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Abstract— To enable emerging applications such as deep 
machine learning and graph processing, 3D network-on-chip 
(NoC) enabled heterogeneous manycore platforms that can 
integrate many processing elements (PEs) are needed. However, 
designing such complex systems with multiple objectives can be 
challenging due to the huge associated design space and long 
evaluation times. To optimize such systems, we propose a new 
multi-objective design space exploration framework called 
MOELA that combines the benefits of evolutionary-based 
search with a learning-based local search to quickly determine 
PE and communication link placement to optimize multiple 
objectives (e.g., latency, throughput, and energy) in 3D NoC 
enabled heterogeneous manycore systems. Compared to state-
of-the-art approaches, MOELA increases the speed of finding 
solutions by up to 128×, leads to a better Pareto Hypervolume 
(PHV) by up to 12.14× and improves energy-delay-product 
(EDP) by up to 7.7% in a 5-objective scenario.   

Keywords—3D NoCs, heterogenous manycore systems, design 
space exploration, multi-objective optimization  

I. INTRODUCTION 
The growing use of deep neural networks, graph analytics, 

and Big Data computing applications generates an increasing 
demand for computational power and energy-efficient 
hardware platforms. To meet these demands, three-
dimensional (3D) heterogeneous manycore systems that 
integrate multiple processing elements (PEs) of different types 
(e.g., CPUs and GPUs) on each layer in the 3D stack can 
provide high performance while being energy efficient.  
 To facilitate communication in such heterogeneous 
manycore systems, a 3D network-on-chip (NoC) is typically 
implemented to transfer data between cores and main memory 
[1]. However, designing the topology and configuration of 
these 3D NoCs for heterogeneous manycore systems under 
multiple design constraints is very challenging. For example, 
CPUs require the NoC to provide low memory latency 
accesses while GPUs require high data throughput. These 
requirements can often conflict with one another, creating 
congestion in the network and reducing the performance of the 
overall system. The need to balance thermals and improve 
energy efficiency further increases the exploration 
complexity. Thus, the design of 3D heterogeneous manycore 
systems is a multi-objective optimization (MOO) problem.  

Evolutionary algorithms (EAs) [2], [3] such as NSGA-II 
[4] and MOEA/D [5] have been proposed to solve MOO 
problems in prior work. In EAs, evolution-inspired operations 
are applied to a group (population) of solutions. EAs typically 
perform well to find good solutions along the Pareto front [6] 
but usually take a long time to converge and do not scale well 
as more objectives are added and design space sizes increase. 
To improve design space exploration times, machine learning 
(ML)-guided local search approaches such as MOOS [7] and 

MOO-STAGE [8] have been presented. By using past search 
histories, these approaches learn and guide future searches 
towards promising areas of the design space. However, these 
approaches rely on greedy local search techniques that do a 
good job at speeding up the design space search, but at the cost 
of losing diversity along the Pareto front.   

In order to achieve fast exploration speed, high quality of 
solutions, and diversity along the Pareto front, in this paper, 
we propose a novel hybrid exploration approach that 
combines the benefits of both EAs and ML-guided techniques. 
The novel contributions in this work include:  

 

 We propose a novel hybrid multi-objective evolutionary 
/learning algorithm called MOELA to solve large-scale 
MOO problems, such as the 3D NoC based 
heterogeneous manycore system design problem. 

 We compare and contrast MOELA against the state-of-
the-art algorithms, such as MOEA/D [5] and MOOS [7], 
in terms of speedup and solution quality. 

 We demonstrate that MOELA improves the speed up to 
128× while achieving a better Pareto Hypervolume 
(PHV) [6] by up to 12.14×, and improves energy-delay-
product (EDP) by up to 7.7% in a 5-objective scenario 
on average over state-of-the-art methods for a MOO 
problem with five objectives. 

 

By using both EAs and ML-guided techniques, MOELA 
can rely on the ML-guided algorithm to find a few high-
quality solutions to supplement the population while relying 
on the EAs to maintain a diverse population. Over multiple 
iterations, we find that MOELA’s hybrid approach finds good 
solutions in a shorter time and discovers better solutions than 
either EAs or ML-guided approaches alone.  

The rest of the paper is organized as follows. Section II 
discusses relevant prior work. In Section III, we formulate our 
design problem. Section IV introduces the components and 
structure of the MOELA framework. Sections V and VI 
discuss the experiment results and present our conclusions.  

II. RELATED WORK 

A. MOO with Evolutionary Algorithms 
EAs have been proposed to solve MOO problems using 

evolution-inspired operations, such as crossover, mutation, 
and survival, on a population of solutions. These operations 
allow EAs to explore across a multi-objective design space 
and allow parameters that lead to the best solutions to survive 
across generations of populations. NSGA-II [4] has been a 
popular EA in computer system design problems. NSGA-II 
uses non-dominated sorting and crowding distance to select 
the next population that is closest to the Pareto front when  
implemented to perform design space exploration for 
application mapping in a heterogenous manycore system. 
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MOEA/D [5] is another popular EA that decomposes the 
problem into multiple subproblems to cover multiple 
directions in the design space. Compared with NSGA-II, 
MOEA/D is generally faster while acquiring similar results. In 
[9], MOEA/D was used to map Intellectual Property (IP) cores 
to balance traffic load and energy consumption in the NoC. In 
[10], NSGA-II is used for resource allocation in a high-
performance computing data center. Also inspired by NSGA-
II, several MOO design problems have been addressed for 
multiprocessor system-on-chips (MPSoCs). These MOO 
problems consider challenges with process variations, energy 
consumption, reliability, and performance [11]-[13]. 
Furthermore, NSGA-II has inspired researchers to solve 
problems involving trade-offs between performance and 
power dissipation in NoCs [14], [15]. It is important to note 
that all of these design problems are much less complex than 
the problem we will discuss in-depth in Section III. 

B. MOO with ML-Guided Algorithms 
Local search techniques attempt to find good solutions by 

changing the current solution(s) by a small amount and 
accepting new solutions by following some heuristic. 
Although local searches can find good solutions over time, 
they do not use any information from past searches when 
performing repeated searches. ML-guided local searches 
attempt to remedy this and speed up search times. In [8], 
inspired by the STAGE [16] approach, MOO-STAGE was 
proposed to learn from past search history and find a good 
starting point for MOO local searches. MOO-STAGE was 
shown to perform over 10× faster and find solutions with 9.6% 
better energy-delay product (EDP) over traditional MOO local 
search approaches for a four-objective 3D NoC heterogeneous 
manycore design problem. Another framework, MOOS [7], 
attempts to use learned information to adjust the local search 
direction. The authors of the work found that MOOS was able 
to improve the search time by 3.4× over MOO-STAGE while 
finding 13.9% better quality solutions for the same four-
objective 3D NoC heterogeneous manycore design problem. 
Although these results are impressive, the results still take 
days to generate. Additionally, in our experience, the solution 
quality obtained from the framework also deteriorates as we 
scale up system size and the number of objectives. In this 
paper, we address these shortcomings as part of our proposed 
novel MOELA framework for MOO problems. 

III. DESIGN PROBLEM FORMULATION 
For a 3D NoC-based heterogeneous manycore system 

design problem, we are provided with a ܰ × ܰ × ܻ  tile 
system with ܻ  layers of ܰ × ܰ  tiles. Each of these tiles 
accommodate one PE (e.g., CPUs, GPUs, or last level caches 
(LLCs) with a memory controller). To allow the tiles to 
communicate with one another, each tile has a NoC router that 
can be interconnected with other tiles via a communication 
link. This communication link could be planar links that 
connect same-layer routers or through-silicon via (TSV) links 
that connect tiles on neighboring layers in the 3D stack. We 
are provided with ܮ links (planar and vertical) for the entire 
system. An example 3 × 3 × 3  system is shown in Fig. 1. 
From application profiling, we also obtain the communication 
frequency between tile i and tile j ( ௜݂௝) and the average power 
consumption for each PE. Then, the design problem is to 
determine the location of the ܮ planar links and the (ܰ × ܰ ×
ܻ) tiles that optimize the objectives subject to the constraints, 
both of which are described next.  
  

 
 

Fig. 1. Example of 3-layer 27-tile 3D NoC System.  

 
To maintain a practically feasible system, we define the 

following set of constraints:   

 To ensure that each router is able to communicate with any 
other router in the network, we ensure that every tile has a 
network path (connectivity) to every tile in the system. 

 The total number of links (L) is fixed. Links can be placed 
anywhere between tiles if connectivity is guaranteed.  

 We restrict the length of each planar link to 5 units (1 unit 
= distance between adjacent tiles in the same layer) and the 
maximum number of links connected to any single router 
to 7 to reduce NoC router area and wiring overheads. 

 The maximum number of vertical links between adjacent 
tiles in adjacent layers is set to be 1. 

 Due to interfacing constraints, since the tiles with LLCs 
contain memory controllers that must be able to access the 
main memory, the LLC tiles must be placed along the edge 
of the dies in the 3D stack. 
 

We define the following five objectives to consider 
performance, energy, and thermals as part of our MOO: 

 

1) Mean of traffic: To minimize the average traffic across 
the network, we want to reduce the mean link utilization: 

 ݊ܽ݁ܯ = ଵ
௅
∑ ௞௅ݑ
௞ୀଵ = ଵ

௅
Σ௞ୀଵ௅ ൫Σ௜ୀଵ஺ Σ௝ୀଵ஺

௜݂௝ ⋅ ௜௝௞൯݌ 

Here, ݑ௞  is the utilization of the ݇௧௛  link of ܮ total links, ܣ is 
the number of tiles, ௜݂௝  is the frequency of communication 
between tiles ݅ and ݆, and ݌௜௝௞  is an indicator function for if 
communication between tiles ݅ and ݆ uses link ݇.  

2) Variance of traffic: In tandem with the first objective, we 
also focus on reducing the traffic hotspots, i.e., links with 
higher utilizations, by reducing the variance of link utilization 
 :to improve network throughput for GPU traffic (݁ܿ݊ܽ݅ݎܸܽ)

 ݁ܿ݊ܽ݅ݎܸܽ = ଵ
௅
∑ ௜ݑ) ଶ௅(݊ܽ݁ܯ−
௜ୀଵ  

3) CPU latency: CPUs are especially sensitive to memory 
access latency. Therefore, we include an objective that focuses 
on CPU-LLC latency. For ܥ CPUs and ܯ LLCs, we model 
the average CPU-LLC latency using the following equation: 

 ݕܿ݊݁ݐܽܮ = ଵ
஼ெ

∑ ∑ ൫ݎℎ௜௝ + ݀௜௝൯ெ
௝ୀଵ

஼
௜ୀଵ ⋅ ௜݂௝ 

In the above equation, ݎ  is the number of router pipeline 
stages in each router, ℎ௜௝  is the number of network hops 
between CPU ݅ and LLC ݆, and d୧୨ is the total link delay.  

 



4) Energy consumption: To reduce the overall energy 
consumption of a heterogeneous NoC, we need to minimize 
the sum of link and router energy: 
ܧ        = ∑ ∑ ௜݂௝(∑ ௟௜௡௞ܧ௜௝௞݀௞݌ +∑ ௥ܧ௜௝௞ݎ ௞ܲ

ோ
௞ୀଵ

௅
௞ୀଵ )஺

௝ୀଵ
஺
௜ୀଵ  

௟௜௡௞ܧ ௥ andܧ  denote the average router logic energy per port 
and the average link energy per flit, respectively, ݀௞ 
represents the physical length of link ݇, and ௞ܲ  represents the 
number of ports at router ݇ ௜௝௞݌ .  and ݎ௜௝௞  are defined to 
indicate whether a link or router ݇ is utilized to communicate 
between tile ݅ and tile ݆, respectively. ܴ is the total of routers. 

5) Thermal: To accurately estimate the peak temperature of a 
core, we use the fast approximation model presented in [17]. 
Our system can be divided into ܰ× ܰ single-tile stacks, with 
ܻ layers. The temperature of a core within a single-tile stack 
݊ located at layer ݇ from the sink ( ௡ܶ,௞) is given by: 

 ௡ܶ,௞ = ∑ ( ௡ܲ,௜ ∑ ௝ܴ
௜
௝ୀଵ )௞

௜ୀଵ + ܴ௕ ∑ ௡ܲ,௜
௞
௜ୀଵ  

Here, ௡ܲ,௜  is the average power consumption of the core ݅ 
layers away from the sink in single-tile stack ݊ , ௝ܴ  is the 
vertical thermal resistance, and ܴ௕  is the thermal resistance of 
the base layer on which the dies are placed. The horizontal 
heat flow can be also estimated by the maximum temperature 
difference in the same layer k (ΔT (k)) according to [17]: 
 ∆ܶ(݇) = max

௡ ௡ܶ,௞ −min
௡ ௡ܶ,௞ 

Hence, we can acquire the overall thermal model by 
combining the heat models represented by (5) and (6): 

 ܶ = max
௡,௞ ௡ܶ,௞ × max

௞
∆ܶ(݇) 

 

IV. MOELA FRAMEWORK 
In this section, we discuss our proposed novel MOO 

algorithm called MOELA which can efficiently solve large 
and complex MOO problems. Fig. 1 gives a high-level 
overview of the MOELA framework to explore the design 
space for a 3D NoC-based heterogeneous manycore system. 
The input to the MOELA framework is ܰ generated solutions 
that have a randomly selected tile and link placement. This 
framework is also provided with constraints and ܰ  weight 
vectors that have the same number of dimensions as the 
objective space, and with the goal of ensuring that the design 
space exploration is performed in evenly dispersed directions. 
The output of the MOELA framework is ܰ  Pareto-optimal 
designs, which enable useful trade-offs among the multiple 
design objectives and preserve diversity in the solution space.  

A. MOELA: Overview  
There are three major areas that can be improved for prior 

design space exploration algorithms: 1) convergence time, 2) 
anytime solution quality, i.e., the best solution at any point in 
time, and 3) coverage of the pareto front (solution diversity). 
Our proposed MOELA framework helps to decrease the 
convergence time while improving the design quality of 
complex MOO problems such as the 3D heterogeneous NoC 
problem described in Section III. MOELA works by iterating 
over two integrated steps: (1) an EA that tries to advance the 
Pareto front while maintaining diversity and (2) a local search 
method for focused search that greatly advances the Pareto 
front in a particular direction in the objective space.  

In prior local search work, such as MOO-STAGE [8], the 
update principle of the local search aims to maximize the 
Pareto Hypervolume (PHV). For a set of solutions, the PHV 

is a metric that measures the hypervolume of the solution 
space that this set of solutions dominates, i.e., equal or better 
in all objectives and better in at least one objective. The 
evaluation function in MOO-STAGE is also trained to predict 
the PHV of the local search trajectory. This helps the search 
provide a set of solutions that span the Pareto front. However, 
the repeated calculations of PHV during local search can lead 
to large computational overhead especially in high dimension 
search spaces. In addition, this also results in a complex 
learned evaluation function that needs to consider the current 
population of solutions in addition to the search trajectory. 
Therefore, we propose a novel machine learning (ML) guided 
local search method that uses a decomposition method in both 
its local search and learned evaluation function. This new ML-
guided local search in MOELA improves the effectiveness of 
single node local search, allowing the search to focus on the 
best solution in a limited search space in the direction of the 
unit weight vector (the same weight vector is used in the 
weighted sum). MOELA further aims to preserve diversity of 
solutions with EAs and their genetic operators to increase 
PHV in the high dimensional space.  

In summary, MOELA utilizes its ML-guided local search 
to reach optima in multiple directions and then implements 
local-search-friendly EA to avoid local optima and preserve 
solution diversity. Fig. 2 shows an overview of MOELA while 
Algorithm 1 describes the main steps within MOELA.  

 

 
 

Fig. 2. Overview of our proposed MOELA framework. 
 
In MOELA, first, as done in the decomposition-based 

EAs, we decompose the MOO problem into ܰ  single-
objective optimization sub-problems where each sub-problem 
is defined by a particular weight vector. Then, we create the 
initial population ܲ  with ܰ  different designs and associate 
each design with one of the sub-problems, and hence, one of 
the weight vectors. These weight vectors are evenly spread out 
and point at different directions across the objective space. For 
example, with ܰ = 11 and the number of objectives = 2, the 
weight vector set ܹ = {[0,1], [0.1,0.9], … , [1,0]]}. Then, we 
perform a series of local searches on this population. Based on 
our investigations, we start with the local search since we find 
that using a local search before EAs provides the best results.  

Except early iterations, in each iteration of MOELA, we 
first use an ML-guided local search to find the local optima 
for some of the subproblems (Algorithm 1, lines 4-9). More 
details of the ML-guided local search are given in Section 
IV.B and Algorithm 2. This allows MOELA to target the local 
searches at specific areas of the objective space independently, 

 



which guarantees a more thorough search. After the local 
searches, the EA can then use the results of the local searches 
to improve the rest of the population using genetic operations 
and mutations. MOELA will iterate over both local search and 
EA stages to find better solutions than either of these alone. In 
this process, local searches increase the convergence speed 
while EA maintains the diversity of the population. 
 

ALGORITHM 1: MOELA 
Input: ݃݁݊, ௘௔௥௟௬ݎ݁ݐ݅ ,ܰ , ݊௟௢௖௔௟ ,  ߜ
Output: Population ܲ (Final N designs) 
1: Initialization:  

Weight Vector Set ܹ = ,ଵݓ} … ,  ே}, all weight vectors are evenlyݓ
spread. 
Population ܲ = ܰ  random designs {݌ଵ , … , ,{ே݌  with random 
weight vector ݓ ∈ ܹ.  
Neighbor Set ℕ௜ = ௜݌} ,ଵ,⋯ , ܶ ,{்,௜݌  designs in ܲ with the closest 
assigned weight vectors to ݌௜  
Training Set ܵ௧௥௔௜௡ ←  ∅ 
Reference Point ݖ = ,ଵ݋] … , ௜݋ ெ] where݋  is the objective value of 
the ݅th objective out of ܯ objectives.  

 
 
 
 
 
 
 
2: for ݅ =  0 to ݃݁݊ do 
3:  if ݅ < ௘௔௥௟௬ݎ݁ݐ݅ : ௦ܲ௧௔௥௧ ← ௟௢௖௔௟݊)݉݋݀݊ܽݎ , ܲ)   
4:  else : ௦ܲ௧௔௥௧ ← ,݈ܽݒܧ)݁݀݅ݑ݃ܮܯ ݊௟௢௖௔௟ , ܲ) 
5:  for ݌, in ௦ܲ௧௔௥௧ ݓ  do 

൫݌௡௘௪, ܵ௧௥௔௝൯ ← localSearch(݌, ,ݓ  (ݖ
ܵ௧௥௔௜௡ ← ܵ௧௥௔௜௡ ∪ ܵ௧௥௔௝ 
ܲ ← updatePopulation(ܲ, ௡௘௪݌ ,ܹ) 

 

6: 
7: 
8: 
9: end for 
11: Train evaluation function: 

݈ܽݒܧ ← MLtrain(ܵ௧௥௔௜௡) 
 

12: ܲ ← ,ℕ,ܲ)ܣܧ ,ߜ ܼ,ܹ) 
13: end for 
14: return ܲ 

 
In the following subsections, we discuss the details of the 

decomposition-based EA and the ML-guided local search 
steps used in our approach, and the amendments needed for 
these to work in the MOELA framework.  

B. MOELA: ML-Guided Local Search 
Inspired by the success of ML-guided MOO algorithms 

using local search for 3D heterogeneous NoC design [2], [8], 
we use an ML-guided local search to boost some of the 
populations before executing EAs. Although the traditional 
optimization algorithms are widely used to solve a variety of 
problems, they still have some shortcomings, namely, slow 
convergence speed to the Pareto front. A local search module 
not only improves the overall population quality, but also 
provides much better individuals for EA to choose as parents 
and then generate better offsprings. These outstanding 
individuals, when generated by a local search module, will be 
much better than other individuals in the same generation.  
From our experience, we observe that even a few outstanding 
individuals in a huge population can lead to a much better next 
generation population when utilized by the same EA.  
 In MOELA, instead of randomly selecting starting points 
for the local search as in standard local searches, we use a 
modified version of STAGE [16] as a guide to select the most 
promising designs from the current Pareto front for the 
upcoming local search. STAGE does this by training an ML 
model using past local search history to predict the potential 
of different designs as starting points to the search for single 
objective problems. In MOELA, to reduce the MOO to a 
single-objective problem and better interface with the 
decomposition-based EA (Section IV.C), we propose a new 
guide approach (Algorithm 2) that uses both the 

decomposition method and machine learning in upcoming 
local search starting point selections. 

For each iteration, we choose ݊௟௢௖௔௟  designs in the 
population as starting points for our local search. Since there 
is not enough data for training in the early iterations, we 
randomly select the ௟݊௢௖௔௟  designs for the local searches in the 
first ݅ݎ݁ݐ௘௔௥௟௬ iterations (Algorithm 1, line 3). MOELA then 
performs independent local searches from these ݊௟௢௖௔௟  
designs. Unlike prior ML-guided local searches and to 
maintain consistency with the decomposition approach used 
in the EA, the local search includes the reference point ݖ and 
the design’s weight vector. This directs the local search 
towards the reference point ݖ , with emphasis on certain 
objectives depending on the weights. The local search 
minimization function is: 
 ݉݅݊݅ ,ݓ|݆ܾܱ)݃ ݁ݖ݉݅ (ݖ = Σ௜ୀଵ

ெ ௜|ܱܾ݆௜ݓ} −  ௜|} (8)ݖ

where ܱܾ ௜݆ is the ݅௧௛ objective value out of the ܯ objectives 
of a design. We use a simple greedy descent approach for our 
local search. The local search returns the search trajectory 
(each design visited) and the final value of (8) and they are 
recorded in the training set ௧ܵ௥௔௜௡  (aggregated over iterations). 
The population is updated if a better solution is found for that 
weight. MOELA then attempts to learn an evaluation function 
 that maps each design’s parameters and weight to the ݈ܽݒܧ
result of the search (Eq. (8)) using the aggregated training set 
௧ܵ௥௔௜௡ (Algorithm 1, line 11). To create ݈ܽݒܧ, we employ a 

random forest model, which is an ensemble model that uses 
the average output from a collection of decision trees to help 
reduce overfitting. Random forests have previously performed 
well for MOO-STAGE [8], however, any sufficiently 
expressive model would work here. 
 

ALGORITHM 2: MLguide 
Input: ݈ܽݒܧ, ݊௟௢௖௔௟ , ܲ 
Output: ௟ܲ௢௖௔௟  
1: for ݌௜  to ܲ do 
2:  ௜݁ =    (௜݌)݈ܽݒܧ
3: end for 
ܧ :4 = { ଵ݁ , … , ݁ே} 
5: return ݊௟௢௖௔௟  designs in ܲ and their weights with lowest ௜݁  

 

After running ݅ݎ݁ݐ௘௔௥௟௬  iterations, MOELA starts to 
evaluate all ܰ designs in the population using ݈ܽݒܧ to find the 
most promising ݊௟௢௖௔௟  designs to perform the local search 
(Algorithm 2). Essentially, the algorithm attempts to learn a 
regressor that can predict how much a design can improve 
towards the reference point in a local search. Note that the 
local search approach in MOELA is different than MOO-
STAGE and MOOS which attempt local searches on the entire 
archive of solutions for all objectives. By proposing a new 
ML-guided decomposition-based local search, we avoid 
costly PHV calculations, learn an ݈ܽݒܧ  function that is 
unrelated to the population of solutions, and better interface 
with the following decomposition-based EA step. 

C. MOELA: Decomposition-Based EA 
In a decomposition-based EA, the single-objective 

optimization sub-problems are defined with a set of ܰ 
uniformly spread weight vectors ܹ = ଵݓ}  , … {ேݓ,  by the 
Tchebycheff approach [18]: 
  ݉݅݊݅ ,ݓ|ݔ)݃ ݁ݖ݉݅ (ݖ = max

ଵஸ௜ஸெ
ܾܱ|௜ݓ} ௜݆(ݔ) −  ௜|}  (9)ݖ

where ݃ is the scalar optimization problem, ܯ is the number 
of objectives, ܱܾ ௜݆(ݔ) is the ݅௧௛  objective value of input ݔ, 

 



and ܼ = ,ଵݖ} … , {௠ݖ  is the reference point defined as the 
minimum value of all the objectives for the objective space of 
population ܲ. Given a weight vector ݓ௜ , a lower Tchebycheff 
value ݃(ݓ|ݔ, means a better design is found for the ݅௧௛ (ݖ  
subproblem. In EA, an offspring is generated from two parent 
designs using a genetic operator (GO). This GO attempts to 
take two parent designs and aims to create offsprings that 
contain the best attributes of both parents. If the parents are 
attempting to optimize similar sub-problems (similar weights) 
the offspring has a higher chance to improve the sub-problem 
than parents with dissimilar sub-problems. This implies that 
two designs with close weight vectors in MOELA will make 
better parents. Hence, we frequently choose parents for the EA 
from a neighborhood, which is defined as the ܶ closest sub-
problems based on the Euclidean distance of the weight 
vectors. MOELA use the same neighborhood setting as [5] to 
improve the quality of the offspring from EA. Here, we set a 
probability ߜ that chooses the sub-problem's neighborhood as 
the parent pool ܳ and 1 −  probability that choose from all ߜ
1,⋯ , ܰ designs to improve diversity of the population. After 
generating a new design ௡ܲ௘௪ , MOELA updates the parent 
pool ܳ with the consideration of assigned weights ܹ: 
          ܲ ← Update Population(ܲ, ௡ܲ௘௪ ,ܹ) (10) 

A design of the population front will be updated if the 
Tchebycheff value of ௡ܲ௘௪  is lower than that of the other 
designs in ܳ. Due to the weight vectors and neighborhood, 
MOELA tries to generate an offspring targeting a specific area 
of the objective space, which is different from other EA that 
randomly choose parents to generate offspring.  

V. EXPERIMENTAL RESULTS 

A. Experimental Setup 
In our experimental studies, we consider a 4×4×4 tile 

system that consists of 40 NVIDIA Maxwell GPU cores, 8 
x86 CPU cores, and 16 LLCs. The CPUs operate at 2.5 GHz 
while the GPUs operate at 0.7 GHz. The memory system uses 
a MESI two level cache coherence protocol. Each CPU and 
GPU have a private L1 data and instruction cache of 32 KB 
each. Each LLC consists of 256 KB memory. To allow 
communication between these tiles, we have allocated 96 
planar communication links (the same number as an 
equivalent 3D mesh) and 48 TSVs that can be used to connect 
tiles. To obtain the traffic patterns ( ௜݂௝ ) and average power 
profiles needed for MOELA, we use Gem5-GPU [19] and 
GPGPU-Sim [20], McPAT [21], and GPUWattch [22]. We 
also use these simulators to generate the final EDP results 
from the solutions found by MOELA. To generate the thermal 
profiles, we use 3D-ICE [23]. The values of ௝ܴ  and ܴ௕  are 
also obtained using 3D-ICE. 

We use benchmarks from the Rodinia heterogeneous 
(CPU+GPU) computing suite [24]. Rodinia is by far the most 
available CPU-GPU heterogenous computing benchmark, 
which has applications in Machine Learning, Bioinformatics, 
Data Mining, Pattern Recognition etc. Here, we pick seven 
different applications from Rodinia that represent a variety of 
computing scenarios to test our design framework: Back 
Propagation (BP), Breadth-First Search (BFS), Gaussian 
Elimination (GAU), Hotspot3D (HOT), PathFinder (PF), 
Streamcluster (SC) and SRAD. We evaluate MOEA/D [5], 
MOOS [7], and MOELA across these benchmarks in terms of 
search time, PHV, EDP, and peak temperature. The design 
space exploration is performed on a server with an AMD CPU 
(EPYC 7763 @ 2.45 GHz) with 32GB of RAM. The hardware 

simulations are performed on a server with an AMD Ryzen 7 
3700X @ 3.6GHz machine with 32 GB of RAM. The code for 
MOELA has been made available on Github [25]. 

B. MOELA Parameters 
In the experiments, we use the following parameters for 

MOELA to obtain results:  
 ܰ = 50, the size of the population 
 ݅ݎ݁ݐ௘௔௥௟௬  = 2 (Algorithm 1) 
 ݃݁݊ = 1000  was found to be sufficient for all 

algorithms to converge (Algorithm 1) 
 ߜ = 0.9 (Algorithm 1) 
 | ௧ܵ௥௔௜௡ | ≤  we limit the training set to the most ,ܭ10

recent 10K samples. We find that this selected value 
does not adversely affect ݈ܽݒܧ’s accuracy. 

 ௦ܶ௧௢௣ = 48 hour, this is the maximum running time 
bound for all three algorithms that are compared. 

C. Metrics 
We use three metrics to compare the performance and 

speed of different algorithms similar to the metrics in [7]:  
 

1) Speed-up factor: The speed-up factor is defined as 
௖ܶ௢௡௩௘௥௚௘௡௖௘/ ெܶைா௅஺ . Here, ௖ܶ௢௡௩௘௥௚௘௡௖௘  is the time 

when each algorithm reaches its convergence 
performance (the improvement of PHV is smaller than 
0.5% in 5 iterations) ெܶைா௅஺  is the time when MOELA 
achieves the same quality of design as the other two 
algorithms (MOEA/D and MOOS). 

2) PHV improvement: PHV improvement from MOEA/D 
and MOOS to MOELA at the maximum stop time ௦ܶ௧௢௣. 

3) EDP improvement: EDP improvement from MOEA/D 
and MOOS to MOELA at the maximum stop time ௦ܶ௧௢௣. 

TABLE I.  SPEED-UP OF MOELA COMPARED TO MOEA/D AND MOOS 

App MOEA/D MOOS 
3-obj 4-obj 5-obj 3-obj 4-obj 5-obj 

BFS 1.31 59.68 3.11 24.58 1.31 128.18 
BP 10.88 24.72 1.40 35.29 10.89 10.64 

GAU 15.51 78.8 5.07 39.42 15.52 58.73 
HOT 68.41 20.94 24.85 13.65 68.41 43.90 
PF 32.30 20.43 7.54 36.53 32.30 7.32 

SRAD 31.92 25.83 9.28 27.19 31.92 15.81 
Average 34.59 121.24 8.91 38.67 34.55 38.83 

TABLE II.  PHV GAIN  OF MOELA COMPARED TO MOEA/D AND MOOS 

Application MOEA/D MOOS 
3-obj 4-obj 5-obj 3-obj 4-obj 5-obj 

BFS 18% 2% 326% 20% 129% 18% 
BP 32% 9% 15% 8% 30% 30% 

GAU 22% 41% 101% 25% 128% 19% 
HOT 8% 27% 38% 0.2% 10% 24% 
PF 18% 96% 19% 3% 66% 20% 

SRAD 24% 36% 124% 3% 1114% 12% 
Average 20% 35% 104% 18% 247% 21% 
 

D. Results 
To observe each algorithm’s performance across a variety 

of objectives, we present the results for three different 
scenarios: 3-obj (objectives 1-3 in Section III), 4-obj 
(objectives 1-4), and 5-obj (objectives 1-5). The algorithms’ 
results are shown in Table I, which shows speed up factor for 
MOELA vs. MOEA/D and MOOS, and Table II, which 
shows % PHV improvement for MOELA vs. MOEA/D and 
MOOS. From the tables, we can observe the effectiveness of 
MOELA which outperforms both competitors. MOEA/D 

 



needs significantly larger running time to reach the same PHV 
as MOOS or MOELA. MOELA’s PHV improves much 
quicker compared to MOEA/D’s. MOELA is 8.91x faster and 
leads to 104% better PHV on average than MOEA/D for the 
5-obj case. For BFS, MOELA achieves a very high PHV gain 
of 326% better than MOEA/D in the 5-obj scenario.  

Compared to MOOS, MOELA is 38.83x faster and leads 
to 21% better PHV on average for the 5-obj case. The 
improvement comes from the EA and ML models used within 
our proposed MOELA framework. The EA part of MOELA 
maintains diversity in the population, which gives MOELA 
greater ability to jump out of potential local optima compared 
with MOOS. Meanwhile, the ML-guided local search can 
ensure that MOELA always performs productive local search 
and avoids time overhead on sub-optimal local searches as 
MOOS does. On the other hand, the ML-guided local searches 
provide outstanding individuals for MOELA to perform EA.  

In summary, MOELA is faster than fast MOO approach 
like MOOS with even better solution quality. Meanwhile, 
MOELA also provides better quality solutions than EA-based 
approaches like MOE/AD while taking much less search time. 

 

 
Fig. 3. EDP Overhead of MOEA/D and MOOS compared to MOELA. 

From the population we acquire at the time ௦ܶ௧௢௣  for the 5-
obj scenario, we find the design with the lowest peak 
temperature for each application. We then set a temperature 
threshold for each application at 5% higher than this lowest 
peak temperature. We choose one design for each algorithm 
and application that has the lowest EDP within this 
temperature threshold. If there are no designs within this 
temperature threshold, we choose the lowest temperature 
design. In Fig. 3, we show the EDP overhead of these selected 
designs when setting MOELA’s designs as baselines. We can 
see that MOELA can give better designs in terms of multiple 
objectives, with an EDP improvement of up to 7.7% (3% and 
4% on average vs MOOS and MOEA/D, respectively). It is 
important to note that although this EDP improvement is 
modest, it comes at 8.91x speedup over MOOS and 38.83x 
speedup over MOEA/D for the 5-obj case. This further 
demonstrates MOELA’s ability to find good results in a much 
shorter time than commonly used MOO methods. 

VI. CONCLUSION 
Designing a 3D NoC-based heterogeneous manycore 

system is challenging as it involves searching through a huge 
design space and trading-off between multiple objectives. In 
this paper, we proposed the MOELA framework that utilizes 

a hybrid ML-guided local search and evolutionary algorithm 
approach to improve the speed and quality of the design space 
exploration process for emerging manycore systems. 
Compared with the state-of-art, the designs generated by 
MOELA are up to 7.7% better in EDP and up to 128x time 
saving in design space exploration. The proposed MOELA 
approach can also be utilized to more broadly improve 
solution quality and reduce search time for multi-objective 
design space searches across many other problem domains. 
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