
MOELA: A Multi-Objective Evolutionary/Learning
Design Space Exploration Framework for 3D

Heterogeneous Manycore Platforms
Sirui Qi

Dept. of Electrical and Computer Engg.
Colorado State University

Fort Collins, USA
qsr1024@colostate.edu

 Yingheng Li
Dept. of Computer Science

University of Pittsburgh
Pittsburgh, USA
yil392@pitt.edu

Sudeep Pasricha, Ryan Gary Kim
Dept. of Electrical and Computer Engg.

Colorado State University
Fort Collins, USA

{sudeep, ryan.g.kim}@colostate.edu

Abstract— To enable emerging applications such as deep
machine learning and graph processing, 3D network-on-chip
(NoC) enabled heterogeneous manycore platforms that can
integrate many processing elements (PEs) are needed. However,
designing such complex systems with multiple objectives can be
challenging due to the huge associated design space and long
evaluation times. To optimize such systems, we propose a new
multi-objective design space exploration framework called
MOELA that combines the benefits of evolutionary-based
search with a learning-based local search to quickly determine
PE and communication link placement to optimize multiple
objectives (e.g., latency, throughput, and energy) in 3D NoC
enabled heterogeneous manycore systems. Compared to state-
of-the-art approaches, MOELA increases the speed of finding
solutions by up to 128×, leads to a better Pareto Hypervolume
(PHV) by up to 12.14× and improves energy-delay-product
(EDP) by up to 7.7% in a 5-objective scenario.

Keywords—3D NoCs, heterogenous manycore systems, design
space exploration, multi-objective optimization

I. INTRODUCTION
The growing use of deep neural networks, graph analytics,

and Big Data computing applications generates an increasing
demand for computational power and energy-efficient
hardware platforms. To meet these demands, three-
dimensional (3D) heterogeneous manycore systems that
integrate multiple processing elements (PEs) of different types
(e.g., CPUs and GPUs) on each layer in the 3D stack can
provide high performance while being energy efficient.
 To facilitate communication in such heterogeneous
manycore systems, a 3D network-on-chip (NoC) is typically
implemented to transfer data between cores and main memory
[1]. However, designing the topology and configuration of
these 3D NoCs for heterogeneous manycore systems under
multiple design constraints is very challenging. For example,
CPUs require the NoC to provide low memory latency
accesses while GPUs require high data throughput. These
requirements can often conflict with one another, creating
congestion in the network and reducing the performance of the
overall system. The need to balance thermals and improve
energy efficiency further increases the exploration
complexity. Thus, the design of 3D heterogeneous manycore
systems is a multi-objective optimization (MOO) problem.

Evolutionary algorithms (EAs) [2], [3] such as NSGA-II
[4] and MOEA/D [5] have been proposed to solve MOO
problems in prior work. In EAs, evolution-inspired operations
are applied to a group (population) of solutions. EAs typically
perform well to find good solutions along the Pareto front [6]
but usually take a long time to converge and do not scale well
as more objectives are added and design space sizes increase.
To improve design space exploration times, machine learning
(ML)-guided local search approaches such as MOOS [7] and

MOO-STAGE [8] have been presented. By using past search
histories, these approaches learn and guide future searches
towards promising areas of the design space. However, these
approaches rely on greedy local search techniques that do a
good job at speeding up the design space search, but at the cost
of losing diversity along the Pareto front.

In order to achieve fast exploration speed, high quality of
solutions, and diversity along the Pareto front, in this paper,
we propose a novel hybrid exploration approach that
combines the benefits of both EAs and ML-guided techniques.
The novel contributions in this work include:

 We propose a novel hybrid multi-objective evolutionary
/learning algorithm called MOELA to solve large-scale
MOO problems, such as the 3D NoC based
heterogeneous manycore system design problem.

 We compare and contrast MOELA against the state-of-
the-art algorithms, such as MOEA/D [5] and MOOS [7],
in terms of speedup and solution quality.

 We demonstrate that MOELA improves the speed up to
128× while achieving a better Pareto Hypervolume
(PHV) [6] by up to 12.14×, and improves energy-delay-
product (EDP) by up to 7.7% in a 5-objective scenario
on average over state-of-the-art methods for a MOO
problem with five objectives.

By using both EAs and ML-guided techniques, MOELA
can rely on the ML-guided algorithm to find a few high-
quality solutions to supplement the population while relying
on the EAs to maintain a diverse population. Over multiple
iterations, we find that MOELA’s hybrid approach finds good
solutions in a shorter time and discovers better solutions than
either EAs or ML-guided approaches alone.

The rest of the paper is organized as follows. Section II
discusses relevant prior work. In Section III, we formulate our
design problem. Section IV introduces the components and
structure of the MOELA framework. Sections V and VI
discuss the experiment results and present our conclusions.

II. RELATED WORK

A. MOO with Evolutionary Algorithms
EAs have been proposed to solve MOO problems using

evolution-inspired operations, such as crossover, mutation,
and survival, on a population of solutions. These operations
allow EAs to explore across a multi-objective design space
and allow parameters that lead to the best solutions to survive
across generations of populations. NSGA-II [4] has been a
popular EA in computer system design problems. NSGA-II
uses non-dominated sorting and crowding distance to select
the next population that is closest to the Pareto front when
implemented to perform design space exploration for
application mapping in a heterogenous manycore system.

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

MOEA/D [5] is another popular EA that decomposes the
problem into multiple subproblems to cover multiple
directions in the design space. Compared with NSGA-II,
MOEA/D is generally faster while acquiring similar results. In
[9], MOEA/D was used to map Intellectual Property (IP) cores
to balance traffic load and energy consumption in the NoC. In
[10], NSGA-II is used for resource allocation in a high-
performance computing data center. Also inspired by NSGA-
II, several MOO design problems have been addressed for
multiprocessor system-on-chips (MPSoCs). These MOO
problems consider challenges with process variations, energy
consumption, reliability, and performance [11]-[13].
Furthermore, NSGA-II has inspired researchers to solve
problems involving trade-offs between performance and
power dissipation in NoCs [14], [15]. It is important to note
that all of these design problems are much less complex than
the problem we will discuss in-depth in Section III.

B. MOO with ML-Guided Algorithms
Local search techniques attempt to find good solutions by

changing the current solution(s) by a small amount and
accepting new solutions by following some heuristic.
Although local searches can find good solutions over time,
they do not use any information from past searches when
performing repeated searches. ML-guided local searches
attempt to remedy this and speed up search times. In [8],
inspired by the STAGE [16] approach, MOO-STAGE was
proposed to learn from past search history and find a good
starting point for MOO local searches. MOO-STAGE was
shown to perform over 10× faster and find solutions with 9.6%
better energy-delay product (EDP) over traditional MOO local
search approaches for a four-objective 3D NoC heterogeneous
manycore design problem. Another framework, MOOS [7],
attempts to use learned information to adjust the local search
direction. The authors of the work found that MOOS was able
to improve the search time by 3.4× over MOO-STAGE while
finding 13.9% better quality solutions for the same four-
objective 3D NoC heterogeneous manycore design problem.
Although these results are impressive, the results still take
days to generate. Additionally, in our experience, the solution
quality obtained from the framework also deteriorates as we
scale up system size and the number of objectives. In this
paper, we address these shortcomings as part of our proposed
novel MOELA framework for MOO problems.

III. DESIGN PROBLEM FORMULATION
For a 3D NoC-based heterogeneous manycore system

design problem, we are provided with a ܰ × ܰ × ܻ tile
system with ܻ layers of ܰ × ܰ tiles. Each of these tiles
accommodate one PE (e.g., CPUs, GPUs, or last level caches
(LLCs) with a memory controller). To allow the tiles to
communicate with one another, each tile has a NoC router that
can be interconnected with other tiles via a communication
link. This communication link could be planar links that
connect same-layer routers or through-silicon via (TSV) links
that connect tiles on neighboring layers in the 3D stack. We
are provided with ܮ links (planar and vertical) for the entire
system. An example 3 × 3 × 3 system is shown in Fig. 1.
From application profiling, we also obtain the communication
frequency between tile i and tile j (݂) and the average power
consumption for each PE. Then, the design problem is to
determine the location of the ܮ planar links and the (ܰ × ܰ ×
ܻ) tiles that optimize the objectives subject to the constraints,
both of which are described next.

Fig. 1. Example of 3-layer 27-tile 3D NoC System.

To maintain a practically feasible system, we define the

following set of constraints:

 To ensure that each router is able to communicate with any
other router in the network, we ensure that every tile has a
network path (connectivity) to every tile in the system.

 The total number of links (L) is fixed. Links can be placed
anywhere between tiles if connectivity is guaranteed.

 We restrict the length of each planar link to 5 units (1 unit
= distance between adjacent tiles in the same layer) and the
maximum number of links connected to any single router
to 7 to reduce NoC router area and wiring overheads.

 The maximum number of vertical links between adjacent
tiles in adjacent layers is set to be 1.

 Due to interfacing constraints, since the tiles with LLCs
contain memory controllers that must be able to access the
main memory, the LLC tiles must be placed along the edge
of the dies in the 3D stack.

We define the following five objectives to consider
performance, energy, and thermals as part of our MOO:

1) Mean of traffic: To minimize the average traffic across
the network, we want to reduce the mean link utilization:

 ݊ܽ݁ܯ = ଵ

∑ ݑ
ୀଵ = ଵ

Σୀଵ ൫Σୀଵ Σୀଵ

݂ ⋅ ൯

Here, ݑ is the utilization of the ݇௧ link of ܮ total links, ܣ is
the number of tiles, ݂ is the frequency of communication
between tiles ݅ and ݆, and is an indicator function for if
communication between tiles ݅ and ݆ uses link ݇.

2) Variance of traffic: In tandem with the first objective, we
also focus on reducing the traffic hotspots, i.e., links with
higher utilizations, by reducing the variance of link utilization
 :to improve network throughput for GPU traffic (݁ܿ݊ܽ݅ݎܸܽ)

 ݁ܿ݊ܽ݅ݎܸܽ = ଵ

∑ ݑ) ଶ(݊ܽ݁ܯ−
ୀଵ

3) CPU latency: CPUs are especially sensitive to memory
access latency. Therefore, we include an objective that focuses
on CPU-LLC latency. For ܥ CPUs and ܯ LLCs, we model
the average CPU-LLC latency using the following equation:

 ݕܿ݊݁ݐܽܮ = ଵ
ெ

∑ ∑ ൫ݎℎ + ݀൯ெ
ୀଵ

ୀଵ ⋅ ݂

In the above equation, ݎ is the number of router pipeline
stages in each router, ℎ is the number of network hops
between CPU ݅ and LLC ݆, and d୧୨ is the total link delay.

4) Energy consumption: To reduce the overall energy
consumption of a heterogeneous NoC, we need to minimize
the sum of link and router energy:
ܧ = ∑ ∑ ݂(∑ ܧ݀ +∑ ܧݎ ܲ

ோ
ୀଵ

ୀଵ)

ୀଵ

ୀଵ

ܧ andܧ denote the average router logic energy per port
and the average link energy per flit, respectively, ݀
represents the physical length of link ݇, and ܲ represents the
number of ports at router ݇ . and ݎ are defined to
indicate whether a link or router ݇ is utilized to communicate
between tile ݅ and tile ݆, respectively. ܴ is the total of routers.

5) Thermal: To accurately estimate the peak temperature of a
core, we use the fast approximation model presented in [17].
Our system can be divided into ܰ× ܰ single-tile stacks, with
ܻ layers. The temperature of a core within a single-tile stack
݊ located at layer ݇ from the sink (ܶ,) is given by:

 ܶ, = ∑ (ܲ, ∑ ܴ

ୀଵ)

ୀଵ + ܴ ∑ ܲ,

ୀଵ

Here, ܲ, is the average power consumption of the core ݅
layers away from the sink in single-tile stack ݊ , ܴ is the
vertical thermal resistance, and ܴ is the thermal resistance of
the base layer on which the dies are placed. The horizontal
heat flow can be also estimated by the maximum temperature
difference in the same layer k (ΔT (k)) according to [17]:
 ∆ܶ(݇) = max

 ܶ, −min
 ܶ,

Hence, we can acquire the overall thermal model by
combining the heat models represented by (5) and (6):

 ܶ = max
, ܶ, × max

∆ܶ(݇)

IV. MOELA FRAMEWORK
In this section, we discuss our proposed novel MOO

algorithm called MOELA which can efficiently solve large
and complex MOO problems. Fig. 1 gives a high-level
overview of the MOELA framework to explore the design
space for a 3D NoC-based heterogeneous manycore system.
The input to the MOELA framework is ܰ generated solutions
that have a randomly selected tile and link placement. This
framework is also provided with constraints and ܰ weight
vectors that have the same number of dimensions as the
objective space, and with the goal of ensuring that the design
space exploration is performed in evenly dispersed directions.
The output of the MOELA framework is ܰ Pareto-optimal
designs, which enable useful trade-offs among the multiple
design objectives and preserve diversity in the solution space.

A. MOELA: Overview
There are three major areas that can be improved for prior

design space exploration algorithms: 1) convergence time, 2)
anytime solution quality, i.e., the best solution at any point in
time, and 3) coverage of the pareto front (solution diversity).
Our proposed MOELA framework helps to decrease the
convergence time while improving the design quality of
complex MOO problems such as the 3D heterogeneous NoC
problem described in Section III. MOELA works by iterating
over two integrated steps: (1) an EA that tries to advance the
Pareto front while maintaining diversity and (2) a local search
method for focused search that greatly advances the Pareto
front in a particular direction in the objective space.

In prior local search work, such as MOO-STAGE [8], the
update principle of the local search aims to maximize the
Pareto Hypervolume (PHV). For a set of solutions, the PHV

is a metric that measures the hypervolume of the solution
space that this set of solutions dominates, i.e., equal or better
in all objectives and better in at least one objective. The
evaluation function in MOO-STAGE is also trained to predict
the PHV of the local search trajectory. This helps the search
provide a set of solutions that span the Pareto front. However,
the repeated calculations of PHV during local search can lead
to large computational overhead especially in high dimension
search spaces. In addition, this also results in a complex
learned evaluation function that needs to consider the current
population of solutions in addition to the search trajectory.
Therefore, we propose a novel machine learning (ML) guided
local search method that uses a decomposition method in both
its local search and learned evaluation function. This new ML-
guided local search in MOELA improves the effectiveness of
single node local search, allowing the search to focus on the
best solution in a limited search space in the direction of the
unit weight vector (the same weight vector is used in the
weighted sum). MOELA further aims to preserve diversity of
solutions with EAs and their genetic operators to increase
PHV in the high dimensional space.

In summary, MOELA utilizes its ML-guided local search
to reach optima in multiple directions and then implements
local-search-friendly EA to avoid local optima and preserve
solution diversity. Fig. 2 shows an overview of MOELA while
Algorithm 1 describes the main steps within MOELA.

Fig. 2. Overview of our proposed MOELA framework.

In MOELA, first, as done in the decomposition-based

EAs, we decompose the MOO problem into ܰ single-
objective optimization sub-problems where each sub-problem
is defined by a particular weight vector. Then, we create the
initial population ܲ with ܰ different designs and associate
each design with one of the sub-problems, and hence, one of
the weight vectors. These weight vectors are evenly spread out
and point at different directions across the objective space. For
example, with ܰ = 11 and the number of objectives = 2, the
weight vector set ܹ = {[0,1], [0.1,0.9], … , [1,0]]}. Then, we
perform a series of local searches on this population. Based on
our investigations, we start with the local search since we find
that using a local search before EAs provides the best results.

Except early iterations, in each iteration of MOELA, we
first use an ML-guided local search to find the local optima
for some of the subproblems (Algorithm 1, lines 4-9). More
details of the ML-guided local search are given in Section
IV.B and Algorithm 2. This allows MOELA to target the local
searches at specific areas of the objective space independently,

which guarantees a more thorough search. After the local
searches, the EA can then use the results of the local searches
to improve the rest of the population using genetic operations
and mutations. MOELA will iterate over both local search and
EA stages to find better solutions than either of these alone. In
this process, local searches increase the convergence speed
while EA maintains the diversity of the population.

ALGORITHM 1: MOELA
Input: ݃݁݊,ܰ, ݅ݎ݁ݐ௬ , ݊ ߜ,
Output: Population ܲ (Final N designs)
1: Initialization:

Weight Vector Set ܹ = ,ଵݓ} … ே}, all weight vectors are evenlyݓ,
spread.
Population ܲ = ܰ random designs {ଵ , … ,{ே, with random
weight vector ݓ ∈ ܹ.
Neighbor Set ℕ = } ,ଵ,⋯ , ,்}, ܶ designs in ܲ with the closest
assigned weight vectors to
Training Set ܵ௧ ← ∅
Reference Point ݖ = ,ଵ] … , ெ] where is the objective value of
the ݅th objective out of ܯ objectives.

2: for ݅ = 0 to ݃݁݊ do
3: if ݅ < ௬ݎ݁ݐ݅ : ௦ܲ௧௧ ← ݊)݉݀݊ܽݎ ,ܲ)
4: else : ௦ܲ௧௧ ← ݈ܽݒܧ)݁݀݅ݑ݃ܮܯ , ݊ ,ܲ)
5: for ݓ, in ௦ܲ௧௧ do

൫௪, ܵ௧൯ ← localSearch(ݓ,, (ݖ
ܵ௧ ← ܵ௧ ∪ ܵ௧
ܲ ← updatePopulation(ܲ, ௪ ,ܹ)

6:
7:
8:
9: end for
11: Train evaluation function:

݈ܽݒܧ ← MLtrain(ܵ௧)

12: ܲ ← ,ℕ,ܲ)ܣܧ ,ߜ ܼ,ܹ)
13: end for
14: return ܲ

In the following subsections, we discuss the details of the

decomposition-based EA and the ML-guided local search
steps used in our approach, and the amendments needed for
these to work in the MOELA framework.

B. MOELA: ML-Guided Local Search
Inspired by the success of ML-guided MOO algorithms

using local search for 3D heterogeneous NoC design [2], [8],
we use an ML-guided local search to boost some of the
populations before executing EAs. Although the traditional
optimization algorithms are widely used to solve a variety of
problems, they still have some shortcomings, namely, slow
convergence speed to the Pareto front. A local search module
not only improves the overall population quality, but also
provides much better individuals for EA to choose as parents
and then generate better offsprings. These outstanding
individuals, when generated by a local search module, will be
much better than other individuals in the same generation.
From our experience, we observe that even a few outstanding
individuals in a huge population can lead to a much better next
generation population when utilized by the same EA.
 In MOELA, instead of randomly selecting starting points
for the local search as in standard local searches, we use a
modified version of STAGE [16] as a guide to select the most
promising designs from the current Pareto front for the
upcoming local search. STAGE does this by training an ML
model using past local search history to predict the potential
of different designs as starting points to the search for single
objective problems. In MOELA, to reduce the MOO to a
single-objective problem and better interface with the
decomposition-based EA (Section IV.C), we propose a new
guide approach (Algorithm 2) that uses both the

decomposition method and machine learning in upcoming
local search starting point selections.

For each iteration, we choose ݊ designs in the
population as starting points for our local search. Since there
is not enough data for training in the early iterations, we
randomly select the ݊ designs for the local searches in the
first ݅ݎ݁ݐ௬ iterations (Algorithm 1, line 3). MOELA then
performs independent local searches from these ݊
designs. Unlike prior ML-guided local searches and to
maintain consistency with the decomposition approach used
in the EA, the local search includes the reference point ݖ and
the design’s weight vector. This directs the local search
towards the reference point ݖ , with emphasis on certain
objectives depending on the weights. The local search
minimization function is:
 ݉݅݊݅ ,ݓ|݆ܾܱ)݃ ݁ݖ݉݅ (ݖ = Σୀଵ

ெ |ܱܾ݆ݓ} − |} (8)ݖ

where ܱܾ ݆ is the ݅௧ objective value out of the ܯ objectives
of a design. We use a simple greedy descent approach for our
local search. The local search returns the search trajectory
(each design visited) and the final value of (8) and they are
recorded in the training set ௧ܵ (aggregated over iterations).
The population is updated if a better solution is found for that
weight. MOELA then attempts to learn an evaluation function
 that maps each design’s parameters and weight to the ݈ܽݒܧ
result of the search (Eq. (8)) using the aggregated training set
௧ܵ (Algorithm 1, line 11). To create ݈ܽݒܧ, we employ a

random forest model, which is an ensemble model that uses
the average output from a collection of decision trees to help
reduce overfitting. Random forests have previously performed
well for MOO-STAGE [8], however, any sufficiently
expressive model would work here.

ALGORITHM 2: MLguide
Input: ݈ܽݒܧ ,݊ ,ܲ
Output: ܲ
1: for to ܲ do
2: ݁ = ()݈ܽݒܧ
3: end for
ܧ :4 = { ଵ݁ , … , ݁ே}
5: return ݊ designs in ܲ and their weights with lowest ݁

After running ݅ݎ݁ݐ௬ iterations, MOELA starts to
evaluate all ܰ designs in the population using ݈ܽݒܧ to find the
most promising ݊ designs to perform the local search
(Algorithm 2). Essentially, the algorithm attempts to learn a
regressor that can predict how much a design can improve
towards the reference point in a local search. Note that the
local search approach in MOELA is different than MOO-
STAGE and MOOS which attempt local searches on the entire
archive of solutions for all objectives. By proposing a new
ML-guided decomposition-based local search, we avoid
costly PHV calculations, learn an ݈ܽݒܧ function that is
unrelated to the population of solutions, and better interface
with the following decomposition-based EA step.

C. MOELA: Decomposition-Based EA
In a decomposition-based EA, the single-objective

optimization sub-problems are defined with a set of ܰ
uniformly spread weight vectors ܹ = ଵݓ} , … {ேݓ, by the
Tchebycheff approach [18]:
 ݉݅݊݅ ,ݓ|ݔ)݃ ݁ݖ݉݅ (ݖ = max

ଵஸஸெ
ܾܱ|ݓ} ݆(ݔ)− |} (9)ݖ

where ݃ is the scalar optimization problem, ܯ is the number
of objectives, ܱܾ ݆(ݔ) is the ݅௧ objective value of input ݔ,

and ܼ = ,ଵݖ} … , {ݖ is the reference point defined as the
minimum value of all the objectives for the objective space of
population ܲ. Given a weight vector ݓ , a lower Tchebycheff
value ݃(ݓ|ݔ, means a better design is found for the ݅௧ (ݖ
subproblem. In EA, an offspring is generated from two parent
designs using a genetic operator (GO). This GO attempts to
take two parent designs and aims to create offsprings that
contain the best attributes of both parents. If the parents are
attempting to optimize similar sub-problems (similar weights)
the offspring has a higher chance to improve the sub-problem
than parents with dissimilar sub-problems. This implies that
two designs with close weight vectors in MOELA will make
better parents. Hence, we frequently choose parents for the EA
from a neighborhood, which is defined as the ܶ closest sub-
problems based on the Euclidean distance of the weight
vectors. MOELA use the same neighborhood setting as [5] to
improve the quality of the offspring from EA. Here, we set a
probability ߜ that chooses the sub-problem's neighborhood as
the parent pool ܳ and 1 − probability that choose from all ߜ
1,⋯ ,ܰ designs to improve diversity of the population. After
generating a new design ܲ௪ , MOELA updates the parent
pool ܳ with the consideration of assigned weights ܹ:
 ܲ ← Update Population(ܲ, ܲ௪ ,ܹ) (10)

A design of the population front will be updated if the
Tchebycheff value of ܲ௪ is lower than that of the other
designs in ܳ. Due to the weight vectors and neighborhood,
MOELA tries to generate an offspring targeting a specific area
of the objective space, which is different from other EA that
randomly choose parents to generate offspring.

V. EXPERIMENTAL RESULTS

A. Experimental Setup
In our experimental studies, we consider a 4×4×4 tile

system that consists of 40 NVIDIA Maxwell GPU cores, 8
x86 CPU cores, and 16 LLCs. The CPUs operate at 2.5 GHz
while the GPUs operate at 0.7 GHz. The memory system uses
a MESI two level cache coherence protocol. Each CPU and
GPU have a private L1 data and instruction cache of 32 KB
each. Each LLC consists of 256 KB memory. To allow
communication between these tiles, we have allocated 96
planar communication links (the same number as an
equivalent 3D mesh) and 48 TSVs that can be used to connect
tiles. To obtain the traffic patterns (݂) and average power
profiles needed for MOELA, we use Gem5-GPU [19] and
GPGPU-Sim [20], McPAT [21], and GPUWattch [22]. We
also use these simulators to generate the final EDP results
from the solutions found by MOELA. To generate the thermal
profiles, we use 3D-ICE [23]. The values of ܴ and ܴ are
also obtained using 3D-ICE.

We use benchmarks from the Rodinia heterogeneous
(CPU+GPU) computing suite [24]. Rodinia is by far the most
available CPU-GPU heterogenous computing benchmark,
which has applications in Machine Learning, Bioinformatics,
Data Mining, Pattern Recognition etc. Here, we pick seven
different applications from Rodinia that represent a variety of
computing scenarios to test our design framework: Back
Propagation (BP), Breadth-First Search (BFS), Gaussian
Elimination (GAU), Hotspot3D (HOT), PathFinder (PF),
Streamcluster (SC) and SRAD. We evaluate MOEA/D [5],
MOOS [7], and MOELA across these benchmarks in terms of
search time, PHV, EDP, and peak temperature. The design
space exploration is performed on a server with an AMD CPU
(EPYC 7763 @ 2.45 GHz) with 32GB of RAM. The hardware

simulations are performed on a server with an AMD Ryzen 7
3700X @ 3.6GHz machine with 32 GB of RAM. The code for
MOELA has been made available on Github [25].

B. MOELA Parameters
In the experiments, we use the following parameters for

MOELA to obtain results:
 ܰ = 50, the size of the population
 ݅ݎ݁ݐ௬ = 2 (Algorithm 1)
 ݃݁݊ = 1000 was found to be sufficient for all

algorithms to converge (Algorithm 1)
 ߜ = 0.9 (Algorithm 1)
 | ௧ܵ | ≤ we limit the training set to the most ,ܭ10

recent 10K samples. We find that this selected value
does not adversely affect ݈ܽݒܧ’s accuracy.

 ௦ܶ௧ = 48 hour, this is the maximum running time
bound for all three algorithms that are compared.

C. Metrics
We use three metrics to compare the performance and

speed of different algorithms similar to the metrics in [7]:

1) Speed-up factor: The speed-up factor is defined as
ܶ௩/ ெܶைா . Here, ܶ௩ is the time

when each algorithm reaches its convergence
performance (the improvement of PHV is smaller than
0.5% in 5 iterations) ெܶைா is the time when MOELA
achieves the same quality of design as the other two
algorithms (MOEA/D and MOOS).

2) PHV improvement: PHV improvement from MOEA/D
and MOOS to MOELA at the maximum stop time ௦ܶ௧.

3) EDP improvement: EDP improvement from MOEA/D
and MOOS to MOELA at the maximum stop time ௦ܶ௧.

TABLE I. SPEED-UP OF MOELA COMPARED TO MOEA/D AND MOOS

App MOEA/D MOOS
3-obj 4-obj 5-obj 3-obj 4-obj 5-obj

BFS 1.31 59.68 3.11 24.58 1.31 128.18
BP 10.88 24.72 1.40 35.29 10.89 10.64

GAU 15.51 78.8 5.07 39.42 15.52 58.73
HOT 68.41 20.94 24.85 13.65 68.41 43.90
PF 32.30 20.43 7.54 36.53 32.30 7.32

SRAD 31.92 25.83 9.28 27.19 31.92 15.81
Average 34.59 121.24 8.91 38.67 34.55 38.83

TABLE II. PHV GAIN OF MOELA COMPARED TO MOEA/D AND MOOS

Application MOEA/D MOOS
3-obj 4-obj 5-obj 3-obj 4-obj 5-obj

BFS 18% 2% 326% 20% 129% 18%
BP 32% 9% 15% 8% 30% 30%

GAU 22% 41% 101% 25% 128% 19%
HOT 8% 27% 38% 0.2% 10% 24%
PF 18% 96% 19% 3% 66% 20%

SRAD 24% 36% 124% 3% 1114% 12%
Average 20% 35% 104% 18% 247% 21%

D. Results
To observe each algorithm’s performance across a variety

of objectives, we present the results for three different
scenarios: 3-obj (objectives 1-3 in Section III), 4-obj
(objectives 1-4), and 5-obj (objectives 1-5). The algorithms’
results are shown in Table I, which shows speed up factor for
MOELA vs. MOEA/D and MOOS, and Table II, which
shows % PHV improvement for MOELA vs. MOEA/D and
MOOS. From the tables, we can observe the effectiveness of
MOELA which outperforms both competitors. MOEA/D

needs significantly larger running time to reach the same PHV
as MOOS or MOELA. MOELA’s PHV improves much
quicker compared to MOEA/D’s. MOELA is 8.91x faster and
leads to 104% better PHV on average than MOEA/D for the
5-obj case. For BFS, MOELA achieves a very high PHV gain
of 326% better than MOEA/D in the 5-obj scenario.

Compared to MOOS, MOELA is 38.83x faster and leads
to 21% better PHV on average for the 5-obj case. The
improvement comes from the EA and ML models used within
our proposed MOELA framework. The EA part of MOELA
maintains diversity in the population, which gives MOELA
greater ability to jump out of potential local optima compared
with MOOS. Meanwhile, the ML-guided local search can
ensure that MOELA always performs productive local search
and avoids time overhead on sub-optimal local searches as
MOOS does. On the other hand, the ML-guided local searches
provide outstanding individuals for MOELA to perform EA.

In summary, MOELA is faster than fast MOO approach
like MOOS with even better solution quality. Meanwhile,
MOELA also provides better quality solutions than EA-based
approaches like MOE/AD while taking much less search time.

Fig. 3. EDP Overhead of MOEA/D and MOOS compared to MOELA.

From the population we acquire at the time ௦ܶ௧ for the 5-
obj scenario, we find the design with the lowest peak
temperature for each application. We then set a temperature
threshold for each application at 5% higher than this lowest
peak temperature. We choose one design for each algorithm
and application that has the lowest EDP within this
temperature threshold. If there are no designs within this
temperature threshold, we choose the lowest temperature
design. In Fig. 3, we show the EDP overhead of these selected
designs when setting MOELA’s designs as baselines. We can
see that MOELA can give better designs in terms of multiple
objectives, with an EDP improvement of up to 7.7% (3% and
4% on average vs MOOS and MOEA/D, respectively). It is
important to note that although this EDP improvement is
modest, it comes at 8.91x speedup over MOOS and 38.83x
speedup over MOEA/D for the 5-obj case. This further
demonstrates MOELA’s ability to find good results in a much
shorter time than commonly used MOO methods.

VI. CONCLUSION
Designing a 3D NoC-based heterogeneous manycore

system is challenging as it involves searching through a huge
design space and trading-off between multiple objectives. In
this paper, we proposed the MOELA framework that utilizes

a hybrid ML-guided local search and evolutionary algorithm
approach to improve the speed and quality of the design space
exploration process for emerging manycore systems.
Compared with the state-of-art, the designs generated by
MOELA are up to 7.7% better in EDP and up to 128x time
saving in design space exploration. The proposed MOELA
approach can also be utilized to more broadly improve
solution quality and reduce search time for multi-objective
design space searches across many other problem domains.

REFERENCES
[1] S. Pasricha, and N. Dutt, “On-Chip Communication Architectures,”

Morgan Kauffman, Apr 2008.
[2] D. DiTomaso, et al., “Machine learning enabled power-aware

Network-on-Chip design,” IEEE/ACM DATE, pp. 1354-1359, 2017.
[3] J. Reed, et al., “Simulation of biological evolution and machine

learning,” Journal of Theoretical Biology, vol. 17(3), pp. 319, 1967.
[4] K. Deb, et al., “A fast and elitist multiobjective genetic algorithm:

NSGA-II,” IEEE TEVC, vol. 6(2), pp. 182-197, 2002
[5] Q. Zhang and H. Li, “MOEA/D: A Multiobjective Evolutionary

Algorithm Based on Decomposition,” IEEE TEVC, vol. 11(6), 2007.
[6] K. Sindhya, et al., “A Hybrid Framework for Evolutionary Multi-

Objective Optimization,” IEEE TEVC, vol. 17(4), Aug 2013.
[7] A. Deshwal, et al., “MOOS: A Multi-Objective Design Space

Exploration and Optimization Framework for NoC Enabled Manycore
Systems,” ACM TECS, vol. 18(5s), pp. 1-23, 2019.

[8] B. K. Joardar, et al., “Learning-Based Application-Agnostic 3D NoC
Design for Heterogeneous Manycore Systems,” in IEEE TC, vol.
68(6), pp. 852-866, June, 2019.

[9] Z. Deng, et al., “Energy- and Traffic-Balance-Aware Mapping
Algorithm for Network-on-Chip,” IEICE Trans. Inf.& Syst, vol. 96(3),
pp. 719-722, 2013.

[10] N. Hogade, et al, “Minimizing Energy Costs for Geographically
Distributed Heterogeneous Data Centers,” IEEE TSUSC, 2018.

[11] N. Kapadia, et al., “Process Variation Aware Synthesis of Application-
Specific MPSoCs to Maximize Yield,” IEEE VLSID, Jan 2014.

[12] Y. Zou, et al., “Reliability-Aware and Energy-Efficient Synthesis of
NoC based MPSoCs,” IEEE ISQED, Mar 2013.

[13] N. Kapadia, et al., “A Co-Synthesis Methodology for Power Delivery
and Data Interconnection Networks in 3D ICs,” IEEE ISQED, 2013.

[14] S. Bahirat, et al., “A Particle Swarm Optimization Approach for
Synthesizing Application-specific Hybrid Photonic Networks-on-
Chip,” IEEE ISQED, Mar 2012.

[15] S. Pasricha, “A Framework for TSV Serialization-aware Synthesis of
Application Specific 3D Networks-on-Chip,” IEEE VLSID, 2012.

[16] J. A. Boya, et al., “Learning evaluation functions to improve
optimization by local search,” J. Mach. Learn. Res., pp. 77-112, 2001.

[17] J. Cong, et al., “A thermal-driven floorplanning algorithm for 3D ICs,”
IEEE ICCAD, pp. 306-313A, 2004.

[18] J, Andrzej, “On the performance of multiple-objective genetic local
search on the 0/1 knapsack problem-a comparative experiment,” IEEE
Trans. Evol. Comput., vol. 6(4), pp. 402–412, Aug 2002.

[19] J. Power, et al., “gem5-gpu: A Heterogeneous CPU-GPU Simulator,”
IEEE CAL, vol. 14(1), pp. 34-36, 1 Jan-June 2015.

[20] A. Bakhoda, et al., “Analyzing CUDA workloads using a detailed GPU
simulator,” ISPASS, pp. 163-174, 2009.

[21] S. Li, et al., “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” IEEE MICRO,
pp. 469-480, 2009.

[22] J. Leng, et al., “GPUWattch: enabling energy optimizations in
GPGPUs,” IEEE ISCA, vol. 41(3), pp. 487-498, 2013.

[23] A. Sridhar, et al., “3D-ICE: Fast compact transient thermal modeling
for 3DICs with inter-tier liquid cooling,” ICCAD, pp.463–470, 2013.

[24] S. Che, et al., “Rodinia: A benchmark suite for heterogeneous
computing,” IEEE IISWC, pp. 44-54, 2009

[25] https://github.com/EPIC-CSU/MOELA/

	Select a link below
	Return to Previous View
	Return to Main Menu

