
A Lightweight Congestion Control Technique for
NoCs with Deflection Routing

Shruti Yadav Narayana1, Sumit K. Mandal2, Raid Ayoub3, Michael Kishinevsky3, Umit Y. Ogras1
1Dept. of ECE, University of Wisconsin-Madison; 2Dept. of CSA, Indian Institute of Science, Bangalore, India;

3Intel Corporation, Hillsboro, OR

Abstract—Network-on-Chip (NoC) congestion builds up during
heavy traffic load and leads to wasted link bandwidth, crippling
the system performance. We propose a lightweight machine
learning-based technique that helps predict congestion in the net-
work by collecting features related to traffic at each destination
and labelling it using a novel time reversal approach. The labelled
data is used to design a low overhead and an explainable decision
tree model used at runtime congestion control. Experimental
evaluations with synthetic and real traffic on industrial 6×6 NoC
show that the proposed approach increases fairness and memory
read bandwidth by up to 114% with respect to existing congestion
control technique while incurring less than 0.01% of overhead.

I. INTRODUCTION

Systems-on-chip (SoCs) with multi-core processors use
networks-on-chip (NoCs) for fast and energy-efficient com-
munication. Bufferless NoCs, commonly used in industrial
processors, store the packets only at the endpoints. Under
heavy traffic, bufferless NoCs deflect packets to one of the
available output ports using up NoC resources and causing
back-pressure [1]. The back-pressure propagates back to the
traffic sources and prevents it from injecting new packets,
decreasing the throughput and overall performance.

To address the congestion problem, researchers have pro-
posed congestion control mechanisms for industrial NoCs.
These mechanisms reduce the NoC congestion and limits the
packet latency in the NoC. However, the resulting throughput
is lower under a heavier workload. The paper first aims to
maximize and sustain the memory read/write bandwidth and
second, aims to maximize the fairness between the LLC hit
and miss traffic by proposing a proactive congestion control
technique. The technique uses a supervised learning frame-
work enabled by a novel time reversal technique to design
a lightweight decision tree which decides whether any given
sink node is likely to congest or not. Finally, the decision tree
is used at runtime to control the traffic sources. Experimental
evaluations with synthetic and realistic traces show that the
proposed technique increases memory read bandwidth by up
to 114% and the percentage of missed traffic by up to 3.1×
compared to a state-of-the-art.

II. RELATED WORK

Existing NoC congestion control techniques can be broadly
classified as Global and Local. The global congestion control
techniques assess the congestion status of the whole net-
work [2, 3]. In contrast, local congestion control techniques
monitor the congestion at each node. State-of-the-art industrial
NoCs monitor the ingress queue sizes of each node. However,
all the congestion control techniques described above are
reactive. Proactive congestion control techniques for NoCs are

This work was supported by Strategic CAD Labs, Intel Corporation, USA.

proposed in [4]. However, industrial NoCs are priority aware
and incorporates deflection routing [5]. Therefore, existing
proactive congestion control techniques are not applicable to
industrial NoCs. To the best of our knowledge, this work is
the first proactive congestion control technique proposed for
industrial NoCs with deflection routing.

III. ML-BASED PROACTIVE SOURCE THROTTLING

A. Features used for Supervised Learning
To construct the machine learning-based model, we first

collect the dataset required for training. The dataset consists
of features (F) listed in Table I with corresponding labels (L).
Here F = (f1, f2, ..., fN ), where N is the number of features,
f j ∈ R, 1 ≤ j ≤ N and L ∈ {0, 1}. The features (F) are
sampled every time a packet arrives at the ingress queue at the
sink. Sampling the features in both conditions (sink or bounce)
enables us to monitor congestion accurately at sink node.

To capture the features accurately, we compute exponen-
tially weighted moving average (EWMA) of each feature as:

f̄ j
i = αf j

i + (1− α)f̄ j
i−1, i > 0, 1 ≤ j ≤ N (1)

where f̄ j
i denotes EWMA of the feature f j for ith packet, f j

i

denotes the original value of the feature f j (e.g. injection rate)
and the α parameter tunes the tracking accuracy and delay.
The feature values are smoothened over time by computing
EWMA. After deploying the machine learning model, EWMA
of only the selected features are tracked at runtime. The
detailed explanation of the methodology is presented in [6].

B. Training Data Collection and Decision Tree
Labeling the features: The collected features indicate NoC
congestion, however, one must throttle the source before
congestion. The main challenge of knowing that a packet will
bounce before it’s injected into the network is mitigated by
using a novel time reversal approach described next. If a
packet is deflected at the sink, we know that the source must
have been throttled at the generation time of this packet. This
sense of time enables us to go back to the generation time of
the deflected packet and label the collected features.

TABLE I
LIST OF FEATURES COLLECTED AT EACH SINK.

Injection rate to the sink queue Total injection rate (sunk + deflected)
Co-eff. of variation of
the total traffic (sunk + deflected)

Co-eff. of variation of inter-arrival
time of the traffic to the sink queue

Rate of deflected packets Mean service time of the sink queue
Co-eff. of variation of
deflected packet inter-arrival time

Co-eff. of variation of
sink queue inter-departure time

Occupancy Probability that the sink queue is full
Gradient of injection rate Gradient of queue occupancy
Gradient of total
(sunk + deflected) injection rate Gradient of probability of sink being full

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA 

	



Fig. 1. An illustrative example of our proposed time reversal approach to
label the features.

Figure 1(a) shows the features sampled for six packets arriv-
ing at the ingress queue for illustration. The timestamps when
the deflected packets attempted to sink are sampled along with
their generation timestamps. For example, Figure 1(b) has two
deflected packets (P4 and P5) with generation timestamps
(dj in Equation 2) 10 and 11. Next, we compute a set of
timestamps for each deflected packets which are within ∆
cycles of the generation timestamps S4 and S5. If ti is the
timestamp of the packet Pi, where 1 ≤ i ≤ 5, then we label
Pi as 1 if ti ∈ S4∪S5 to indicate congestion at their generation
times. In general, we label (li) the features of the ith packet
arriving at the sink as:

li =

{
1, if (dj −∆) ≤ ti ≤ (dj +∆)

0, Otherwise
(2)

where ∆ = 2 in this example. A label of 1 denotes that if the
source sends packet to that particular sink, then it will result
in congestion and vice versa. Therefore, all the features with
timestamp within the range of ∆ (∆ > 0) of di are labelled as
1. The features of the packets with label of 1 are highlighted
in Figure 1(c).
Supervised Learning: In this work, we choose binary de-
cision tree due to its low hardware overhead. The output of
the decision tree is either 0 or 1. An output of 1 denotes that
there is a possibility of congestion in the near future and cores
should stop injecting packets in the NoC. We observe that the
decision tree obtained through supervised learning supports
our idea of proactive congestion control.

IV. EXPERIMENTAL EVALUATIONS
A. Experimental Setup

We use a cycle-accurate industrial NoC simulator with the
NoC architecture similar to the industrial SoCs [1]. Simulation
run for 600k cycles with 100k cycles warm-up period. We use
a non-inclusive MESI-like cache-coherency protocol [7] with
varying traffic and last-level cache (LLC) hit rates.

B. Comparison of Percentage of LLC Miss
Since our proposed technique reduces NoC congestion,

more requests with LLC miss are allowed to be fetched from
the memory controller. Therefore, our technique consistently
results in a higher percentage of requests with LLC miss, as
shown in Figure 2. In this case, the synthetic traffic is gener-
ated with a 70% hit rate. With the increasing injection rate,

Fig. 2. Comparison of percentage of LLC miss for 70% LLC hit rate (30%
LLC miss). Higher percentage of LLC miss indicates that the congestion
control technique is more fair towards the miss traffic.

Fig. 3. Comparison of memory read bandwidth for 20% LLC hit rate. Higher
memory read bandwidth indicates less NoC congestion.

the percentage of requests with LLC miss reduces, however,
our proposed technique shows up to 3.1× improvement. We
also observe similar improvements for other LLC hit rates.

C. Comparison of Memory Read Bandwidth
The percentage of missed packets with our proposed tech-

nique significantly increases the memory read bandwidth. Fig-
ure 2 shows the 70% LLC hit rate comparison between state-
of-the-art and proposed techniques. With increasing injection
rate, the memory read bandwidth decreases significantly with
a state-of-the-art, however, our proposed technique keeps
the memory read bandwidth at a certain level. The highest
improvement seen is 190%, while on average the proposed
technique achieves a 64% improvement.

V. CONCLUSION AND FUTURE WORK

State-of-the-art NoC congestion control techniques are re-
active. This paper proposes a supervised learning framework
along with a time reversal technique to construct a proactive
lightweight decision tree which determines if a sink is likely
to be congested or not. Experimental evaluation shows that
the proposed congestion control technique achieves up to
114% improvement in memory read bandwidth for realistic
workloads while incurring less than 0.01% of overhead.

REFERENCES
[1] Jack Doweck et al. Inside 6th-generation Intel Core: New Microarchitec-

ture Code-named Skylake. IEEE Micro, (2):52–62, 2017.
[2] A-H Smai and L-E Thorelli. Global Reactive Congestion Control in

Multicomputer Networks. In Proc. of Intl. Conf. on High Perform.
Comput., pages 179–186, 1998.

[3] Radu Marculescu, Umit Y Ogras, Li-Shiuan Peh, Natalie Enright Jerger,
and Yatin Hoskote. Outstanding research problems in noc design: system,
microarchitecture, and circuit perspectives. IEEE Trans. on Computer-
Aided Design of Integrated Circ. and Syst., 28(1):3–21, 2008.

[4] Umit Y Ogras and Radu Marculescu. Prediction-based Flow Control for
Network-on-Chip Traffic. In Proc. of DAC, pages 839–844, 2006.

[5] Sumit K Mandal et al. Performance Analysis of Priority-aware NoCs
with Deflection Routing under Traffic Congestion. In Proc. of ICCAD,
pages 1–9, 2020.

[6] Shruti Yadav Narayana et al. Machine Learning-based Low Overhead
Congestion Control Algorithm for Industrial NoCs, 2023.

[7] Mark S Papamarcos and Janak H Patel. A Low-overhead Coherence
Solution for Multiprocessors with Private Cache Memories. In Proc. of
ISCA, pages 348–354, 1984.

 


	Select a link below
	Return to Previous View
	Return to Main Menu


