.

As shown in Figure 1, a new ZNS command (i.e.,
Zone MD (Src, Dst, Size)) is added in ZNS SSDs to help
to enable in-storage data migration, where Src is the starting
logical address of valid data in the victim zone, Dst is the
write point (WP) of the target zone, and Size represents the
length of the continuous valid data to be migrated. When the
GC needs to migrate data, Zone MD is first used to notify the
device to migrate data internally. When the device receives the
command, it locates the physical pages according to the starting
logical address (Src) of valid data. After that, the data of these
pages are read, transferred and rewritten to the physical pages
corresponding to the destination logical address (Dst) through
the internal channel. In this process of data migration, data is
transferred only within the device, avoiding end-to-end transfer.

B. Address remapping (AR)

Block0

BlockN

Chip0 Chip1 Chip2 Chip3 Chip4 Chip5 Chip6 Chip7

Parallel Chip Group 1(PCG 1)

Parallel Block Group 0(PBG 0)

Parallel Chip Group 0(PCG 0)

PBG N

PBG N+1

 Fig. 2. A dynamic zone mapping method.

To ensure the parallelism of writing in a zone, a dynamic
zone mapping method is first presented based on parallel block
groups (PBGs). As shown in Figure 2, we first group the chips
in SSD to form multiple parallel chip groups (PCG). Read and
write operations can be processed in parallel with PCG. Then,
the blocks with the same offset in the PCG are further divided
into multiple PBGs. Similarly, read and write operations on
a PBG can be executed in parallel. Thus, we use PBG as
the remap minimum unit while the parallelism in a zone can
be preserved. When a zone is allocated, we dynamically map
PBGs to the zone.

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

Based on the dynamic zone mapping, a remapping strategy
is proposed to reduce the high block-to-block rewrite overhead.
In the victim zone, there are two cases of PBGs that need to be
migrated, i.e., the entire PBG holds valid data (V1) and only a
portion of the PBG holds valid data (V2). In the target zone, the
PBG that is currently being written also has two cases, i.e., all
the space of the PBG is written (T1) and a portion of the PBG
is not written (T2). Based on these four cases, four remapping
methods are proposed, as shown in Figure 3.

(1) V1àT1

(2) V1àT2

(3) V2àT1

(4) V2àT2

LS

PS

MT

WP WP*L0

CW

Remap

Remap

Written

Written

T1 V1

LS

PS

MT

WP WP*L0

Written

Written

T1 V2

LS

PS

MT

WP(L1) WP*(L3)

P1 P2

R0 R1 R2RT

L0
CW

L4

Remap

Remap

P0 P4
Written Unused

Written

T2 V1

LS

PS

MT

WP(L1) WP*(L2)

P1 P2

R0 R1 R2RT

L0
CW

P0 P4

Written Unused

Written

T2 V2

P3
Invalid

L3

P2 P3

InvalidRemap

Remap

Remap

Remap

P1P0

Fig. 3. The diagram of address remapping.

As shown in Figure 3 (1) (2), V1 is remapped to the
target zone containing T1 or T2. The logical space (LS) and
physical space (PS) of V1 are directly remapped to the target
zone. Meanwhile, WP is shifted to WP* (i.e. WP+V1 Size).
In addition, the mapping between LS and PS is updated to the
mapping table (MT). Further, to utilize the unused space (P1-
P2) in T2, the section of LS with the size of P2-P1 after WP*
is mapped to the unused space (P1-P2). In this way, the unused
space can be continued to write (CW) after remapping. To
maintain the correct indexing relationship, a new remapping
table (RT) is added to record the offset of the logical address
from the physical address at range (i.e., a continuous segment
of LS with the same offset) granularity.

As shown in Figure 3 (3) (4), V2 is remapped to the target
zone containing T1 or T2. The entire PS of V2 is remapped
directly to the PS of the target zone. However, only the LS
of the valid data in V2 is remapped to the target zone since
the target zone needs only valid data. The space of invalid
data in V2 is reserved until the target zone is reset (i.e. part
of the invalid space is temporarily occupied by target zone).
Therefore, we use the current space utilization (su) of ZNS
SSDs as a benchmark. If the percentage of valid data in V2
is greater than su, we perform the remapping. Otherwise, we
directly rewrite all valid data in V2. In this way, we try to get
a trade-off between space utilization and performance.

Based on the above, remapping can minimize the block-to-
block rewrite overhead as much as possible. Further, we weigh
the benefits and costs of remapping to reduce the overhead
caused by remapping.

III. EVALUATION

To evaluate IS-AR, we implemented it in ZNS SSD based on
FEMU [7]. The detailed configurations are shown in Table I. In
addition, we compare IS-AR with the traditional data migration
method (termed Trad-DM), which does not implement in-
storage data migration and remapping. Further, we utilized

TABLE I
EXPERIMENT SETUP.

Configuration Description
FEMU FEMU version: 5.2; Linux kernel: 5.12
SSD Channels: 8, Chips/Channel: 4; Dies/Chip: 1,

Planes/Die: 4; Blocks/Plane:256, Pages/Block: 256;
Page Capacity: 4KB

ZNS Zone size: 128MB; Number of Zones: 256; Zone
Parallelism: 32

Flash latency Read latency: 40us; Program latency: 200us; Erase
latency: 2000us

Software Version RocksDB Version: 7.3; Zenfs Version: 2.0.1
db bench Key Size: 128bytes; Value Size: 8192bytes; Max

SST File Size: 64MiB; I/O Mode: Direct I/O

TABLE II
PERFORMANCE COMPARISON BETWEEN IS-AR AND TRAD-DM

Workloads Latency(s) Lifetime loss
Trad-DM IS-AR Trad-DM IS-AR

Random 38.49 6.95 192768 170067
Random+Overwrite 33.28 6.41 181453 158880

Random+Updaterandom 45.22 5.71 232640 209488
Seq 37.81 5.1 59236 41813

Seq+Overwrite 64.45 9.37 114368 92885
Seq+Updaterandom 95.13 12.82 183296 153248

db bench (RocksDB’s internal benchmark) to generate six
classic workloads. A comparison of the performance of IS-
AR and Trad-DM under six workloads is shown in the table II,
where the first column is the elapsed time of data migration (i.e.
latency) during GC, and the second column is the total number
of physical block erasures (i.e. lifetime loss). Compared with
Trad-DM, IS-AR can not only significantly reduce the latency
of data migration during GC by an average of 6.78×, but also
greatly improve the lifetime of ZNS SSDs by 1.17× on average
under six workloads.

IV. CONCLUSIONS
In this paper, we present IS-AR, which offloads the re-

sponsibility of data migration between zones to the device
through the new ZNS interface, Zone MD, and deploys address
remapping on the device to further improve the efficiency of
data migration. Further, we significantly demonstrate that IS-
AR improves the efficiency of data migration during GC and
the lifetime of ZNS SSDs.

ACKNOWLEDGMENT

This work was supported by grants from the Na-
tional Natural Science Foundation of China 61902045,
62102219 and 62172067, Chongqing High-Tech Research Key
Program cstc2021jcyj-msxmX0981, cstc2021jcyj-msxmX0530,
and cstb2022nscq-msx0601.

REFERENCES
[1] “NVMe Zoned Namespaces,” https://zonedstorage.io/docs/introduction/zns.
[2] R. Liu, Z. Tan, Y. Shen, L. Long, and D. Liu, “Fair-ZNS: Enhancing Fairness in ZNS

SSDs through Self-balancing I/O Scheduling,” TCAD, 2022.
[3] M. Bjørling, A. Aghayev, H. Holmberg, and et al., “ZNS: Avoiding the Block Interface

Tax for Flash-based SSDs,” in ATC, 2021, pp. 689–703.
[4] G. Choi, K. Lee, M. Oh, and et al., “A New LSM-style Garbage Collection Scheme

for ZNS SSDs,” in HotStorage, 2020.
[5] G. Oh, J. Yang, and S. Ahn, “Efficient Key-Value Data Placement for ZNS SSD,”

Applied Sciences, vol. 11, no. 24, p. 11842, 2021.
[6] K. Han, H. Gwak, D. Shin, and et al., “ZNS+: Advanced Zoned Namespace Interface

for Supporting In-storage Zone Compaction,” in OSDI, 2021, pp. 147–162.
[7] H. Li, M. Hao, M. H. Tong, and et al., “The CASE of FEMU: Cheap, Accurate,

Scalable and Extensible Flash Emulator,” in FAST, 2018, pp. 83–90.

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

