
NAF: Deeper Network/Accelerator Co-Exploration
for Customizing CNNs on FPGA

Wenqi Lou, Jiaming Qian, Lei Gong*, Xuan Wang, Chao Wang*, Xuehai Zhou

University of Science and Technology of China, Hefei, China

{louwenqi, qj0387, wgg}@mail.ustc.edu.cn {leigong0203, cswang, xhzhou}@ustc.edu.cn

Abstract—Recently, algorithm and hardware co-design for neu-
ral networks (NNs) has become the key to obtaining high-
quality solutions. However, prior works lack consideration of the
underlying hardware and thus suffer from a severely unbalanced
neural architecture and hardware architecture search (NA-HAS)
space on FPGAs, failing to unleash the performance potential.
Nevertheless, a deeper joint search leads to a larger (multiplica-
tive) search space, highly challenging the search. To this end, we
propose an efficient differentiable search framework NAF, which
jointly searches the networks (e.g., operations and bitwidths)
and accelerators (e.g., heterogeneous multicores and mappings)
under a balanced NA-HAS space. Concretely, we design a coarse-
grained hardware-friendly quantization algorithm and integrate it
at a block granularity into the co-search process. Meanwhile, we
design a highly optimized block processing unit (BPU) with key
dataflow configurable. Afterward, a dynamic hardware generation
algorithm based on modeling and heuristic rules is designed to
perform the critical HAS and fast generate hardware feedback.
Experimental results show that compared with the previous state-
of-the-art (SOTA) co-design works, NAF improves the throughput
by 1.99×∼6.84× on Xilinx ZCU102 and energy efficiency by
17%∼88% under similar accuracy on the ImageNet dataset.

I. INTRODUCTION

Deep neural networks (DNNs) have drastically evolved in

recent years to make breakthroughs in numerous computer

vision tasks. However, the high computational complexity

and memory requirements of DNNs often cause performance

and energy efficiency issues, especially in resource-constrained

devices. Hence, extensive research efforts have been devoted

to tackling this problem. On the algorithm level, techniques

such as model compression [1] and neural architecture search

(NAS) [2] emerge to optimize the model size. On the hardware

level, various dedicated accelerators [3]–[5] have been designed

with dedicated micro-architectures and mapping strategies to

improve deployment efficiency. Nevertheless, algorithms and

accelerators are not independent, and optimizing one side alone

could often harm another, yielding suboptimal solutions [6].

To address the sub-optimality, algorithm designers and hard-

ware developers start exploring opportunities for joint optimiza-

tion to achieve better specialization and acceleration. Due to

the customizability and reconfigurability, FPGAs have become

the ideal platform to quickly provide optimized support for

different NNs in the co-design process. Nonetheless, previous

network/accelerator co-search efforts have not fully considered

the customizability of FPGAs [7]–[9], thereby failing to exploit

the potential. It is reflected in two aspects: (i) Quantization as

a de facto step in FPGA deployment, where the design of the

quantizer and the choice of bitwidth affect both accuracy and

hardware efficiency, has not been consistently considered [10].

*Corresponding authors: Lei Gong and Chao Wang

(ii) Since the computational diversity between layers still exists

in current NAS methods [11], only searching for the archi-

tectural sizing of accelerators while overlooking a vital HAS

(e.g., multicores, dataflow, and mappings) inevitably leads to

dynamic hardware underutilization issues [12], [13]. However,

a comprehensive search that includes the above factors will face

the following challenges. First, the exponentially increasing

search space makes the optimized solution more sparse, and

how to balance NA-HAS space involves a compromise between

search cost and quality. Second, the quantization strategy and

quantizer will significantly influence the NA-HAS space and

the underlying hardware design difficulty. Third, a vast and

complex HAS space makes the setup cost of the latency lookup
table or predictor methods prohibitive and also makes the hard-

ware feedback delay of prior analytical hardware generation

algorithms unacceptable. To tackle these challenges, we pro-

pose a deeper Network/Accelerator co-exploration framework

for FPGAs, named NAF, which jointly searches the network

and accelerator architecture to maximize accuracy and hardware

efficiency. The main contributions of this work are:

• We design a hardware-friendly quantization algorithm and

a dedicated, configurable hardware basic unit (BPU) to

provide accuracy and performance guarantees. Then, a

block-grained bitwidth search and BPU-grained hardware

search are adopted to facilitate the NA-HAS process.

• We perform accurate performance and resource model-

ing to the accelerator and efficiently tailor the mapping

space based on heuristic rules. Compared to [12], our

genetic algorithm-based hardware generation algorithm

yields similar performance but is 9.6× faster.

• Experimental results show that NAF efficiently conducts

an extensive yet balanced NA-HAS. The searched CNN-

accelerator pair improves the throughput by 1.99×∼6.84×
and energy efficiency by 17%∼88%, with similar accu-

racy, compared to the SOTA co-design works.

II. RELATED WORK

A. Neural Architecture Search
Neural architecture search (NAS) has recently flourished to

automate the design of top-performing DNNs. Nevertheless,

early NAS works [2] employ reinforcement learning (RL)

as the search engine, suffering from prohibitive search costs

(e.g., 83 GPU-days). To solve this problem, [14] formulates

the NAS problem in a continuously differentiable manner,

significantly reducing the search time (several GPU-days). It

directly searches the supercell’s generic structure and then

repeatedly stacks the searched supercell across all the layers to

construct the final network. Subsequently, a supernet structure

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

Subnets HW Metrics

Differentiable NAS Engine

Fast HAS Engine

Software Optim.

Hardware Optim.
 SubnetsSupernet Bitwidths

8

8

8

8

8

8

8

8

8

8

4

6

8

4

6

8

4

6

8

8

8

8

4

6

Size

...#DSP, BRAM, ... 11 22mode1 2mode

Dataflow Layer mappingSize

... ...#DSP, BRAM, ... 1 2mode

Dataflow Layer mapping

INT4
INT6
INT8

OPs
INT4
INT6
INT8

OPs

 Improved NAS Space

Quantization Alg.

Proxy task

Training

Proxy task

Training
...

...

...

...

...

...

...

...

...

aa

bb
Efficient

BPU Design
Efficient

BPU Design

Perf. & Resou.
Modeling

Perf. & Resou.
Modeling

Optimized
Elite-GA

Optimized
Elite-GA

dd

cc

Fig. 1: The overview of our NAF co-search framework.

is proposed in [11] to strike a better trade-off between accuracy

and efficiency by enabling layer-wise diversity. Moreover, it

points out that adopting the hardware-agnostic metric (e.g.,

FLOPs) in the NAS process makes the model difficult to

meet the requirements of real-world applications. Accordingly,

hardware-aware NAS works emerge, taking more effective

hardware metrics (e.g., latency and power) from pre-collected

lookup tables or pre-built predictors to regularize the NAS pro-

cess. However, these efforts only target off-the-shelf hardware

without exploring the hardware design space.

B. Network and Accelerator Co-Search
Given that various ASIC/FPGA-based accelerators [3], [4],

[12], [15] for DNNs and the rise of NAS, network/accelerator

co-search becomes essential to enable specialization and accel-

eration. Early, an RL-based approach is adopted to search the

network and the FPGA accelerator’s parallel size [16], but the

search-cost problem limits its scalability. Then, a differentiable

co-search involving bitwidth is presented in [7]. It models

execution time with a hardware-agnostic metric (FLOPs per

resource) to find the parallel factors and only searches bitwidths

of weights without considering quantizer optimization. In [9],

a hardware performance predictor is built offline by sampling

to fast feedback hardware metrics for the sizing problem of

its single-core accelerator. However, the difficulty and cost of

training the predictor will be prohibitive when HAS space

increases due to the discrete and intricate relationship between

accelerator design and hardware metrics. [6], [8], [13] explore

a finer-grained generic HAS space (e.g., tiling and parallel

dimension, size, and mappings) but only for the ASIC design.

Although FPGA design is addressed in [8], it treats FPGAs as

the counterparts of ASICs, neglecting their flexibility. Thus, in

this work, we propose the NAF framework to efficiently explore

an optimized NA-HAS for FPGA platforms.

III. NETWORK/ACCELERATOR CO-EXPLORATION

Given the target datasets, FPGA platform settings, and FPS

requirements, NAF automatically generates matched CNN-

accelerator pairs to achieve a sufficient trade-off between per-

formance and accuracy. The framework (see Fig. 1) includes

two components: (a) the differentiable NAS engine and (b) the

fast HAS engine to enable joint searching for network structures

(e.g., operation types (OPs) and bitwidths (INT4/6/8)) and

accelerator architectures (e.g., heterogeneous multicores and

dataflow). Subsequently, we deeply optimize the co-search

process from software and hardware perspectives (c-d). First,

Stage 1
Conv-3x3

Downsample
Stage 2

Downsample
Stage 3

...

Average Pool
Stage n Searchable

Block B

...

Searchable
Block 2

Searchable
Block 1 QDW K x K

QPW 1 x 1

QPW 1 x 1

N

eN

N

N

Act_Qj

Act_Qj

Act_Qj

Stage 1
Conv-3x3

Downsample
Stage 2

Downsample
Stage 3

...

Average Pool
Stage n Searchable

Block B

...

Searchable
Block 2

Searchable
Block 1 QDW K x K

QPW 1 x 1

QPW 1 x 1

N

eN

N

N

Act_Qj

Act_Qj

Act_Qj

Fig. 2: The supernet structure, where the Block has the same

meaning as the layer in [11]. K and e represent kernel size and

the expansion ratio. Act Qi is the activation quantization node.

QDW means quantized depth-wise convolution.

we propose an improved NAS space with a hardware-oriented

quantization algorithm (Sec. IV). Meanwhile, we specify the

basic unit of HAS by an efficient BPU design (Sec. V). Finally,

a fast hardware generation algorithm is designed based on

accelerator modeling and heuristic rules (Sec. VI). Overall, the

co-search problem is formulated as a bi-level optimization:

min
α,β

Lval(ω
∗, α, β) + λLhw(α, β, γ

∗) (1)

s.t. ω∗ = argmin
ω

Ltrain(ω, α, β) (2)

s.t. γ∗ = argmin
γ

Lhw(α, β, γ) (3)

s.t. hwcost(α, β, γ
∗) ≤ hwlimit (4)

where ω is the supernet weights; α, β, and γ are the archi-

tecture distribution parameters, data bitwidth parameters, and

accelerator design parameters, respectively. For instance, αi
b

(see Fig. 2) represents the architecture parameter assigned to

the i-th candidate operator in the b-th searchable block of the

supernet. Lval and Ltrain are the validation and training loss of

the supernet, respectively. Lhw is the hardware-cost loss of the

sampled subnet, influenced by the network structure, bitwidth,

and the accelerator. λ is a hyperparameter that controls the

trade-off between terms and is dynamically adjusted during

training based on the relationship between the target and current

FPS. In particular, NAF dynamically generates an optimized

FPGA accelerator (γ∗) for the subnet to fast support hardware

evaluation in a complex and large HAS space.

IV. NEURAL ARCHITECTURE SPACE DESIGN

A. Supernet Structure
In NAF, we follow the recent widely adopted layer-wise ar-

chitecture space design [7], [9], [11], in which each searchable

block can choose one operator from the operator space O (see

Fig. 2). BatchNorm (BN) and ReLU layers are omitted in OP’s

structure (see the rightmost of Fig. 2) for brevity.

In this paper, we argue that the design of NAS should

consider underlying hardware characteristics, not just model

size and accuracy. Therefore, we adapt the space of NAS here.

First, inspired by [17], we uniformly set the convolution kernel

size of DW to 7×7 (except the 3×3 in the first two stages).

Because compared with the small kernel size, DW7×7 does

not bring noticeable computation and access overhead for the

overall model but has better data locality. Hence, increasing

the search space of K cannot bring high gains. Second, we

expand the space of e to {2, 4, 6} when K = 3, and {4, 6, 8}

!

!

MAC 1

...

MAC 2

MAC Tn

MAC 1

...

MAC 2

MAC Tn

MAC 1

...

MAC 2

MAC Tn

Quant
Unit

Acc
Buffer

Cold Buffer

MAC 1

...

MAC 2

MAC Tn

MAC 1

...

MAC 2

MAC Tn

MAC 1

...

MAC 2

MAC Tn Comp
Unit

ClipClip

QbiasQw QbiasQw

Clip

QbiasQw

W
t Buffer

Act Buffer

DW
Conv

BPU

PW
Conv1

PW
Conv2

off-chip

prefetching

Tm

ThxTwxTn

scaling factorsoff-chip

Fig. 3: Simplified block diagram of the block processing unit

(BPU). Dataflow can be configured according to parameters;

Branch-add operation is integrated into the PW Conv2 core.

when K=7. This setting reduces the search space and is in line

with design experience, i.e., increasing the image channel depth

when reducing the image resolution [2]. The choice of bitwidth

affects accuracy, memory access, and hardware performance,

which should be consistently considered but often overlooked

in prior works. Considering the accuracy degradation of ultra-

low bitwidth (<4) and the actual FPGA deployment, we set the

candidate quantization bitwidth to {4, 6, 8} for each searchable

block. Given that |O|=3 and the supernet consists of 21 layers,

the NAS space size of NAF is 921≈9.85E+20.

B. Hardware-friendly Quantization
Since the design of most quantization algorithms neglects

the underlying hardware [18], it is not easy to reap practical

benefits by directly integrating the quantization algorithm into

the co-design process. As such, in terms of bitwidth search,

we make the following optimization. First, considering the

search cost and extra hardware overhead, we use a block-

grained search strategy (i.e., the layers inside the block have the

same bitwidth) with a per-layer quantization granularity (i.e.,

each layer rather than channel inside the block shares a scaling

factor). Afterward, we quantize the entire computational graph

(see the rightmost of Fig. 2) instead of only convolutional layers

to ensure the throughput of the block when deployed. Moreover,

we design a hardware-friendly quantizer.

The weights (wl) of the l-th layer are quantized similarly to

DoReFa [19] but in a symmetric way (see Eq. 5) to keep the

zero point unbiased and facilitate the hardware implementation.

W l
q = quantk(tanhw

l/max(| tanhwl|)) (5)

where quantk(·) quantizes the real number input in the range

of [−1, 1] to a k-bit signed number output. For activations (xl),

in modern block designs, the presence of branch-add and linear

output layers and the reduction of ReLU layers make the output

values easy to accumulate. Therefore, we modify the activation

quantization function in PACT [20] as Eq. 6 to retain more

useful negative values and improve accuracy.

yl = clamp(xl,−Cl, Cl), Al
q = quantk(y

l/Cl)× Cl (6)

where the activation (xl) is clipped symmetrically by the

clamp(·) function according to the Cl, which represents the

clipping level and is learned by training. For back-propagation,

the gradient ∂Al
q/∂Cl can be computed as Eq. 7 by estimating

∂Al
q/∂y

l as 1 using the Straight-Through Estimator (STE) [19].

Off-chip Buffer one tile Buffer multiple tiles

[Tn][Th×Tw] [Tm][M/Tm×Th×Tw]

DW
Conv1

PW
Conv1

Input
FM

Input
FM

22
33

44

11
22

33
44

...

(a)

Off-chip Buffer muitile tiles Buffer one tile

[Tn][N/Tn×Th×Tw] [Tm][Th×Tw]

DW
Conv1

PW
Conv1

Input
FM

Input
FM 333

444

111 11
222 22

33
44

...

(b)

11

Fig. 4: Two candidate fine-grained dataflow of the BPU. (a)

mode �: PW1-in, PW2-out and (b) mode �: PW1-out, PW2-

in. -in/out means input/output reuse; [P][D] means buffer size.

P and D denote parallelism and depth, respectively.

[exp] is 1 when the exp is true otherwise 0. Cl is fixed during

inference and thus can be absorbed by the scaling factor.

∂Al
q

∂Cl
=

∂Al
q

∂yl
× ∂yl

∂Cl
=

[
xl ≥ Cl

]− [xl ≤ −Cl] (7)

V. HARDWARE ARCHITECTURE SPACE DESIGN

A. BPU Structure

Targeting the block structure, we design a multi-block

reusable BPU (see Fig. 3) to provide efficient hardware support

while ensuring generality. It contains three separate computing

cores optimized for the DW/PW convolution layer to alleviate

computational diversity and enables parallel computation of the

three cores in a more fine-grained and timely manner. As an

example, the PW Conv1 core consists of the activation and

weight buffer, accumulation buffer, computing unit, and quan-

tization unit. The cold buffer is used to store the intermediate

results and is optional, depending on the dataflow mode. BN

and ReLU operations are integrated into the quantization unit.

Although layers within the block share the same bitwidth, the

three computing cores are separately configurable. Overall, the

fundamental idea of the BPU design is to fuse DW and PW

operations so that the output tile generated by the former core

can be immediately piped to the latter core without writing

back to the DRAM. The tile level pipeline lowers latency while

reducing off-chip access requirements, making it suitable for

bandwidth-constrained platforms such as embedded FPGAs.

Specifically, we apply weight reordering and prefetching to

ensure off-chip burst transfers. Moreover, two low-precision

MACs are packed as Aq×(W 1
q <<16+W 2

q) onto a DSP with

25×18 multiplier support to reduce the DSP consumption.

B. BPU Dataflow

We apply loop tiling on the width and height of the image

(Th, Tw) and loop unroll on the input and output channels

(Tn, Tm) same as the widely adopted method [4], [5]. For

the computation order, we only reserve the exploration of

data reuse strategies to reduce the HAS space. Typical reuse

strategies include input, output, and weight reuse, where due

to our fine-grained pipeline structure, we only explore the

performance and resource consumption in the first two modes,

as shown in Fig. 4. Specifically, we fix the reuse strategy of

the DW core, which generates output tiles along the channel

!

!

dimension, to significantly reduce the on-chip BRAM overhead

caused by keeping intermediate results in the latter PW cores. In

mode �, the output tile generated by the DW core flows through

the PW1 core only once, so all the computations involved must

be completed at a time. Therefore, the PW1 core will traverse

the output channels in turn and produce M/Tm partial results

([Tm][Th×Tw]), being saved in its cold buffer. Accordingly, the

PW2 core can repeatedly read the input tiles stored in the cold

buffer of the PW1 core to generate the output tile and send it

off-chip. Mode � has an alternate layer loop order to mode �,

and thus we will not repeat the process for simplicity.

VI. NETWORK-ACCELERATOR MAPPING

A. Accelerator Modeling

1) Resource Modeling: Ignoring ultra-low bitwidth compu-

tation (<4), DSP blocks, BRAM, and off-chip bandwidth (BW)

are often the limiting factors in the FPGA-based accelerator’s

design [4]. Thus, we carefully evaluate the usage of DSP

and BRAM in the modeling process. The BW is dynamically

allocated during the hardware generation process.

DSP usage is closely related to the parallelism and bitwidth

of the computing unit. Taking the Xilinx FPGA as an example,

overlooking the extra consumption of the quantization opera-

tion, the DSP usage of the BPU (Dbpu) is shown below:

Dbpu = Ψ(qbksmax)×
(
T dw
n +T pw1

n ×T pw1
m +T pw2

n ×T pw2
m

)
(8)

where Ψ(q) is the DSP cost function under different bitwidths.

In detail, Ψ(q) = 1, when 8 < q ≤ 16; Ψ(q) = 0.5, when 5 ≤
q ≤ 8, Ψ(q) = 0, when q ≤ 4. Note that INT8 multiplication

still consumes one DSP in DW Conv instead of half due to the

limitation that MACs packing requires a common multiplier.

BRAM resources primarily provide the required on-chip

storage and bandwidth through memory interleaving for the

computing unit. For simplicity, we only list the BRAM con-

sumption of the PW1 core in the BPU in mode � as:

Bpw1
= 2

∑{
� qbks

max×Tpw1
n

bwidth � × �Th×Tw

bdepth �
� qacc×Tpw1

m

bwidth � × �Mbks
max/Tm×Th×Tw

bdepth �
(9)

where qbksmax and M bks
max are the maximum bitwidth and output

channels of the blocks sharing the same BPU, and qacc is the

accumulation buffer bitwidth. bwidth and bdepth are the data

width and depth provided by one BRAM, respectively. We

ignore the weight buffer because it is usually implemented by

LUTs and Flip-Flops (FFs) due to the small block depth.

2) Performance Modeling: We use the number of cycles

required for the BPU to complete the workload as the per-

formance feedback. Ignoring the start and exit stage of the

pipeline, the latency of the l-th block running on the PW1 core

(Ll
pw1

) and BPU (Ll
bpu) are approximated as follows:{

Ll
pw1

= � M l

T
pw1
m

� × � N l

T
pw1
n

� ×max(Lpw1
comp,Lpw1

in ,Lpw1

wt)

Ll
bpu = �Hl

Th
� × �W l

Tw
� ×max

(Ll
dw,Ll

pw1
,Ll

pw2

)
(10)

where we try to make the computation latency (Lpw1
comp) cover

the latency of loading activations and weights by double

buffering and BW allocation. For conciseness, Eq. 10 ignores

BPU1:mode1 BPU2:mode2 BPU3:mode1

bk1bk1 bk2bk2bk1 bk2 bk3bk3 bk4bk4bk3 bk4 bk5bk5 bknbknbk5 ... bkn

Mapping scheme

num1:2 [1,n/3] num3:n-num1-num2num2:2 [1,n/3]

Net

FPGA

11

22

Fig. 5: Example of mapping a subnet on target FPGA with

three BPUs using the CTC-based layer allocation strategy.

the pipeline’s start and end phases and other details (e.g., the

latency of burst off-chip access). We consider these factors and

calibrate the modeling using actual latencies obtained by de-

ploying different OPs under different hardware configurations.

Finally, we restrict the average performance estimation error to

5% to present the actual behavior mapped on the accelerator.

B. CTC-based Layer Allocation Strategy
Network-accelerator mapping in multi-core scenarios on FP-

GAs mainly invloves the number of cores and layer allocation

strategy, which has been explored in prior works. However, the

minute-level search time [10], [12] makes them unacceptable in

the NAS framework. Thus, we try to obtain a better compromise

between performance and time by pruning the search space.

First, the number of heterogeneous cores (NBPUs) is often

related to the specific workload and platform settings, so it is

dynamically determined during the search process (see Algo-

rithm 1) to meet the requirements. Second, inspired by [5], we

propose a layer assignment strategy based on the computation

to communication (CTC) ratio. We find that, similar to the

manually designed CNNs, the CTC variance of blocks near the

input end in NASNets is larger than the variance of the output

end. Thus, letting as few blocks at the network’s input end

share the same BPU as possible makes sense. Accordingly, we

add the variable (num) to describe the number of consecutive

blocks assigned to the BPU and limit its search range (see

Fig. 5). The parameter variable (PV) describing the BPU is:

PV = [num,mode, Th, T
dw
n , T pw1

n , T pw1
m , T pw2

n , T pw2
m] (11)

When there are multiple BPUs, the number of blocks near the

input end that share a BPU does not exceed the average.

C. Rule-based Heuristic Search
Although we prune the mapping space, the remaining search

space still makes the cost of exhaustive or random search

unacceptable. Under strict time constraints, we finally employ a

genetic algorithm (GA) for its lightness and simplicity to solve

our problem. Research shows that GAs can reach competitive

results compared to deep reinforcement learning (DRL) [21].

Eventually, we design a fast hardware generation algorithm (see

Algorithm 1) based on the elitist genetic algorithm (e-GA) with

the following optimizations to speed up the search process:

(i) Rule-based coarse-grained search. Considering the possible

channels and resolution sizes, we restrict the tiling and parallel

sizes in the most likely candidate list (as shown in Tab. I).

Hence, the HAS space size after pruning is about 2.49E+20.

(ii) Parallel processing. The evaluation of individuals in GA’s

!

!

Algorithm 1: Fast hardware generation algorithm
1 Initialize the target latency (lattarget) and hardware constraint
2 Initialize population size (P[M]), iteration number (I)
3 Initialize the latency (lblock()) and resource (rblock()) model
4 for c in [1, NBPUs] do
5 Randomly initialize each individual in Popu[M]
6 while iteration < I do

� multi-process parallel
7 for ind in [1,M] do
8 Get the fitness index with lblock() and rblock()
9 Evaluate: Fitind = FitScore(Popu[ind])

10 Update the top-k global optimal individuals
11 for ind in [k,M] do
12 Select parents (s, t) according to probability
13 Crossover: Temp = cross(Popu[s],Popu[t])
14 Mutation: Popu[ind] = mutat(Temp)

15 Keep the best L = Obj[1] and PV = Popu[1]

16 Update the best latency: Lbest

� early stop the HAS search
if Lbest ≤ lattarget then

17 break
18 I = I + δ1[c];M = M+ δ2[c];

19 Return best overall latency (Lbest) with corresponding
block-wise latency and hardware parameters (PVs)

population is independent, so the parallel gain for the process is

significant. (iii) Early stop the HAS search. It can save search

time by quickly evaluating the trivial subnets. δ1/δ2 is set to

increase the iteration/population number to ensure convergence.

Kindly note that our aim is not to find the optimal solution but

a suitable optimized solution to quickly reflect the performance

level of the subnet on the hardware platform.

TABLE I: Hardware Architecture Search Space

Candidate values
Cores (NBPUs) & Bitwidths [1, 5]; {4, 6, 8}
Dataflow & BKs (num) {1, 2}; [1, blocknums/NBPUs]

Tiling size (Th, Tw) 1, 7, 14, 28, 56

Parallel size (Tn, Tm) 2, 4, 6, 8, 12, 16, 24, 32, 48, 64

VII. EVALUATION

A. Experimental Setup
At the cost of considerable offline setup time, prior works

deliver short hardware (HW) feedback delay within a smaller

HAS space, ignoring the exploration of HW update frequency.

Thus, to efficiently handle a larger HAS space, we first explore

the effect of HW update frequency on the co-search process on

the CIFAR10 dataset. The supernets are trained for 60 epochs

with batch size 128 and no α or β update for the first 15

epochs. The results (see Fig. 6) show that the hardware metric

can effectively regulate the co-search process under different

numbers of BPUs. Although the HW update every 40 batches

is still valid, its fluctuation is relatively large. As such, we set

the HW update frequency to 20 to speed up the search.

NAF performs co-search on a subset of the ImageNet dataset

randomly sampled from 100 classes, trained for 120 epochs,

where the first 45 epochs do not update α and β. This procedure

takes 32.5 hours on two NVIDIA A100 GPUs with a hardware

update frequency of every 20 batches. Then, the searched DNN

10 20 30 40 50 60
100

200

300

400

FP
S

Epochs

Every 1-batch Every 20-batch Every 40-batch

Single BPU Two BPUs Three BPUs

10 20 30 40 50 60
100

200

300

400

500

FP
S

Epochs
10 20 30 40 50 60

100

200

300

400

500

FP
S

Epochs

Fig. 6: Hardware update frequency experiments on the CI-

FAR10 dataset, targeting 200 FPS on Xilinx ZC706.

80

85

90

95

Ac
cu

ra
cy

 (%
)

DoReFa PACT Ours

RN20 CNeXt MBv2RN20 CNeXt MBv2 RN20 CNeXt MBv2RN20 CNeXt MBv2 RN20 CNeXt MBv2RN20 CNeXt MBv2
INT4 INT6 INT8

80

85

90

95

Ac
cu

ra
cy

 (%
)

DoReFa PACT Ours

RN20 CNeXt MBv2 RN20 CNeXt MBv2 RN20 CNeXt MBv2
INT4 INT6 INT8

Fig. 7: Quantization algorithm comparison on CIFAR10.

is trained for 300 epochs from scratch on the whole ImageNet

training set. The accelerator is synthesized and placed-and-

routed with Xilinx Vitis HLS and Design Suite (v20.2), tar-

geting the Xilinx ZCU102 board at 214Mhz. A power meter is

plugged in to measure the runtime power performance.

B. Quantization Algorithm Comparison
We quantize ResNet20 (RN20), ConvNeXt (CNeXt), and

MobileNet-V2 (MBv2) on CIFAR10 using different quantiza-

tion algorithms to compare the accuracy. The training parame-

ters remain the same: 128 batch size, 0.01 learning rate, cosine

learning rate adjustment, and 300 epochs. Experimental results

(see Fig. 7) present that our method achieves the best accuracy

on CNeXt and MBv2 under different bitwidths. We can see

that DoReFa and PACT lead to different degrees of accuracy

degradation on CNeXt and MBv2, respectively. At INT4, the

accuracy of applying DoReFa is even lower than 80%.

C. Hardware Generation Algorithm Comparison
To evaluate our HAS algorithm’s efficiency, we compare

it with prior network-accelerator mapping work [12]. For a

fair comparison, we also apply the multithreading and coarse-

grained optimization to the baseline method. The target NAS-

Nets are FBNet-B [11], EDDNet-3 [7], and EfficientNet-

0.7 2.6 4.4
17.0

25.9

0.8 2.9 4.3
13.4

22.0

0.9 2.9
4.6

16.5
24.6

15.6
24.3

44.2

62.5

96.0

13.1

26.7
38.4

58.2

86.7

6.8
16.3

37.8

61.7

97.6

0

20

40

60

80

100

120

6.0E+5

1.1E+6

1.6E+6

2.1E+6

2.6E+6

3.1E+6
Se

ar
ch

 ti
m

e
(s

)

Cy
cle

s

Ours-Cycles Baseline-Cycles Ours-Time Baseline-Time

1 2 3 4 51 2 3 4 5
FBNet-B

1 2 3 4 5
FBNet-B

1 2 3 4 51 2 3 4 5
EDDNet-3

1 2 3 4 5
EDDNet-3

1 2 3 4 51 2 3 4 5
EfficientNet-B0

1 2 3 4 5
EfficientNet-B0

1 2 3 4 5
FBNet-B

1 2 3 4 5
EDDNet-3

1 2 3 4 5
EfficientNet-B0

0.7 2.6 4.4
17.0

25.9

0.8 2.9 4.3
13.4

22.0

0.9 2.9
4.6

16.5
24.6

15.6
24.3

44.2

62.5

96.0

13.1

26.7
38.4

58.2

86.7

6.8
16.3

37.8

61.7

97.6

0

20

40

60

80

100

120

6.0E+5

1.1E+6

1.6E+6

2.1E+6

2.6E+6

3.1E+6
Se

ar
ch

 ti
m

e
(s

)

Cy
cle

s

Ours-Cycles Baseline-Cycles Ours-Time Baseline-Time

1 2 3 4 5
FBNet-B

1 2 3 4 5
EDDNet-3

1 2 3 4 5
EfficientNet-B0

0.7 1.9 4.4
15.2

25.6

0.7 2.4 4.1
13.2

22.4

0.8 2.6
4.6

15.5
30.1

15.7
26.7

46.5

63.2

86.7

13.4
22.8

38.3

55.1

85.9

6.8
16.3

37.7

61.5

97.6

0

20

40

60

80

100

120

5.0E+5

1.0E+6

1.5E+6

2.0E+6

2.5E+6

Se
ar

ch
 ti

m
e

(s
)

Cy
cle

s

Ours-Cycles Baseline-Cycles Ours-Time Baseline-Time

1 2 3 4 51 2 3 4 5
FBNet-B

1 2 3 4 5
FBNet-B

1 2 3 4 51 2 3 4 5
EDDNet-3

1 2 3 4 5
EDDNet-3

1 2 3 4 51 2 3 4 5
EfficientNet-B0

1 2 3 4 5
EfficientNet-B0

1 2 3 4 5
FBNet-B

1 2 3 4 5
EDDNet-3

1 2 3 4 5
EfficientNet-B0

0.7 1.9 4.4
15.2

25.6

0.7 2.4 4.1
13.2

22.4

0.8 2.6
4.6

15.5
30.1

15.7
26.7

46.5

63.2

86.7

13.4
22.8

38.3

55.1

85.9

6.8
16.3

37.7

61.5

97.6

0

20

40

60

80

100

120

5.0E+5

1.0E+6

1.5E+6

2.0E+6

2.5E+6

Se
ar

ch
 ti

m
e

(s
)

Cy
cle

s

Ours-Cycles Baseline-Cycles Ours-Time Baseline-Time

1 2 3 4 5
FBNet-B

1 2 3 4 5
EDDNet-3

1 2 3 4 5
EfficientNet-B0

0.7 2.6 4.4
17.0

25.9

0.8 2.9 4.3
13.4

22.0

0.9 2.9
4.6

16.5
24.6

15.6
24.3

44.2

62.5

96.0

13.1

26.7
38.4

58.2

86.7

6.8
16.3

37.8

61.7

97.6

0

20

40

60

80

100

120

6.0E+5

1.1E+6

1.6E+6

2.1E+6

2.6E+6

3.1E+6
Se

ar
ch

 ti
m

e
(s

)

Cy
cle

s

Ours-Cycles Baseline-Cycles Ours-Time Baseline-Time

1 2 3 4 5
FBNet-B

1 2 3 4 5
EDDNet-3

1 2 3 4 5
EfficientNet-B0

0.7 1.9 4.4
15.2

25.6

0.7 2.4 4.1
13.2

22.4

0.8 2.6
4.6

15.5
30.1

15.7
26.7

46.5

63.2

86.7

13.4
22.8

38.3

55.1

85.9

6.8
16.3

37.7

61.5

97.6

0

20

40

60

80

100

120

5.0E+5

1.0E+6

1.5E+6

2.0E+6

2.5E+6

Se
ar

ch
 ti

m
e

(s
)

Cy
cle

s

Ours-Cycles Baseline-Cycles Ours-Time Baseline-Time

1 2 3 4 5
FBNet-B

1 2 3 4 5
EDDNet-3

1 2 3 4 5
EfficientNet-B0

Fig. 8: Comparison of the performance and time cost of

hardware generated for different NASNets (INT8 quantization

on the ImageNet) using [12] and our method on ZC706 (top)

and ZCU102 (bottom) under different numbers of BPUs.

!

!

#channelsstride=2BPU1 BPU2 BPU3BPU1 BPU2 BPU3Network Structure
32

k3
e4

 8

32

k3
e2

 8

64
k7

e4
 8

64
k7

e8
 6

64

k7
e6

 8

96

k7
e4

 8

96

k7
e6

 6

96

k7
e4

 8

128

k7
e6

 8

128

k7
e8

 6

128

k7
e4

 8

128

k7
e4

 8

128

k7
e4

 8

128

k7
e4

 8

128

k7
e4

 8

k7
e6

 6

128 128

k7
e4

 6

256

k7
e8

 6

256

k7
e6

 4

256

k7
e8

 6

256

k7
e8

 8

Accelerator Parameters

#channelsstride=2BPU1 BPU2 BPU3Network Structure
32

k3
e4

 8

32

k3
e2

 8

64
k7

e4
 8

64
k7

e8
 6

64

k7
e6

 8

96

k7
e4

 8

96

k7
e6

 6

96

k7
e4

 8

128

k7
e6

 8

128

k7
e8

 6

128

k7
e4

 8

128

k7
e4

 8

128

k7
e4

 8

128

k7
e4

 8

128

k7
e4

 8

k7
e6

 6

128 128

k7
e4

 6

256

k7
e8

 6

256

k7
e6

 4

256

k7
e8

 6

256

k7
e8

 8

Accelerator Parameters

Fig. 9: Searched CNN and the corresponding FPGA accelerator.

B0 [22], and the hardware platforms are ZC706 and ZCU102.

The CPU is the Intel Xeon gold 6240. The results (see Fig. 8)

exhibit that due to the inter-layer computational diversity of the

current NASNets, the BPU-based multi-core structure can yield

significant performance gains. However, when NBPUs > 3, the

search cost evidently outweighs the performance gain, and the

coarse-grained search cannot even get an optimized solution in

a short time when NBPUs=5. Thus, we set the maximum number

of cores to 3. Remarkably, although our best performance is

inferior to [12] (within 12%), our search is about 9.6× faster,

which is worthwhile in the extensive NA-HAS process.

D. Search Efficiency and Quality Comparison
The searched solution targeting the ImageNet dataset and

the Xilinx ZCU102 board is shown in Fig. 9. The accelerator

utilizes 2255 DSPs (89%), 781 BRAM36Ks (86%), 226k LUTs

(82%) and 263k FFs (48%). To verify the effectiveness of NAF,

we compare it with previous SOTA hardware-aware NAS and

co-search works regarding search efficiency and quality. For

search efficiency, we mainly compare the search space size

and search time, as shown in Tab. II. We can see that NAF

explores a remarkably larger joint search space in a notably

less search time. Compared with the RL-based works [16],

[23], they still suffer a much longer search time, despite the

small search space they involve. Compared with differentiable

co-search works [8], [9], NAF achieves a 2.95×∼4.43× less

search time. For search quality, we compare the searched CNN-

accelerator pair’s accuracy, throughput, and energy efficiency.

Tab. III shows that NAF obtains a 1.99×∼6.84× throughput

improvement under the same platform. To make a fair com-

parison across platforms, we set energy efficiency (FPS/W) as

the hardware criterion. We find that NAF achieves 17%∼88%

energy efficiency improvement with similar accuracy.

TABLE II: Search Efficiency Comparison on ImageNet

Method NAS HAS Joint Search Time†
Space Space Space [GPU-hours]

HS-Co-Opt [16] 2.252+18 1 1.15E+18 266
OFA [24] 2.00E+19 1 2.00E+19 1200
BSW [23] 4.20E+05 8.64E+03 3.63E+09 1000
DIAN [8] 9.85E+20 4.89E+17 4.82E+38 144
Co-Explore [9] 4.30E+7 3.00E+02 1.29E+10 96
NAF (ours) 9.85E+20 2.49E+20 2.45E+41 32.5

†The reported GPU-hours using from the baseline’s original papers.

VIII. CONCLUSION

We propose an efficient differentiable network/accelerator

co-search framework, named NAF, to generate high-quality so-

lutions for target reconfigurable platforms and datasets. Backed

by software and hardware optimizations, it efficiently explores

a deeper NA-HAS space. Compared with prior SOTA co-design

TABLE III: Search Quality Comparison on ImageNet

Method Platform Power Top-1 Thpt. Energy Effi.
[W] Acc[%] FPS [FPS/W]

HS-Co-Opt [16] Xilinx XC7Z015 — 68.0 12.1 —
TCAD’22 [1] Xilinx ZCU102 — 73.3 36.6 —
EDD [7] Xilinx ZCU102 — 74.6 125.6 —
Co-Explore [9] Intel GX1150 43.63 77.6 221.2 5.07
HAO [25] Xilinx Ultra96 5.5 72.7 44.9 8.16
NAF (ours) Xilinx ZCU102 26.19 74.9 250.2 9.55

works, NAF achieves a 1.99×∼6.84× throughput gain on Xil-

inx ZCU102 and 17%∼88% energy consumption improvement

while maintaining similar accuracy.

IX. ACKNOWLEDGMENT

This work is partially supported by the National Key

R&D Program of China (under Grant 2017YFA0700900,

2017YFA0700903), National Natural Science Foundation of

China (under Grants 62102383, 61976200, and 62172380),

Jiangsu Provincial Natural Science Foundation under Grant

BK20210123, Youth Innovation Promotion Association CAS

under Grant Y2021121, and the USTC Research Funds of the

Double First-Class Initiative under Grant YD2150002005.

REFERENCES

[1] Y. Liang et al., “An efficient hardware design for accelerating sparse cnns
with nas-based models,” TCAD, vol. 41, no. 3, pp. 597–613, 2022.

[2] B. Zoph et al., “Learning transferable architectures for scalable image
recognition,” in CVPR, 2018.

[3] Z. Du et al., “Shidiannao: Shifting vision processing closer to the sensor,”
in ISCA, 2015, p. 92–104.

[4] Y. Chen et al., “Cloud-dnn: An open framework for mapping dnn models
to cloud fpgas,” in FPGA, 2019, pp. 73–82.

[5] X. Zhang et al., “Dnnexplorer: a framework for modeling and exploring
a novel paradigm of fpga-based dnn accelerator,” in ICCAD, 2020.

[6] K. Choi et al., “Dance: Differentiable accelerator/network co-
exploration,” in DAC, 2021, pp. 337–342.

[7] Y. Li et al., “Edd: Efficient differentiable dnn architecture and implemen-
tation co-search for embedded ai solutions,” in DAC, 2020, pp. 1–6.

[8] Y. Zhang et al., “Dian: Differentiable accelerator-network co-search
towards maximal dnn efficiency,” in ISLPED, 2021, pp. 1–6.

[9] H. Fan et al., “Algorithm and hardware co-design for reconfigurable cnn
accelerator,” in ASP-DAC, 2022, pp. 250–255.

[10] N. Fasfous et al., “Anaconga: Analytical hw-cnn co-design using nested
genetic algorithms,” in DATE, 2022, pp. 238–243.

[11] B. Wu et al., “Fbnet: Hardware-aware efficient convnet design via
differentiable neural architecture search,” in CVPR, 2019.

[12] L. C. Chan et al., “Partitioning fpga-optimized systolic arrays for fun and
profit,” in ICFPT. IEEE, 2019, pp. 144–152.

[13] Y. Lin et al., “Naas:neural accelerator architecture search,” in DAC, 2021.
[14] H. Liu et al., “Darts: Differentiable architecture search,” in ICLR, 2019.
[15] C. Wang et al., “A ubiquitous machine learning accelerator with automatic

parallelization on fpga,” TPDS, vol. 31, no. 10, pp. 2346–2359, 2020.
[16] W. Jiang et al., “Hardware/software co-exploration of neural architec-

tures,” TCAD, vol. 39, no. 12, pp. 4805–4815, 2020.
[17] Z. Liu et al., “A convnet for the 2020s,” in CVPR, 2022.
[18] W. Lou et al., “Octcnn: A high throughput fpga accelerator for cnns using

octave convolution algorithm,” TC, vol. 71, no. 8, pp. 1847–1859, 2022.
[19] S. Zhou et al., “Dorefa-net: Training low bitwidth convolutional neural

networks with low bitwidth gradients,” arXiv:1606.06160, 2016.
[20] J. Choi et al., “Pact: Parameterized clipping activation for quantized

neural networks,” arXiv preprint arXiv:1805.06085, 2018.
[21] S.-C. Kao et al., “Confuciux: Autonomous hardware resource assignment

for dnn accelerators using reinforcement learning,” in MICRO, 2020.
[22] M. Tan et al., “Efficientnet: Rethinking model scaling for convolutional

neural networks,” in ICML, 2019.
[23] M. S. Abdelfattah et al., “Best of both worlds: Automl codesign of a cnn

and its hardware accelerator,” in DAC, 2020, pp. 1–6.
[24] H. Cai et al., “Once-for-all: Train one network and specialize it for

efficient deployment,” in ICLR, 2020.
[25] Z. Dong et al., “Hao: Hardware-aware neural architecture optimization

for efficient inference,” in FCCM, 2021, pp. 50–59.

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

