
Hierarchical Non-Structured Pruning for Computing-In-Memory
Accelerators with Reduced ADC Resolution Requirement

Wenlu Xue, Jinyu Bai, Sifan Sun and Wang Kang
School of Integrated Circuit Science and Engineering, Beihang University, Beijing, 100191, China

Email: wang.kang@buaa.edu.cn

Abstract—The crossbar architecture, which is comprised of
novel nano-devices, enables high-speed and energy-efficient
computing-in-memory (CIM) for neural networks. However, the
overhead from analog-to-digital converters (ADCs) substantially
degrades the energy efficiency of CIM accelerators. In this paper,
we introduce a hierarchical non-structured pruning strategy
where value-level and bit-level pruning are performed jointly on
neural networks to reduce the resolution of ADCs by using the
famous alternating direction method of multipliers (ADMM). To
verify the effectiveness, we deployed the proposed method to a
variety of state-of-the-art convolutional neural networks on two
image classification benchmark datasets: CIFAR10, and ImageNet.
The results show that our pruning method can reduce the required
resolution of ADCs to 2 or 3 bits with only slight accuracy loss
(∼0.25%), and thus can improve the hardware efficiency by 180%.

Index Terms—computing-in-memory, neural network, partial
sum, pruning, alternative direction method of multipliers(ADMM)

I. INTRODUCTION

Deep neural networks (DNNs) have become the key technol-
ogy to realize artificial intelligence. Researchers have demon-
strated the effectiveness of DNNs in various applications such
as image classification [1], object detection [2], speech recog-
nition [3], and natural language processing [4]. However, with
the increasing number of parameters and the complexity of
computation, the conventional von Neumann architecture fails
to improve efficiency further because of the memory wall.

Recently, computing-in-memory (CIM) hardware is garner-
ing attention as a new computing platform for DNNs [5]–
[7]. CIM hardware uses memory arrays as both data stor-
age and processing units, thus avoids frequent data transfer
between memory and processing units. However, because of
the limitations of the manufacturing process, it is difficult
to fabricate large arrays. As a consequence, neural network’s
vector-matrix-multiplications (VMMs) must split the operands
into several arrays to get partial sums and then sum them up.
Because CIM performs computation in analog domain, high
resolution digital-to-analog converters (DACs) and analog-to-
digital converters (ADCs) are required for inputs and partial
sums, respectively, which will significantly degrade the energy
efficiency. Though the resolution of DACs can be lowered to
1 bit by processing input values in bit-serial manner [8], [9],
high-resolution ADCs are still inevitable. Therefore, there is a

This work was supported by the Natural Science Foundation of
China (62274008), Beijing MSTC Nova Program (Z201100006820042 and
Z211100002121014), Beijing Natural Science Foundation (L223004) and Joint
Funds of the National Natural Science Foundation of China (U20A20204).

great need for an efficient and accurate algorithm to reduce the
resolution of ADCs.

In order to reduce the resolution of ADCs, an intuitive
method is to reduce the distribution range of partial sums. An
intuitional implement method is to set more weights to zero
by pruning. Thus, we proposed a hierarchical non-structured
pruning method with both value-level and bit-level pruning
to reduce the requirement in ADC’s resolution. The main
contributions of this paper are summarized as follows:

• We propose AMP, an adaptive magnitude-based value-
level pruning method with a newly defined array-wise
pruning granularity, to set the majority of weights to
zero. The pruning threshold is determined adaptively for
different arrays according to the resolution of ADCs so
that partial sums can be reduced with less pruning error.

• In order to further improve the sparsity of weights, we
introduce the summation of powers-of-two (PoT) terms
based bit-level pruning (TBP). We determine a sparsity
threshold for each array based on how sensitive the array
is to pruning.

• Both of the value-level pruning and bit-level pruning
can be formulated as discretely constrained non-convex
optimization problems with indicator function. To solve
the hierarchical pruning problem, we adopt ADMM to find
the global optimal value.

• We evaluate the effectiveness of the proposed method in
terms of accuracy, area and energy efficiency. We show
that our method attains better performance than other
works.

II. RELATED WORK

A. CIM-Based Neural Network Computing

As shown in Fig. 1, because of the limitations of the
manufacturing process, operands of neural networks’ VMMs
have to be split into several arrays. In neural networks, input
X is a 3−D tensor with the shape of M×N×C, and the shape
of weight W is P×C×E×F. To complete the calculation of
VMMs which are divided into G groups on the input channel
(i.e. each array has E×F×C/G rows), the input feature Xi is
applied to each row of the array in the form of a voltage Vi

converted by DACs, and P weight matrices are stored on the
P column nano-devices in the form of conductance. According
to Ohm’s Law and Kirchhoff Circuit Law, the output of a filter
is

Yj =

G−1∑
g=0

ADC(

E×F×C/G−1∑
i=0

Wi,j,gVi,g) (1)

2023 Design, Automation & Test in Europe Conference (DATE 2023) – Best Paper Award Candidate	

 978-3-9819263-7-8/DATE23/© 2023 EDAA 

	



N

M

C/G

E

F

P

M’

...

layer i layer i+1

..
. ...

...

...

...

...

...

DAC

DAC

DAC

DAC

DAC

N’

P

MUX

W

...

ro
w

s 
(E

F
C

/G
)

ADC

Reshaping and Mapping

X Y

V1

...

V2

Vi

VEFC/G

1I I IP/GI2

...

...

...

...

...

...

columns (P)

..
.

/

,1

E F C G

j i j ii
I W V

´ ´

=
=å

1) Mapping mismatch caused by limited
    array size
2) Limited precision caused by:
    -Poor reliability of multi-bit RRAM
    -Large-overhead high-bit DACs 
    -Large-overhead high-bit ADCs

C
h

a
lle

n
g

e
s
:

1) Matrix splitting and optimization
2) Low bit-width CNN:
    -Low-bit weights stored in SLCs
    -Process input values in bit serial mode
    -Hierarchical non-structured pruning

S
o

lu
ti
o

n
s
:

C

C

C/G

Fig. 1. The typical architecture of CIM-based VMMs computation. A VMM
operation is firstly partitioned. Then inputs and weights are reshaped to 2-D
matrices and mapped to the array. The accumulated currents are converted by
ADCs as partial sums.

which will be converted by ADCs, and ADC(·) function is the
transfer function of the ADC.

In addition, we use single-level cells (SLCs) to store the
weights, which means that each cell will only save one bit, 0
or 1. A bw-bit weight using SLCs is supposed to be

w =

bw−1∑
i=0

2iw(i) (2)

where w(i) denotes the ith bit in the binary representation.
Compared with multi-level cells (MLCs), SLCs are not re-
stricted to the type of memory devices. Various types of mem-
ory devices, such as volatile SRAM and nonvolatile ReRAM
and MRAM, can be adopted to implement SLCs. Moreover,
SLCs become more reliable against process variation because
only two states are presented, namely, the high-conductance
state (1) and the low-conductance state (0).

B. Non-Structured Neural Network Pruning

Pruning methods are widely used for compressing trained
DNNs. They usually use some metrics to measure the im-
portance of parameters and then set thresholds to abandon
parameters with low importance. There are different ways to
prune a neural network: non-structured pruning [10] where
arbitrary weight can be pruned, and structured pruning [11]
which maintains certain regularity.

Non-structured pruning can obtain neural networks with
higher sparsity than structured pruning. However, practical
acceleration can only be achieved by structured pruning when
there is no additional hardware design for sparse matrix
multiplication [12]. Thus, most of researchers concentrate on
structured pruning. In this work, we focus on non-structured
pruning from different perspectives which are value-level and
bit-level. Non-structured sparsity can be used to reduce the
distribution range of partial sums effectively.

C. Basics of ADMM

Deep learning heavily relies on optimization algorithms to
solve its learning models. Constrained problems constitute a
major type of optimization problem, and the ADMM method
[13] is a commonly used algorithm to solve constrained
problems, especially linearly constrained ones. It uses aug-
mented Lagrangian to decompose the original problem into two
subproblems and alternately updates the parameters until the
optimal solution is obtained. In this way, we can get rid of the
combinatorial constraints and solve the problem that is difficult
to solve directly.

Consider a non-convex optimization problem as:

min
x

f(x) + g(z)

s.t. x− z = 0
(3)

The augmented Lagrangian of Eq. (3) can be formed as:

ιρ(x, z, u) = f(x) + g(z) +
ρ

2
∥x− z + u∥22 −

ρ

2
∥u∥22 (4)

where u is the Lagrangian multipliers and ρ > 0 is a hyper-
parameter. This problem can be decomposed into two subprob-
lems on x and z, each of which is then easier to handle. Then
ADMM consists of three-step iterations:

xk+1 := argmin
x

(f(x) +
ρ

2

∥∥x− zk + uk
∥∥2
2
)

zk+1 := argmin
z

(g(z)+
ρ

2

∥∥xk+1 − z + uk
∥∥2
2
)

uk+1 := uk+xk+1 − zk+1

(5)

Pruning problem can be viewed as a constrained problem
where weights are constrained to a specific set. ADMM has
already been adopted to neural network pruning [14].

III. OUR APPROACH

A. Overview

In order to reduce the hardware overhead caused by high-
resolution ADCs, we propose hierarchical non-structured prun-
ing, which can narrow the distribution range of partial sums
by improving the sparsity ratio of weights. As shown in Fig.
2, we first divide the weight matrices according to the size of
the array, then perform value-level pruning designed according
to the characteristic of the CIM array (Fig. 2(b)). Bit-level
pruning is performed on the binary code of weights (Fig. 2(c)).
Both value-level and bit-level pruning are decomposed into two
subproblems through the application of ADMM. After these
two pruning steps, we can obtain a highly sparse weight array,
and then conduct VMMs to obtain smaller partial sums which
can be converted by low-resolution ADCs.

B. Array-Adaptive Magnitude-Based Value-Level Pruning

Global network-wise pruning threshold is firstly used to
prune neural networks [15]. Then layer-wise magnitude-based
pruning is proposed to prune connections with absolute weight
values lower than layer-specific thresholds [16]. However, as
mentioned in Section I, VMMs in neural networks are com-
puted in array-wise manner for CIM accelerators. We analyze

!

!



... ...

...

...

(b) Array-adaptive magnitude-based pruning(a) Weight matrices spliting according to the array size (d)ADMM-based joint pruning work

1) Value-Level Pruning

Preliminary 
Sparse Array

...

Subproblem2:

Given Wi, 

optimize Zi 

Subproblem1:

Given Zi, 

optimize Wi

2) Bit-level Pruning

High Sparse
Array

...

Subproblem2:

Given Wi, 

optimize Zi 

Subproblem1:

Given Zi, 

optimize Wi

(c) Summation of PoT terms 

based bit-level pruning

90 37 15 88 37 14
bit-level
pruning

Fn

F2

F1

...

...

...
... ...

... ... ...

...

...

..
.

..
.

..
.

...

P
ru

n
ed

P
ar

am
et

er

E

F

C

Split

C/G

C%G

1
1 ...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

CIM Array

(C/G Rows)

P
ru

n
ed

 t
er

m
s

26

20

25

22

W2

23

24

21

W1 W3

Fig. 2. Overview of our proposed hierarchical non-structured pruning method. The pruning problem is decomposed into two subproblems: the first one can be
solved using standard stochastic gradient descent (SGD); the second one can be optimally and analytically solved.

(a) Different-wise weight distributions

Network-wise weight distribution

0.0 0.20.0
0.0

15

10.0

5.0

2.5

7.5

12.5

17.5

D
en

si
ty

Layer-wise weight distribution

-0.2

th5 layer

10

0

20

30

0.0 0.1 0.2-0.1 0.0 0.1-0.1

5

0

10

15

20 th12 layer

Array-wise weight distribution

0

5

10

15

20

0.0 0.1-0.1

1  arrayst

0

5

10

15

20

0.0 0.05-0.05

4  arraynd

(b) Diffierent-wise pruning manners

global sparsity ratio:50% layer sparsity ratio: 50%

...

P
ru

n
ed

P
ar

am
et

er

array sparsity ratio: 50%

Fig. 3. (a) Weights distributions using different granularities (ResNet-50). (b)
Different kinds of pruning granularities in terms of global-wise (left), layer-
wise (middle), and array-wise (right).

the distribution of pruned weights in network-wise, layer-
wise, and array-wise manners respectively (Fig. 3(a)). The
weight distribution of network-wise shows the Gaussian-like
distribution with a mean of zero. However, the variance and
shape of the weights distribution for each layer become very
different. Further, we can find that the distributions of weights
for arrays vary substantially, even if they come from the same
layer. Therefore, there is a possibility for further improvement
if weight pruning is implemented in an array-wise manner.

Assuming that the required resolution of ADCs is bADC , the
number of non-zero weights ng on a bit line in the array g can
be computed as

ng = 2bADC−(ba+bw) (6)

where ba and bw represents the bit number of inputs and
weights, respectively. Therefore, the number of weights on each
bit line in an array should be less than or equal to ng .

By this way, the generation of the pruned model is decided by
the resolution of ADCs in each array. After sorting the weights

90
37

15

..
.

..
.

..
.

..
.

..
.

..
.

...

..
.

..
.

..
.

26

21

20 bit-level

pruning

90

37

15

6 4           3          12 2 2     2+ +     +

5 2          02 2 2+ +

3          2           1          02 2 2     2+ +     +

88

37

14

5 2          02 2 2+ +

6          4          32 2 2+ +

26

20

25

22

W2

23

24

21

Pruned terms

W1 W3

3          2           12 2 2 + +

Fig. 4. Weights are represented as the summation of PoT terms. Then keep
sg = 3 terms in each weight.

according to the absolute vale, the pruning strategy of array g
in each column can be described as

AMP (W,ng) =

{
Wi 1 ≤ i ≤ ng

0 others
(7)

It should be noted that memory cells in a CIM array cannot
directly represent negative weights, so we use two arrays to
store the positive and negative elements in a weight matrix
respectively as

Y = W ⊗X = (Wp −Wn)⊗X = Wp ⊗X −Wn ⊗X (8)

Here Wp contains all the positive weights and Wn includes the
absolute value of all negative weights. Since we use array-wise
granularity, the positive and negative matrices have separate
thresholds. Compared with a matrix that contains positive and
negative elements, the divided matrices have finer granularity,
which is helpful to decrease the pruning error.

C. Summation of PoT Terms Based Bit-Level Pruning

As denoted in Eq. (2), we use SLCs to store the weights. In
other words, a single value of weight has to be represented as
the summation of PoT terms. For instance, the 7-bit value 67
(1000011) is the summation of 3 PoT terms: 26 + 21 + 20.

According to this property, we can increase the sparsity
ratio of binary codes in weights by limiting the number of
terms in each weight to sg , and map weights to the closest

!

!



Q
u

an
ti

ze
d

0.2

0.0

0.4

0.8

0.6

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Float

Q
u

an
ti

ze
d

(a) (b)

0.2

0.0

0.4

0.8

0.6

1.0

Float
0.0 0.2 0.4 0.6 0.8 1.0

More levels
around the mean

More levels
in the edge

Fig. 5. Quantization curves when weights are quantized to 4-bit with uniform
quantization (a) and TBP (b). TBP has a more reasonable resolution assignment.

value. The distribution of partial sums can be narrowed without
introducing complicated peripheral circuits. Fig. 4 illustrates
how TBP is applied to an array in a 7-bit weight matrix (only
unsigned numbers need to be considered), and we retain up
to sg = 3 terms. These weights are formulated as the form
of summation of PoT terms and decomposed into individual
terms. Because there are only 3 terms in 37, we do not need
to consider it. Weight with value of 90, which has 4 terms, is
mapped to the closest value 88, so we pruned the term 21. For
15, we only need to prune the term 21 and map it to 14.

The most important parameter in this method is sg . Re-
search shows that the network can have significantly different
sensitivity to pruning of each layer, and the distribution of
weights in each layer is various [16]. Therefore, it is reasonable
to speculate that each array is also different in sensitivity to
pruning. Thus, we determine sg according to the sensitivity of
each array. It has been proved that the average number of the
top eigenvalue of the Hessian matrix can be used to measure
sensitivity [17] as

SEN =
λ

n
(9)

where λ is the top eigenvalue of the Hessian matrix and n is the
number of weights of an array. Smaller SEN indicates lower
sensitivity, and a smaller sg is required.

Note that it is not possible to explicitly form the Hessian
matrix since a large amount of calculation and storage are
needed. Hutchinson algorithm [17] can be used to reduce the
computational complexity. Assume that H is the Hessian matrix
of the weights W , and the Jacobian matrix of W is defined as
J , we can compute λ with a random vector v as

λ =
∂(JT v)

∂W
=

∂JT
∂W

v + JT ∂v

∂W
=

∂JT

∂W
v = Hv (10)

Since the random vector is independent of the weights, we have
∂v
∂W = 0.

TBP can be regarded as an efficient nonuniform quantization.
It can be seen from Fig. 5 that TBP achieves to assign more
levels around zero compared to uniform quantization, and there
are also more levels at the edge region. The distribution of
the quantization levels matches weights with Gaussian-like
distribution better than uniform quantization.

D. ADMM-Based Hierarchical Non-Structured Pruning

A trained DNN model can be represented as ω =
{
W (i)

}G

i=1
,

where G is the number of arrays. Let f(ω) denote the loss
function which measures the accuracy of the model. To learn
a compressed DNN model, we have the constrained problem:

min
{W (i)}

f(
{
W (i)

}G

i=1
)

s.t. W (i) ∈ S(i)

(11)

For the AMP problem, the constraint set S(i) = { ng weights
with the largest absolute values of each column in an array},
and for the TBP problem, the constraint set S(i) = { the weights
in array g are mapped to the quantization values }, where the
quantization values are a set of numbers that have sg ‘1’s in the
binary code. Then we convert the constraints to an indication
function as

Is(W
(i)) =

{
0 if W (i) ∈ S(i)

+∞ otherwise
(12)

By introducing an auxiliary variable Zi, we can rewrite Eq.
(11) as Eq. (13) with an extra equality constraint so that weights
are constrained to be equal to the discrete variable.

min
{W (i)}

f(
{
W (i)

}G

i=1
)+

G∑
i=1

Is(Z
(i))

s.t. W (i) =Z(i)

(13)

This non-convex optimization with convex linear constraints
can be solved with ADMM. Eq. (13) can be decomposed into
two subproblems through the application of the augmented
Lagrange and can be formulated as,

min
{W (i)}

f(
{
W (i)

}G

i=1
) +

G∑
i=1

ρi
2

∥∥∥W (i) − Z
(i)
k + U

(i)
k

∥∥∥2
2

min
{Z(i)}

G∑
i=1

I(i)s (Z(i)) +
G∑
i=1

ρi
2

∥∥∥W (i)
k+1 − Z(i) + U

(i)
k

∥∥∥2
2

where W , Z, U are simply updated as Eq. (5). The first
subproblem can be solved by stochastic gradient descent, which
has the same complexity as training the original DNN. The
analytical solution to the second subproblem is

Zk+1
i =

∏
Si
(W

(i)
k+1 + U

(i)
k ) (14)

Here
∏

Si
(·) is a projection function of W (i)

k+1 +U
(i)
k onto the

set Si. For the AMP, Eq. (14) is to keep ng elements in W
(i)
k+1+

U
(i)
k with largest magnitude and set the rest to be zero. For the

TBP, Eq. (14) is to set every elements in W
(i)
k+1 + U

(i)
k to be

the quantization values. The whole procedure of the ADMM
framework is summarized in Fig. 2(d).

!

!



D
en

si
ty

Psum Range

GWP
LWP
AMP

original model0.200

0.175

0.150

0.125

0.100

0.075

0.050

0.025

0.000
-70 -50 -30 -10 10 30 50 70

baseline
GWP
LWP
AMP

A
cc

u
ra

cy
(%

)

ADC Resolution

10

30

50

70

90

1 2 3 4 5 6 7 8

(a) (b)

A
D

C
 R

es
o

lu
ti

o
n

Array Size

0

2

4

6

8

64 128 256 512

A
D

C
 R

es
o

lu
ti

o
n

Array Size
64 128 256 512

0

2

4

6

8

(f)(e)

4-bit 4-bit

5-bit 5-bit

4-bit

5-bit 5-bit

6-bit

LWP
GWP

AMP
LWP
GWP

AMP

6-bit 6-bit 6-bit

8-bit
7-bit 7-bit

8-bit 8-bit

A
D

C
 R

es
o

lu
ti

o
n

Array Size

0

2

4

6

8

64 128 256 512

A
D

C
 R

es
o

lu
ti

o
n

Array Size
64 128 256 512

0

1

3

5

7

2

4

6

LWP
GWP

AMP

(c) (d)

3-bit

4-bit 4-bit

5-bit
4-bit 4-bit 4-bit

5-bit

LWP
GWP

AMP

6-bit

7-bit 7-bit 8-bit
6-bit

7-bit 7-bit 7-bit

ADC 

resolution

reduce 2-bit

ADC resolution

reduce 3-bit

Fig. 6. (a) The distributions of partial sums obtained by the original model,
GWP, LWP, and AMP (VGG-8 on CIFAR10), (b) accuracy comparison with
same ADC resolution (VGG-8 on CIFAR10), and ADC resolution comparisons
with the same accuracy: (c) VGG-8 on CIFAR10, (d) ResNet-18 on CIFAR10,
(e) ResNet-18 on ImageNet, (f) ResNet-50 on ImageNet.

IV. EXPERIMENTS

A. Experimental Setup

The goal of our method is to reduce the resolution of
ADCs without sacrificing accuracy. We apply our algorithm
framework to a set of benchmarks, VGG-8, VGG-16, and
ResNet-18 on CIFAR10, VGG-16, ResNet-18, and ResNet-50
on ImageNet. We compare the ADC resolution and accuracy of
the previous pruning works with that of our AMP method and
TBP method respectively, and then perform comparisons with
representative works on CIM-based partial sums quantization to
demonstrate the significant improvement of our ADMM-based
joint pruning framework.

In addition, we use NeuroSim [18] to examine the hardware
performance, which is an end-to-end benchmarking framework
for CIM-based accelerators. The comprehensive experiments
indicate that our hierarchical pruning algorithm outperforms
prior state-of-the-art designs in area and energy efficiency.

B. Effectiveness of Finer Granularity for Pruning

In this subsection, we demonstrate the effect of pruning
granularity on ADC resolution and model accuracy. We perform
the pruning work in three different ways: global-wise pruning
(GWP) [15], layer-wise pruning (LWP) [16], and our AMP.
We use VGG-8 on CIFAR10 with array size set to 128×128

40

80

70

60

50

90

V
G

G
-8

V
G

G
-1

6

R
es

N
et

-1
8

V
G

G
-1

6

R
es

N
et

-1
8

R
es

N
et

-5
0

CIFAR10 ImageNet

A
cc

u
ar

cy
 (

%
)

(a)

V
G

G
-8

V
G

G
-1

6

R
es

N
et

-1
8

V
G

G
-1

6

R
es

N
et

-1
8

R
es

N
et

-5
0

CIFAR10 ImageNet

0

2

4

6

8

A
D

C
 R

es
o
lu

ti
o
n
 (

b
it

)

A
ccu

arcy
 (%

)

50

60

70

80

90

(b)

UQ ADC

TBP ADC

UQ ACC

TBP ACC

4-bit UQ

4-bit TBP

6-bit UQ

6-bit TBP

baseline

Fig. 7. (a) The comparison of accuracy when using 4-bit and 6-bit ADCs. (b)
The required ADC resolution, and the accuracy when using 4-bit ADCs.

as case study. Fig. 6(a) shows that the range of partial sums
is [−64, 63] when using the original model, and it is narrowed
to 25% of the original after using AMP. We also record the
range of partial sums obtained by using GWP and LWP, and
our method performs better obviously.

Using this benchmark, we also compare the model accuracy
with the same resolution of ADCs. It can be seen from Fig.
6(b) that when the resolution of ADCs goes down, array-wise
pruning granularity can get better accuracy than others.

Furthermore, we perform different value-level pruning meth-
ods based on GWP, LWP and AMP to compare the resolution
of ADCs. During the experiment, we control the accuracy of
various methods to be almost the same as the baseline. As can
be seen from Fig. 6 (c)-(f), our AMP always achieves the lowest
resolution. According to the experimental results, we can also
find that when the array size decreases, the resolution of ADCs
becomes lower. Because the number of parameters decreases,
resulting in a small range of partial sums. Our method only
needs 3-bit ADC in an array with the size of 64×64, in
particular, when implemented on VGG-8 on CIFAR10.

C. Effectiveness of TBP based Bit-Level Pruning

In order to verify the effectiveness of our TBP method, We
assume that the neural network is implemented on the CIM
accelerator with array row count 128. As the proposed TBP can

!

!



TABLE I
ACCURACY COMPARISON BETWEEN DIFFERENT DATASETS, NETWORKS,

METHODS, AND THE ADC RESOLUTION.

VGG-8 on CIFAR10

Method ADC
Resolution Acc(%) Acc

Drop(%)
Efficiency
(Tops/W)

Efficiency
Improve

[19] 5-bit 88.38 3.16 66.5 1.04×
[20] 3-bit 90.25 1.29 84.4 1.32×
[21] 3-bit 91.3 0.24 82.5 1.29×

Ours 2-bit 91.19 0.35 87.7 1.37×
ResNet-18 on CIFAR10

[19] 6-bit 91.2 1.25 112.37 1.22×
[20] 4-bit 91.4 1.02 120.66 1.31×
[21] 3-bit 91.9 0.53 133.56 1.45×

Ours 3-bit 91.82 0.64 152.9 1.66×
ResNet-18 on ImageNet

[19] 7-bit 68.3 1.3 120.4 1.23×
[20] 4-bit 69.44 0.16 155.6 1.59×
[21] 3-bit 69.31 0.29 174.2 1.78×

Ours 3-bit 69.39 0.21 168.3 1.72×
ResNet-50 on ImageNet

[19] 7-bit 71.87 0.43 99.9 1.36×
[20] 4-bit 71.92 0.38 130.1 1.77×
[21] 4-bit 71.99 0.31 128.7 1.75×

Our work 3-bit 72.05 0.25 132.3 1.80×

be viewed as a non-uniform quantization method, we compare
the accuracy of TBP with uniform quantization (UQ). As can
be seen from Fig.7 (a), the accuracy of TBP is always higher
than that of the UQ. When using 4-bit ADCs, the accuracy
gap becomes more obvious. We also report the lowest ADC
resolution required for two methods and compare the accuracy
when using 4-bit ADCs. Fig. 7(b) demonstrated that TBP can
even reduce the required resolution of ADC to 4-bit when UQ
needs to use 7-bit ADCs on VGG-8 and CIFAR10. Moreover,
when using 4-bit ADCs, the accuracy of TBP is far better than
UQ in various network models. It should be noted that 1-bit
resolution reduction halves the area and energy consumption of
ADCs, so 2-3 bits reduction of ADC’s resolution is meaningful.

D. Performance of Hierarchical Non-Structured Pruning

Table 1 presents the results on VGG-8, ResNet-18, and
ResNet-50. For comparison, we take the results reported in
[19]–[21]. We can observe that our work can achieve the lowest
requirement of ADCs’ resolution with slight accuracy loss.
Particularly, our work uses only 3-bit ADCs with the mini-
mal accuracu loss (only ∼0.25%), and improve the hardware
efficiency by 180% when performed on ResNet-50, which is
1-4 bits less than that of other methods.

Fig. 8 reports the ADC area and energy for VGG-8 with
array size set to 128×128. This result implies that the overhead
of ADC is significant in CIM-based DNN accelerators, so
lowering ADC overhead can improve overall efficiency of the
CIM accelerators. Specifically, our framework saves 26.28% of
the area and 9.55% of the energy compared to [21].

V. CONCLUSION

CIM based accelerator has shown a great prospect in neural
network acceleration. However, the high-resolution ADCs for
partial sums lead to the limited efficiency. In this paper, we

ours [21]

(a) area

ADC

31.82%
others

68.18%

ADC

58.10%

others

41.90%

(b) energy

ADC

63.95%

others

36.05% ADC

73.50%

others

26.50%

Fig. 8. (a) Area comparison on VGG-8, CIFAR10. (b) Energy comparison on
VGG-8, CIFAR10.

propose hierarchical non-structured pruning to achieve lower
requirement of ADCs’ resolution while maintaining the accu-
racy to boost the efficiency of DNN inference. Our evaluation
shows that the proposed hierarchical non-structured pruning
outperforms other similar solutions in area, energy-efficiency,
and accuracy. We can reduce the ADC resolution even to 2-3
bits and improve the hardware efficiency by 180% with slight
accuracy loss (∼0.25%).

REFERENCES

[1] A. Krizhevsky et al., “Imagenet classification with deep convolutional
neural networks,” Communications of the ACM, vol.60, pp. 84-90, 2012.

[2] W. Liu et al., “Ssd: Single shot multibox detector,” ECCV, pp. 21-37,
October 2016.

[3] W. Chan et al., “Listen, attend and spell: A neural network for large
vocabulary conversational speech recognition,” ICASSP, pp. 4960-4964,
March 2016.

[4] Y. Goldberg, “Neural network methods for natural language processing,”
Synth, vol. 10, No. 1, pp. 1-309, 2017.

[5] P. Chi et al., “PRIME: A novel processing-in-memory architecture for
neural network computation in ReRAM-based main memory,” ISCA, pp.
27-39, 2016.

[6] A. Shaiee et al., “ISAAC: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” ISCA, pp. 18–22, 2016.

[7] Z. Zhu et al., “Configurable multi-precision CNN computing framework
based on single bit RRAM,” DAC, pp. 1–6, 2019.

[8] H Jia et al., “A programmable neural-network inference accelerator based
on scalable in-memory computing,” ISSCC’21, pp. 236–238, 2021.

[9] A Shaiee et al., “A convolutional neural network accelerator with in-situ
analog arithmetic in crossbars,” ISCA, pp. 18–22, 2016.

[10] J. H. Luo et al., “An entropy-based pruning method for cnn compression,”
arXiv preprint arXiv: 1706. 05791, 2017.

[11] J. H. Luo et al., “ Thinet: A filter level pruning method for deep neural
network compression,” ICCV, pp. 5058–5066, 2017.

[12] Z. Liu et al., “ Learning efficient convolutional networks through network
slimming,” ICCV, pp. 2736–2744, 2017.

[13] D. Gabay et al., “A dual algorithm for the solution of nonlinear variational
problems via finite element approximation,” COMPUT MATH APPL, vol.
2(1), pp. 17–40, 1976.

[14] S. Ye et al., “Progressive dnn compression: A key to achieve ultra-
high weight pruning and quantization rates using admm,” arXiv preprint
arXiv:1903.09769, 2019.

[15] B. Hassibi et al., “Optimal brain surgeon and general network pruning,”
IJCNN, pp. 293–299, 1993.

[16] J. Lee et al., “Layer-adaptive sparsity for the magnitude-based pruning,”
arXiv preprint arXiv:2010.07611, 2020.

[17] Z. Dong et al., “Hawq: Hessian aware quantization of neural networks
with mixed-precision,” ICCV, pp. 293-302, 2019.

[18] X. Peng et al., “DNN+ NeuroSim: An end-to-end benchmarking frame-
work for compute-in-memory accelerators with versatile device technolo-
gies,” IEDM, pp. 32-5, 2019.

[19] Q. Wu et al., “Software-hardware co-optimization on partial-sum problem
for PIM-based neural network accelerator,” HPEC, pp. 1-7, 2021.

[20] Y. Kim et al., “Extreme partial-sum quantization for analog computing-
in-memory neural network accelerators,” JETC, 2022.

[21] A. Azamat et al., “Quarry: Quantization-based ADC reduction for
ReRAM-based deep neural network accelerators,” ICCAD, pp. 1-7, 2021.

!

!


	Select a link below
	Return to Previous View
	Return to Main Menu


