
Information Processing Factory 2.0 – Self-awareness
for Autonomous Collaborative Systems

Nora Sperling∗, Alex Bendrick∗, Dominik Stöhrmann∗, Rolf Ernst∗, Bryan Donyanavard†, Florian Maurer‡,
Oliver Lenke‡, Anmol Surhonne‡, Andreas Herkersdorf‡, Walaa Amer§, Caio Batista de Melo§,

Ping-Xiang Chen§, Quang Anh Hoang§, Rachid Karami§, Biswadip Maity§, Paul Nikolian§, Mariam Rakka§,
Dongjoo Seo§, Saehanseul Yi§, Minjun Seo§, Nikil Dutt§, Fadi Kurdahi§
∗Institute of Computer and Network Engineering, TU Braunschweig, Germany

†Department of Computer Science, San Diego State University
‡School of Computation, Information & Technology, Technical University of Munich, Germany
§Center for Embedded and Cyber-physical Systems (CECS), University of California, Irvine

Abstract—This paper summarizes the talks of a special session
on the IPF 2.0 project, a collaborative German-US research
project that leverages self-awareness principles for the self-
management of distributed systems of autonomous multiprocessor
systems-on-chip (MPSoCs).

Index Terms—autonomous systems, self-awareness, data centric

I. MOTIVATION AND BACKGROUND

Autonomous Systems Design must deal with several im-
pairments that arise in designing and deploying complex au-
tonomous systems. Chief among such impairments are: (1) the
unexplainability conundrum of AI/ML leading to unbounded
behavior, (2) the intractability of verifying the system under
all possible use cases, leading to the inability to deal with
unexpected situations (e.g., emergent behavior and unknown
unknowns, or black swan events), (3) the inability to fully
predict the behavior of humans entangled with such systems
(e.g., self-driving cars interacting with human-driven ones),
(4) the aging and other physical world interaction mechanisms
that ultimately affect the system’s operational parameters (e.g.,
energy, performance, reliability, safely and security) over time,
(5) the inaccuracy of the models used at different levels of
hierarchy to design the system, and (6) the need to reconcile
conflicting operational parameters. The Information Process-
ing Factory (IPF) project is a collaboration between research
teams in the US (UC Irvine) and Germany (TU Munich
and TU Braunschweig) applying self-awareness to the self-
management of MPSoCs. This includes (a) self-reflection, i.e.,
awareness of the MPSoC’s own hardware/software architecture,
operational goals, and dynamic changes once deployed; (b)
self-prediction of dynamic changes; and (c) self-adaptation to
environment changes, optimizing operational parameters and
protecting against unexpected situations with increased risk.

IPF 1.0 was first introduced in ESWEEK 2016 [1] as a
paradigm to master complex dependable systems. The IPF
paradigm applies principles inspired by factory management to
the continuous operation and optimization of highly integrated
embedded systems. A general objective is to identify a sweet
spot between maximized autonomy among IPF constituent
components and a minimum of centralized control to ensure

guaranteed service even under strict safety and availability re-
quirements. Emphasis is on self-diagnosis for early detection of
degradation and imminent failures combined with unsupervised
self-adaptation to meet performance and safety targets. IPF 1.0
produced high-grade results and spawned additional research
projects [2].

As a follow-up project, IPF 2.0 expands the concept from
a single self-organizing MpSoC towards distributed systems
of autonomous MPSoCs with varying connectivity, in cyber-
physical applications and the Internet of Things. It first covers
locally interconnected systems, which are still controlled by
a common plan, comparable to a larger factory, then takes a
big step towards dynamically cooperating clusters with emer-
gent behavior, comparable to the interplay of several factories
in global supply chains. Vehicle platooning, with distributed
collaborative planning, online verification and sensing, shall be
used as common research scenario. IPF 2.0 has a system-of-
systems structure in which several IPF 1.0 “factories” interact,
providing an additional layer of abstraction with a data-centric
approach.

The special session at DATE 2023 includes four talks that are
elaborated in the following sections. The first section outlines
the challenges when moving from self-organizing local systems
in IPF 1.0 to autonomous systems collaboration in IPF 2.0. It
takes commercial vehicle platooning as a use case, and explains
how the self-aware truck control systems collaborate towards a
platoon-level runtime verification that continuously supervises
the state of a platoon, even under a changing platoon formation
and external disturbance, e.g., by intersecting traffic partici-
pants. Future autonomous cyber-physical systems will be data
centric: generating, processing, and storing enormous amounts
of dynamic data. This trend will affect both local autonomy and
autonomous systems collaboration. The second section outlines
the resulting challenges and discusses how self-aware caching
can help in mastering the resulting communication and data
management requirements. A cornerstone in data management
is memory technology. High data dynamics put a particular
burden on memory power consumption. The third section will
propose approaches to mitigate the energy cost of data man-
agement. The fourth section addresses a particular problem of

2023 Design, Automation & Test in Europe Conference (DATE 2023) 
Special Initiative "Autonomous Systems Design"	

 978-3-9819263-7-8/DATE23/© 2023 EDAA 

	



autonomous systems, the lack of explainability, often resulting
from the underlying machine learning technology. It evaluates
the use of learning classifiers, a successful IPF 1.0 machine
learning technology, in the context of autonomous systems
collaboration.

II. TRUST, BUT VERIFY: TOWARDS SELF-AWARE, SAFE,
AUTONOMOUS SELF-DRIVING SYSTEMS

In the IPF project 1.0 [2], self-awareness and self-healing
are essential factors for the long-term normal operation of the
system. Known system failures and predictions of the system’s
future state must be observable, and the IPF system has the
following components for this purpose; Runtime Verification
(RV) and Inference Engine (IE). The system utilizes both
proactive and reactive methods for monitoring. Runtime Verifi-
cation (RV) – especially when dealing with online monitoring
– takes into account finite executions of increasing size. For
this, the monitor must be designed to take into account the
execution in an incremental way [3]. RV can respond nicely to
predefined and predictable system states but may pose difficulty
in detecting unknown behaviors. An envisioned way to detect
imminent hazards is by means of an inference engine (IE) [4].
The engine is coupled with RV. An RNN with long short-term
memory (LSTM), useful in predicting the time series data,
is then employed to examine the obtained trace data. RNN
LSTM-based weights are obtained using trace data at program
execution and data consisting of normal/abnormal annotation
(tag). The obtained weight is synthesized with the inference
engine configuration and updated at runtime by the IE. Through
this, IE can be used to predict hazards at runtime.

IPF 2.0 evolves existing systems a step further. First, there
needs to be a complement to RV and IE. RV is the best detection
method for defined properties, and IE helps to predict the
known possible system state, but it is challenging to detect
unknown abnormal system behavior. Anomaly detection (AD)
techniques can find an anomaly or outlier that is significantly
different from the remaining data, and thus flag anomalous
execution in computer systems. For example, network intrusion
detection, credit card fraud detection, sensor network error
detection, medical diagnostics, and many other fields are well-
known areas utilizing the AD technique [5]. AD can be
particularly useful at runtime to detect an execution out of the
normal range, and thus can play a significant role in detecting
emergent behavior. However, since the important system state
is not preserved and is only determined based on stateless input
values, further optimization and backtracking of the system
state are almost impossible by use of AD alone.

Figure 1 represents all of the above components and shows
a flow of how IE, AD, and RV interact. Traces are created
from system components such as the CPU, memory controller,
bus, and bus peripherals and typically generate data equivalent
to several gigabits per second. For IE and AD using machine
learning techniques, feature extraction is required. The process
reduces the flood of trace data and better represents the intrinsic
state of the system. Conversely, in the case of RV, which needs
all the exact status of the system, this trace is directly used
and filtered internally. IE is a proactive mechanism that will

Fig. 1. Details of system traces as input, RV, IE, and AD components and
how the components interact

inform the system before it fails. In the case of IE, we have
a pre-trained model offline, which is updated by the detection
results (feedback) of RV and AD. AD is used to determine
unknown system conditions. AD is learned offline using the
known normal state of the system and reports to the system
whenever the system is not in the known normal state. If RV
detects a failure and AD recognizes it as normal, an online
update of AD is required. RV shows a 100% detection rate
for defined properties. If AD detects an unknown abnormal
operation, it is required to reflect the property. The system
knows the proposition related to the current property, and when
the AD detects an abnormal operation, it creates/updates a new
property.

Given the new focus in IPF 2.0, we investigate a novel way
to perform RV on (distributed) systems that can dynamically
self-configure at runtime. When shifting the target platform
to dynamic, distributed systems that process large volumes of
data, RV becomes more challenging due to the need to support
failover and resource sharing. Furthermore, many emerging
systems can self-reconfigure and self-organize at runtime, in-
creasing the difficulty in defining an expected global behavior.
Besides, as systems complexity increases, so does the challenge
of performing runtime verification at the architecture level.
These issues point to a critical gap in the applicability of RV to
distributed self-reconfigurable cyber-physical systems that need
to be addressed. Truck platooning is an example of a distributed
autonomous system that requires a modified RV methodology
due to its runtime self-configuration. As each truck operates
independently, it generates a separate trace, which makes it
challenging to have a centralized monitor as traces may have
an undefined global state when considering the entire platoon.

Figure 2 shows an initial framework for RV over a distributed
data-centric truck platoon. Each truck in the system stores its
local data for verification in a local datastore implemented on
top of a Database Management System (DBMS). Each datas-
tore consists of (i) a Distributed Runtime Monitor (DRM), (ii)
an Event Trigger (ET), and (iii) a Temporal Query Translator
(TQT). The DRM performs a given query specification and
returns whether it was violated. The ET checks new data as it
is inserted into the datastore for a defined condition, and when
the condition is satisfied, it can trigger further actions. The
TQT enables temporal queries using window-based queries on

!

!



timestamped data and spatial queries by combining user-defined
queries with system knowledge. These different datastores can
work together to verify properties across the distributed system.
When a property needs to be verified across the entire platoon,
it is dynamically instantiated with the platoon’s current state,
as the trucks in the platoon can change over time. Then, this
dynamic query is sent to all trucks that verify its result con-
sidering their local data, and the individual verification results
are combined for a global result regarding the dynamic global
query. By distributing the verification of safety properties, the
RV can accommodate the dynamism of data-centric design
flows such as a truck platoon.

III. VEHICLE AS A CACHE – A DATA CENTRIC PLATFORM
FOR THE IPF PARADIGM

Data management in vehicles currently must respond to two
major trends, dynamics and data volume. We first elaborate on
dynamics. While in the past, vehicle software was developed
as part of a rigorous V-model vehicle design process that
ended in a static, possibly configurable software artifact, recent
vehicles follow a more agile software design style with frequent
updates and service oriented software architectures (e.g. [6])
all the way to software updates and configuration “over-the-
air” after deployment. This is partly due to vehicle software
customization and partly due to a plethora of new cloud and
edge based services including advanced navigation, vehicle
cooperation, teleoperation, or advanced passenger support and
infotainment. New players, such as Amazon or Microsoft, pro-
vide the necessary infrastructure effectively using the vehicle as
a wireless front-end IT platform that is connected via a future
V2X network (cp. [7]). In consequence, future vehicles will be
subject to software dynamics with very different profile and
timing.

While vehicle software updates and customization involve
critical functions, but can be constrained to times of low vehicle
activity, the new applications change dynamically at run-time.
The resulting dynamic load meets a vehicle platform with lim-
ited and varying computing and communication resources. In
consequence, the current, static vehicle resource mapping must
be extended by an in-field adaptive resource planning. It must
operate under reliability, safety and timing constraints, must
consider evolving environment, functions and emergence and
should include predictive risk management, online verification,

Fig. 2. An overview of IPF 2.0 runtime verification based on distributed
database management systems (DBMS)

platform adaptation, and data management. This is a typical
use case for the Information Processing Factory paradigm.

Of course, planning is only effective where resources are
sufficient. However, the second trend is a dramatically growing
data volume. Even though the CAN-based vehicle network of
the past is currently replaced by a TSN Ethernet backbone
with data rates at and above 1 Gbit/s, they face data rates
and latency requirements of high resolution sensors (cameras,
LIDAR, radar, . . . ) that grow even faster. Dynamic vehicle
mode dependent network configuration and service integration
can improve network utilization, in particular where V2X
communication is involved [8], but communicating all data
that are relevant to active services will typically exceed the
available bandwidth. As an indicator, we take the in-vehicle
memory size required for automated driving that is predicted
to grow from 8GByte today to multiple TByte in 2030 [9].
A large share of those data is critical and subject to real-
time requirements, such as sensor data (radar, camera, LI-
DAR), status information (perception, traffic, real-time maps)
or related to vehicle coordination. Such data are subject to a
high “volatility”, meaning their relevance depends on data age
requiring continuous updates, like in factory management or
logistics. As an indicator for data volatility, we might take the
DRAM requirements, which are predicted to exceed 50GBytes
already in 2025, for driving automation alone [10].

There are solutions for time critical data management in
distributed systems, with the DDS middleware as the most
prominent example [11]. However, DDS handles the distri-
bution of complete data objects, such as camera frames. The
resulting data rates [9] will likely be prohibitive, on all levels
of systems hierarchy, in ECU, in vehicle and V2X. We see
two alternatives, reducing object size by compression and/or
quality reduction, or smart object caching. The first alternative
is beyond the IPF project, the second alternative, caching, is an
interesting research topic. As an example, we take a traffic light
recognition application from the popular Autoware platform
[12]. The application searches a traffic light in a 2048x2048
camera frame, based on region information from a 3D map of
the intersection. The region information, vehicle position and
angle, are used to reduce the search to a small attraction box
covering about 1.2% of the camera frame [13]. As the vehicle
moves, the box will move in the sequence of camera frames,
but updates are only needed for the box content, significantly
reducing the required data rate requirements if object caching
only transmits the dynamically selected box. This becomes
especially relevant if camera images are processed in different
perception modules on distributed computation resources. As
a result, camera data would have to be send via the in-vehicle
communication backbone to different processing units.

!

Fig. 3. Collaborative platooning use case: Following trucks share relevant
sensor data with Platoon Leader

!

!



The collaborative platooning use case, as shown Fig. 3,
combines both trends that were explained above. The leading
truck makes its front camera/LIDAR data available to the
following trucks and the following trucks can provide their
side and rear camera and/or LIDAR views for sensor fusion
providing a complete surround view and perception of other
vehicles and obstacles, even where they are hidden from the
leading truck. Because the relevant sensor data depends on
the scene, the number of platoon vehicles and the position of
objects in the environment, self-aware object caching seems to
be an interesting option.

The missing link is reliable wireless communication. Using
remote cameras still requires adhering to the same stringent
data age requirements for sensor data processing as known
from in-vehicle networks. Hence, low object latencies need
to be ensured to mitigate errors in sensor fusion and object
detection that could lead to accidents. For that purpose, we
have developed an application level error correction protocol for
short latencies of 100ms that was already used in a valet parking
example where infrastructure cameras were used to enhance
vehicle based perception [8], [14]. The protocol is combined
with a safety layer that falls back to the vehicle sensors if the
error rate is unacceptably high, an approach that can also be
used in platooning. The reliable protocol is bidirectional and,
hence, compatible to object caching. This shall be investigated
as future work.

IV. COMPUTATIONAL SELF-AWARENESS FOR
ENERGY-EFFICIENT MEMORY SYSTEMS

The vehicular challenges for data dynamism and volume (as
highlighted earlier) are exacerbated by the heterogeneity and
timeliness of safety-critical data. Fig. 4 shows an exemplar
computational pipeline for an Autonomous Vehicle (AV), where
data in the perception-planning-control pipeline is: 1) gener-
ated from multiple external (e.g, cameras, LIDAR, radar) and
internal sensors (e.g., CANbus polling) sensors; 2) transformed
through a computational pipeline (e.g., perception, planning);
and 3) output to inform control and actuation.

The nature of the AV computational pipeline makes the
raw sensor data it operates on timing constrained and safety
critical, and the intermediate data representations increase the
volume and dynamism of the data used. For instance, data from
cameras can be used in object detection to identify obstacles,
and in structure from motion to reconstruct 3D environments.
Each process generates different data structures, with variable
criticality and timeliness. For a fast moving vehicle to operate

Fig. 4. Example perception-planning-control task pipeline for autonomous
vehicles [15]

safely, obstacles must be detected quickly, and are relevant for
short periods of time. For visual representation of anomalous
event playback (e.g., an accident), 3D representations of 2D
objects can improve quality of user experience, and may
be stored for reuse. Critical control signals may be low in
volume but high in timing criticality. This significant volume
of dynamic data must be stored, managed, transformed, and
transmitted across memories within single, locally-connected,
and distributed computing platforms. The data storage and
movement consumes a significant amount of energy, posing ad-
ditional challenges for energy efficiency while meeting critical
timing requirements across the computing stack and network.

We deploy Computational Self-Awareness (SA) principles
to: a) build self-models of the system at multiple levels of the
abstraction stack; b) enable introspective analysis for control
loops to respond quickly, enhanced with reflective loops that
consider both past as well as potential future outcomes for
proactive planning; and c) perform cross-layer sense-making to
fuse disparate and heterogenous data for holistic analysis and
predictions. In the data-centric IPF 2.0 context, the implications
on memory and energy efficiency can be studied at three levels:

1) Single Computational Platform. When applications ex-
ecute on a single computational platform, data flows across
multiple layers of the memory hierarchy from on-chip caches,
to off-chip main memory, and to storage. The transformation,
movement, and storage of this highly dynamic data remains
a key performance and energy bottleneck. Cross layer op-
timization across the abstraction stack is essential to meet
critical performance needs while ensuring energy efficiency.
In [16] we demonstrated how self-awareness principles can be
used to design an energy-efficient memory subsystem, and ex-
plored different degrees of self-awareness. We further exploited
approximations at the architectural level to tradeoff memory
accuracy for energy efficiency [17] . Using Computational
SA, we coordinated multiple levels of memory hierarchy in
a RISC-V system to achieve significant energy gains for data
centric applications. At the operating system level, in [18]
we demonstrated a self-aware proactive and adaptive swapping
policy for individual computational platforms executing multi-
application pipelines. Furthermore, we proposed a demand-
layering scheme that minimizes the memory footprint of DNN
inferencing model parameters through layer-by-layer loading
and execution [19].

2) End-to-End Applications on Multiple Platforms. AVs typ-
ically use multiple computational platforms (ECUs) to execute
end-to-end (sensors-to-actuators) compute pipelines. The data
flows as a Directed Acyclic Graph (DAG) for each sensors-
to-actuators path, and each path in the DAG is typically
constrained by an end-to-end deadline. Tasks may execute on
specialized processors such as GPUs and accelerators, as well
as general-purpose multicore processors. System designers need
a framework to perform rigorous analyses, explore alternative
schedules, task and data mappings, and perform energy op-
timizations, all while adhering to criticality constraints. We
developed the Chauffeur [15] open-source framework that
empowers designers to explore the end-to-end tradeoffs be-

!

!



tween design constraints, power budgets, real- time perfor-
mance requirements, and accuracy of self-driving workloads.
For instance, we investigated exploiting the dynamic slack
obtained by adaptively relaxing end-to-end deadlines based on
different driving scenarios [20] (e.g., driving at a lower speed
does not require the same actuation interval as when driving
at high speeds). We demonstrated over 30% energy reduction
for typical driving scenarios based on the Bosch WATERS
Industrial Challenge [21].

3) Dynamic Data Management for Distributed, Networked
Platforms. As AV computational platform architectures evolve
from stand-alone AVs (using CAN and/or TSN Ethernet for
multiple on-board ECUs) to cloud/edge services and V2X
scenarios, data must be intelligently orchestrated between mul-
tiple AVs across the end-edge-cloud networks. In [22] we
orchestrated realtime inference requests across an end-edge-
cloud network to reduce latency while maintaining accuracy.
Managing computation alone is no longer sufficient: our studies
show that in realtime applications, processing and data both
impact performance and efficiency [23], and therefore must be
managed together. In IPF 2.0, the vehicles as cache paradigm
brings the data in the AV pipeline to the forefront for a vehicle.
Distributed runtime verification generates even more safety-
critical data that must be managed in addition to sensor data
for a network of vehicles. When performing data management
in safety-critical systems, it is important that information and
decisions are fast, efficient, and interpretable (see Section V).
We must revisit memory and storage policies for efficient
streaming-based data management both across the abstraction
stack and network.

V. LCT - TURNING ML DECISION MAKING EXPLAINABLE

Prior sections on safe and verifiable self-aware systems
explain the importance of predictable system states. As un-
known abnormal behavior is challenging to detect, system
designers should try to minimize unforeseeable output results of
system components. One known source of unpredictable system
responses is ML decision making.

Deep learning disrupted the domains of probabilistic in-
ference and statistical optimization for applications such as
object and speech recognition, image classification or, gener-
ally speaking, the modeling of complex, non-linear and high-
dimensional relationships [24]. However, it is also well known
that such deep neural network-based (DNN) machine learning
(ML) engines are “black boxes” which do not allow making
correlations between individual neuron weights and selected
output labels. In contrast, rule-based classifier systems within
the MAPE control loop of embedded systems [25], e.g. as
shown in Fig. 5, do make the Match Set determination de-
terministic for any sensor inputs and thus, provision an explicit
containment for the finally applied action/label. Nonetheless,
applying a fitness-weighted randomization function on the
Match set affects the particular rule selection (incl. action)
which results in the Action set. Within the Action Set all rules
have identical action.

Within the IPF project, we developed a hardware learn-
ing classifier table (LCT) agent for DVFS (dynamic voltage

Population [P]
idx cond action fitness . . .
#1 101X 101 0.23
#2 X001 001 0.58
#3 1X0X 011 0.02
· · · · · · · · · · · ·
#n XXX1 111 0.89

Match Set [M]
idx cond action fitness . . .
#8 1X1X 011 0.12

#53 X111 001 0.56
#116 1111 011 0.52

Action Set [A]
idx cond action fitness . . .
#8 1X1X 011 0.12

#116 1111 011 0.52

Reward
Assignment

[A]t−1

Action
Selection
Algorithm

Sensors

Actuators

System

1

Sensor Values

2

Fitness Update
5

3
Action performed

Control

4

Fig. 5. LCT data structures and information flow

frequency scaling) control of a RISC core (System) that is
provisioned with a variable processing performance target
(IPStarget/[instr. per second]) and a hard power constraint
(Pconstr/[W]) [26]. Current operation values of the core are
sensed and assessed against these IPStarget/Pconstr specs by
a Reward Assignment function. All rules in the Action Set are
rewarded with a fitness increase in case an applied action (that
varies the core frequency f by a specific step size) lowered the
gap between current IPS and IPStarget while the power P
stays within the Pconstr limit. Rules that lead to an increased
gap towards IPStarget or even violate the Pconstr are penalized
with a fitness value decrease. We refer to [27] for more in-depth
description on the fitness update.

At any instance in time, the composition and content of
the address-mapped Population table (containing all rules and
corresponding fitness values) can be accessed/sampled via a
CPU control interface. Alternatively, changes or updates in the
table can be streamed as a trace for either on-the-fly analysis
or post-experiment processing in case of capturing the trace in
CPU memory. More importantly, the LCT approach to machine
learning allows:

• Following the evolution of fitness values assigned to
rules (and their specific actions/labels) and thus, reasoning
whether condition-action pairs make sense.

• Observing explicitly how new rules inserted into the
Population table at runtime evolve in terms of fitness and
what impact the removal of rules has on the system.

• Studying the influence of different objective and reward
assignment functions as well as differences between im-
mediate reward assignment policies for individual actions
(single-step learning) vs. for a bounded series of actions
(multi-step learning).

• Analyzing, correlating and explaining the causal depen-
dencies in the behavior of multiple LCT agents in multi-
core CPU systems.

• Manually adding and editing the conditions and actions of
rules based on best practice expert knowledge or design-
time as well as run-time explorations.

• Time series traces on applied rules document how their

!

!



fitness varies, how often individual rules were selected and
in general, allows reasoning about what control behavior
performs well or not so well under given environmental
conditions and workloads.

The following use case scenario discusses some of the above
properties in situations we observed during simulations and
measurements on FPGA prototype systems. More examples
will be presented during the talk of the special session. In
the DVFS use case, we occasionally observed certain rules
with generally high fitness but transient transitions towards
lower fitness values. In hindsight, this phenomenon could be
explained after doing in-depth time series analysis on fitness
and CPU parameter traces. These investigations revealed that
the action of a specific rule, occasionally brought the CPU
operation point (OP) – given by its frequency / voltage pair –
into a pre-defined “margin zone”, close to Pconstr (see Fig. 6).
Hence, a follow-up action had to “recover” the OP into a known

0 200 400 600 800 1,000
1.5

2

2.5

3
·107

IP
S

0 200 400 600 800 1,000
0.5

1

1.5

Fi
tn

es
s

Fig. 6. Action implication on optimization goal IPS w.r.t. P < Pconstr :
green (improvement), red (degradation), blue (different rule action)

safe state (i.e., the OP before the critical action was applied) and
all rules in the previous action set received a negative reward
[26]. It turned out that if applying this rule only when there
is sufficient power distance to the margin zone (which implied
an adjustment of the condition section in the specific rule),
the issue got resolved. Such an analysis as well as the manual
intervention (which alternatively or complementary can also be
augmented with an automated heuristic for new rule generation)
isn’t possible if the ML inference is based on weights on few
or numerous neural layers.

VI. CONCLUSIONS

The IPF 2.0 project will continue to exploit computational
self-awareness principles to address the challenges of steering,
managing, and storing the large volumes of heterogeneous data
within and across networked cyber-physical systems and the
emerging edge/cloud infrastructure. The project will ensure
safety with a view to dynamically optimize operational goals in
a context-sensitive manner, using interpretable and explainable
data-driven methods.

VII. ACKNOWLEDGMENTS

We acknowledge the financial support from the DFG Grant
ER168/32-2, HE4584/7-2 as well as NSF Grants CCF-1704859
and ECCS-2028782.

REFERENCES

[1] N. Dutt, F. J. Kurdahi, R. Ernst, and A. Herkersdorf, “Conquering
mpsoc complexity with principles of a self-aware information processing
factory,” in IEEE/ACM/IFIP CODES, 2016.

[2] E. Rambo et al., “The self-aware information processing factory paradigm
for mixed-critical multiprocessing,” IEEE Transactions on Emerging
Topics in Computing, 2020.

[3] M. Seo and F. Kurdahi, “Efficient tracing methodology using automata
processor,” ACM TECS, 2019.

[4] Zhang et al., “Predicting failures in embedded systems using long short-
term inference,” IEEE Embedded Systems Letters, vol. 13, 2020.

[5] C. C. Aggarwal, “Outlier analysis,” in Data mining, Springer, 2015.
[6] C. Ebert and J. Favaro, “Automotive software,” IEEE Software, vol. 34,

pp. 33–39, may 2017.
[7] Microsoft, “Empowering automotive innovation,” Jan. 2017.
[8] R. Ernst et al., “Application-centric network management – addressing

safety and real-time in v2x applications,” ACM TECS, 2022.
[9] Semiconductor Research Corportation (SRC), “The decadal plan for

semiconductors,” 2021.
[10] M. Huonker (Mercedes), “Infotainment and autonomous vehicles – the

challenges of storage,” in Flash Memory Summit 2019, 2019.
[11] Object Management Group (OMG), “Data distribution service, version

1.4.” OMG Document Number formal/2015-04-10, March 2015.
[12] The Autoware Foundation, “Traffic light map based detector,” 2022.
[13] Y. a. Lu, “Traffic signal detection and classification in street views using

an attention model,” Computational Visual Media, vol. 4, no. 3, 2018.
[14] J. Peeck et al., “A middleware protocol for time-critical wireless com-

munication of large data samples,” in 2021 IEEE (RTSS), IEEE, 2021.
[15] B. Maity et al., “Chauffeur: Benchmark suite for design and end-to-

end analysis of self-driving vehicles on embedded systems,” ACM TECS,
vol. 20, no. 5s, pp. 1–22, 2021.

[16] B. Maity, B. Donyanavard, and N. Dutt, “Self-aware memory manage-
ment for emerging energy-efficient architectures,” in 2020 IEEE IGSC,
IEEE, 2020.

[17] B. Maity, B. Donyanavard, et al., “Seams: Self-optimizing runtime
manager for approximate memory hierarchies,” ACM TECS, vol. 20, no. 5,
2021.

[18] D. Seo, B. Maity, et al., “Proswap: Period-aware proactive swapping to
maximize embedded application performance,” in 2022 IEEE NAS, IEEE,
2022.

[19] M. Ji et al., “Demand layering for real-time dnn inference with minimized
memory usage,” arXiv preprint arXiv:2210.04024, 2022.

[20] S. Yi, T.-W. Kim, et al., “Energy-efficient adaptive system reconfiguration
for dynamic deadlines in autonomous driving,” in 2021 IEEE ISORC,
IEEE, 2021.

[21] A. Hamann, D. Dasari, et al., “Waters industrial challenge 2017,” in
WATERS 2017, 2017.

[22] S. Shahhosseini, D. Seo, et al., “Online learning for orchestration of
inference in multi-user end-edge-cloud networks,” ACM TECS, 2022.

[23] S. Hernández, J. Araujo, et al., “Cross-layer configuration optimization
for localization on resource-constrained devices,” in 2021 IEEE/RSJ
IROS, IEEE, 2021.

[24] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep neural
networks for image classification,” in 2012 IEEE Conference on Com-
puter Vision and Pattern Recognition, 2012.

[25] E. Rambo et al., “The information processing factory: A paradigm for
life cycle management of dependable systems,” in CODES+ ISSS 2019,
IEEE, 2019.

[26] F. Maurer, B. Donyanavard, et al., “Emergent control of mpsoc operation
by a hierarchical supervisor/reinforcement learning approach,” in DATE
2020, IEEE, 2020.

[27] B. Donyanavard, T. Mück, et al., “Sosa: Self-optimizing learning with
self-adaptive control for hierarchical system-on-chip management,” in
Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, 2019.

!

!


	Select a link below
	Return to Previous View
	Return to Main Menu


