
Formal Analysis of Timing Diversity for
Autonomous Systems

Anika Christmann, Robin Hapka, Rolf Ernst
{christmann, hapka, ernst}@ida.ing.tu-bs.de

Institute of Computer and Network Engineering
Technische Universität Braunschweig

Germany

Abstract—The design of autonomous systems, such as for
automated driving and avionics, is challenging due to high per-
formance requirements combined with high criticality. Complex
applications demand the full performance of commercial high per-
formance multi-core systems of-the-shelf (COTS), with or without
accelerators. While these systems are optimized for performance,
hard real-time requirements and deterministic timing behavior are
major constraints for safety-critical systems. Unfortunately, infre-
quent timing outliers caused by interleaved hardware-software
effects of COTS systems complicate traditional worst-case design.
This conflict often prohibits deploying COTS hardware and
consequently prevents sophisticated applications, too. Recently, an
approach called Timing Diversity was introduced, which proposes
to exploit existing dual modular redundant hardware platforms
to mask deadline violations. This paper puts Timing Diversity on
a theoretical foundation and provides specification for different
implementations. It demonstrates that Timing Diversity needs fast
recovery to be effective, proposes a recovery strategy and provides
a mathematical model for the reliability of the resulting system.
Using experimental data in a Linux based system, it shows that
fast recovery is useful, making Timing Diversity a realistic option
for compute demanding hard real-time applications.

I. INTRODUCTION

In autonomous systems, the complexity and number of sys-
tem applications running on a hardware platform are constantly
increasing. Especially vision-based applications, e.g., visual
landing guidance in avionics or lane departure and lane keeping
assist, traffic light and traffic sign detection in automated driv-
ing, require large processing capabilities. Often, only modern
COTS multi-/many-core processors are able to process camera
frames sufficiently fast to achieve reasonable frame rates. Fast
frame rates and low latencies are required by control systems
and improve the quality of motion control, therefore timing
constraints are imposed. Violation of expected timing can
cause failures in motion control, resulting in fatal damage to
passengers and goods. Apparently, real-time constraints are
crucial for such autonomous systems.

A drawback is that the timing behavior of modern COTS
hardware platforms is not reliable [1]. Due to shared resources
inherent to multi-core processors in combination with multiple
applications or a single application featuring multiple threads,
resource contention occurs. This can prolong the execution
time, thus violating deadlines and affecting the system’s real-
time capability, consequently jeopardizing commercial off-the-
shelf (COTS) hardware deployment in safety-critical systems.

The real-time community suggests predicting or restricting
the worst-case execution time (WCET). But, both have been
major challenges for WCET analysis [2] [3]. The first proposes
often overly pessimistic timings and the latter accepts huge
performance penalties for deterministic timing. In consequence,
neither predicting nor restricting is simple or convenient.

Recently, an alternative approach based on modular redun-
dancy has been presented, called Timing Diversity [4], [5]. It
executes an application on two hardware platforms simultane-
ously and assumes diverse worst-case timing behavior among
the platforms. Hence, a deadline violation of one platform can
be corrected, if the other platform finishes the calculation in
time. Although, proof of diverse worst-case timing behavior
has been presented [4], a theoretical foundation and a sound
system model for its impact on reliability are still missing.

In this paper we present and analyze design principles of a
system exploiting Timing Diversity and give insight into the
compatibility with existing dual modular redundancy (DMR)
systems. We identify open issues and propose a solution
including application to an example.

In Sec. II, the paper starts with an overview of related
work and state-of-the-art approaches for fault-tolerance and
deploying multi- and many-core COTS hardware in safety-
critical systems. The system model is introduced in Sec. III
and in Sec. IV the compliance with existing modular-redundant
implementation is shown. Followed by Sec. V, which discusses
the impact of different failures and analytically shows whether
recovery is possible, which is completed by an example in Sec
VI. At last, a conclusion is drawn and outlook presented in Sec.
VII.

II. RELATED WORK AND BACKGROUND

In avionics, as a representative of safety-critical industry,
strict guidance for design and implementation exists, which
is issued by certification authorities, e.g., the European Union
Aviation Safety Agency (EASA). In their document named
AMC 20-193 they deal with the usage of multi-core processors.
Among other aspects, they address challenges arising from
complex timing by proposing to determine WCET analytically
[6, p. 669]. For determining WCETs, nowadays, measurement-
based approaches are state-of-the art, because static timing
analysis suffers from the high complexity and low availability
of sufficiently precise processor models [2]. As a drawback, the

2023 Design, Automation & Test in Europe Conference (DATE 2023)
Special Initiative "Autonomous Systems Design"	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

number of measurements required for high evidence is signifi-
cant. Although, the effort can be reduced using extreme value
theory (EVT) [3], critics claim the method to be immature, still
[7], [8].

Determining a WCET under final configuration with all
software components running, is complicated and needs to be
repeated for every update. Regardless of whether the system is a
homogeneous multi-core hardware architecture or a hardware
architecture with accelerators, all face similar challenges by
determining WCETs as discussed in [4]. Therefore by guidance
the need of mitigating interference arises. Often memory access
is considered the most important cause of interference, hence
memory bandwidth allocation is a favored mitigation technique
[9]–[13]. Alternatively, deterministic and predictable execution
models are proposed [14]–[16]. Unfortunately, both approaches
suffer from substantial performance penalties.

Motivated by the traditional fault-tolerant system design, the
Timing Diversity approach was introduced in [4] [5], which
does not mitigate interference on a single platform, but preclude
deadline violations at a compound system based on dual mod-
ular redundancy. In [4] the statistical independence of timing
overshoots has been investigated, presented experimental results
underpin that even identical systems do not exhibit simul-
taneous deadline violations. Moreover, in combination with
hardware and software diversity common cause failures will
become even more unlikely. Consequently, modular redundancy
could be deployed to mask timing outliers. As a result, the
WCET can be lowered, the probability of keeping a given
deadline increased or the number of measurements reduced
for an identical confidence level. But, the presented work [4]
lacks a design specification, how to exploit Timing Diversity
concretely to achieve the proposed benefits. Therefore, we
introduce our system model and investigate the feasibility of
Timing Diversity for safety-critical autonomous systems.

III. SYSTEM MODEL

Consider a system model running a single application A
featuring a set of tasks τ defined as τ = {τ1, τ2, · · · , τi}. Each
task is activated according to its period Ti. A task activation
is called job and the jth activation of task τi is denoted as job
τi,j . Each task is constrained by its relative task deadline Di

which is given by the system specifications. Unlike in classical
system models, we define Ci as the WCET of a task, Ci is the
average execution time and Ci,j corresponds to the execution
time of the jth job of task τi. The worst-case response time
(WCRT) of task τi is referred to as RT i. Furthermore, we view
each task and job as a tuple of its properties: τi = (Ci, Ti, Di)
and τi,j = (Ci,j).

Since we are considering a DMR system, i.e., a system
with two hardware platforms, we account for differences in
these by writing a channel index Ch as superscript. Here,
Ch ∈ {A,B}, where channel A, for short, ChA and ChB are
denoted as identifiers for the hardware platforms. As a result,
we formulate τCh

i = (C
Ch

i , Ti, Di) and job τCh
i,j = (CCh

i,j)
for Ch ∈ {A,B}. Each hardware platform, i.e. channel, may
deploy a different hardware or exhibit a different software

configuration. Therefore the WCRT, respectively the WCET,
as well as job’s execution time depend heavily on it. If both
channels are identical, it causes the WCRT per channel to equal
each other: RT

A

i = RT
B

i = RT i. Same holds true for the
WCET with C

A

i = C
B

i = Ci. But still, the job’s execution
times for different channels equal each other only by pure
chance, if at all, thus CA

i,j ̸= CB
i,j [4]. In contrast, timing

constraints such as task period Ti and task deadline Di are
predefined by system specification and therefore do not depend
on the channel. Moreover, we omitted defining a task set τCh

for each channel, because we are considering only those tasks
running on both channels.

At last, we define the reliability for each channel at time
t as RCh(t), which is the probability that the given channel
operates without a failure in time interval [0, t]. Conversely,
PA(x) is the probability of an error x in ChA and PB(x) for
ChB, where RCh(t) = 1− PCh(x).

We assume the existence of an application- or system-specific
safety layer. Such is inherent to safety-critical systems and
often implemented in software. It performs emergency means,
if the system exhibits an unexpected behavior. Furthermore, we
consider the loss of jobs as catastrophic and require all jobs
to be processed in order. Therefore, jobs exceeding their task
period Ti will cause job queuing. For simplicity, we further
assume implicit deadlines, i.e., Ti = Di.

IV. COMPLIANCE TO DUAL MODULAR REDUNDANCY

Active dual modular redundancy is already used to detect
and correct transient hardware and software errors. Given a
hardware and software diverse redundant system implementa-
tion, then it can be assumed that the channels are mutually
independent and the error probability of a dual channel system
can be calculated with PA|B(x) = PA(x) · PB(x). Due
to the low error probability and the assumption of mutually
independent channels, the single-error model can be applied.
Within such a model, it is unlikely that an error will occur on
both redundant channels simultaneously.

Dynamic effects of the software architecture and the platform
control cause rare but substantial worst-case timing outliers
as has been shown in [4]. Based on Fig. 1, note that the
occurrence of an error in a double system is also approximately
statistically independent (compare red line and black-dotted
line). Therefore, it is possible to exploit the properties of
modular redundancy to decrease the timing error probability.
The concept is not exclusive to DMR implementations only
and can be applied to N-modular redundancy as well. But in
this paper, we focus on DMR and introduce two different types
of deadlines to be compatible with an existing redundant system
implementation (cf. Fig 2).

Definition 1 (Recoverable Deadline): The relative and recov-
erable deadline DR,i depends on the specification of task τi and
corresponds to the task deadline Di. Therefore, it is applied to
ChA and ChB. At DR,i at least one channel must provide the
result to continue normal operation.

Definition 2 (Non-Recoverable Deadline): The relative, non-
recoverable deadline DCh

NR,i is set at a time after the recoverable

!

!

Fig. 1: Deadline-distribution taken from [4]. It shows the number of timing overshoots by setting an arbitrary deadline. The
dotted, black line indicates the number of timing overshoots per deadline under the assumption of statistical independence. Since
the red line and the black line are very similar, you can assume timing errors to be approximately independent.

Fig. 2: DMR system model with different deadlines

DR,i and may be different for ChA and ChB channel. If one
channel exceeds DR,i and DCh

NR,i, the system is immediately
switched to the safety layer.

Accordingly, we adapt our software model: The task’s dead-
line Di corresponds to the recoverable deadline DR,i and
the non-recoverable deadline per channel DCh

NR,i is added.

Thus, τi is characterized by τCh
i = {CCh

i , Ti, DR,i, D
Ch
NR,i}.

Furthermore, redundant implementations distinguish between
recoverable and non-recoverable errors, defined as follows:

Definition 3 (Recoverable error): A recoverable error com-
promises the system but subsides after a certain time. Due
to redundancy, the error was never effective from system’s
perspective. It can be masked and after a certain time the
channel works reliable again.

Definition 4 (Non-recoverable error): A non-recoverable
error endangers the safety of the system. It can not be corrected
or masked, thus the system must enter the safety layer.

According to traditional fault tolerant system design, we
adopt the error types: hardware error xH and software error xS .
In fault-tolerant systems, N−1

2 hardware and software errors
can be tolerated and corrected, where N is the number of
active channels. In a DMR system (N = 2) one xH and xS

can only be detected, but not corrected. Thus, the error is non-
recoverable and the system has to enter the safety layer.

We additionally introduce the error types: recoverable dead-
line miss xR,i and non-recoverable deadline miss xNR,i. In
contrast to the detection of hardware and software errors, for
which at least two channels are required, only one channel
is needed to detect deadline violations. In order to detect a
deadline miss it is sufficient to check if a value is available at

TABLE I: Types of errors that can occur in one channel

Hardware Error

xH ∧ xS ∧ xR ∧ xNR

xH ∧ x̄S ∧ xR ∧ xNR

xH ∧ x̄S ∧ xR ∧ x̄NR

xH ∧ xS ∧ x̄R ∧ x̄NR

xH ∧ x̄S ∧ x̄R ∧ x̄NR

Software Error
x̄H ∧ xS ∧ xR ∧ xNR

x̄H ∧ xS ∧ xR ∧ x̄NR

x̄H ∧ xS ∧ x̄R ∧ x̄NR

Deadline Miss x̄H ∧ x̄S ∧ xR ∧ xNR

x̄H ∧ x̄S ∧ xR ∧ x̄NR

the deadline. Accordingly, in a DMR setup, a deadline violation
of one channel can be masked since the redundant channel
provides the correct result in time (recoverable error). If no
result is available at DNR,i, so a non-recoverable deadline miss
xNR,i occurred, it cannot be ensured that the channel works
reliable and thus the system must switch to the safety layer
(non-recoverable error). This is caused by the fact that an error
in one channel can cause other errors in the same channel. For
example, a hardware error xH in ChA can cause a software
error xS , which in turn causes a recoverable deadline miss
xA
R,i. Tab. I lists further error dependencies that can occur in

one channel and for which the operational mode of the system
is endanger. To determine whether a hardware or software error
and thus a non-recoverable error is present, the result must be
available at time DCh

NR,i to enable the comparison.
For traditional DMR the function for entering the safety layer

is given by

fD(xCh
H , xCh

S) =

2∑
Ch=1

xCh
H +

2∑
Ch=1

xCh
S . (1)

With Tab. I and (1) we extend the function for entering the
safety layer to

fD(x) =
2∑

Ch=1

xCh
H +

2∑
Ch=1

xCh
S +

2∏
Ch=1

xCh
R,i+

2∑
Ch=1

xCh
NR,i (2)

for x = {xCh
H , xCh

S , xCh
R,i, x

Ch
NR,i}. Note, if ChA and ChB miss

DR,i, so the deadline miss cannot be masked by the redundant
channel, the system must switch to the safety layer, which also
corresponds to a non-recoverable error.

!

Fig. 3: Conceptual trace of a task τi. Above: The execution times normalized to the period Ti of a job are plotted on the y-axis
and the length of the bursts b and b′ as well as the distance d between two bursts are shown. The shaded area (pessimistic
approximation) is used to analyze whether the system is recoverable. Below: The response times normalized to the period Ti

of task τi are plotted on the y-axis. Further the recovery time TR,i of a burst is illustrated. The shaded area corresponds to the
accumulated time of the previous jobs.

The error probability of the system can be derived from (2)
with

PD(x) =
2∑

Ch=1

PCh(xH) +
2∑

Ch=1

PCh(xS)

+
2∏

Ch=1

PCh(xR,i) +
2∑

Ch=1

PCh(xNR,i). (3)

But, if one channel misses DR,i, then only one channel works
reliable with

fS(x) = xCh
H + xCh

S + xCh
R,i + xCh

NR,i (4)

and therefore, the error probability is given by

PS(x) = PCh(xH) + PCh(xS) + PCh(xR,i) + PCh(xNR,i).
(5)

The probability of a recoverable deadline miss xR,i is
higher then the probability of xH , xS and xNR,i. Thus, (5)
is dominated by PCh(xR,i) and the reliability of the system
is drastically decreased. So, if one channel misses DR,i, the
system would have to switch to the safety layer immediately.
In other words, Timing Diversity would only be effective to the
first deadline miss of a single channel, which drastically limits
its applicability.

V. RECOVERABLE SYSTEM AND RECOVERY INTERVAL

To increase the permanent reliability of the system and thus
make timing diversity applicable, the only possibility is to
recover the failed channel. However, this approach is not trivial,
as the channel must be recovered within a short time period to
ensure high reliability of the system over time. If too much time
is spent on recovery, then the probability of the second channel
failing increases and the reliability decreases drastically. In

Fig. 4: Reliability of the system assuming recovery
other words, an error on the second channel during the recovery
time leads to a completely failed system. This concept is based
on Fig. 4 and we can conclude that the reliability is

R(t) = e−(λD+NB ·TR
T λS)t (6)

for NB is the number of times in which only one channel
works reliable. Previously, we impose a condition that the
single system is recoverable.

We are assuming a deadline violation, on one platform,
therefore we omit the superscripted channel index Ch. It often
happens that not only a single but multiple jobs exhibit worst-
case timing behavior, consecutively. So, the system suffers from
a burst of prolonged execution times. To model such a behavior,
we define the maximum burst length and the minimum distance
between bursts, as follows:

Definition 5 (Maximum burst length b̄): A burst corresponds
to multiple jobs with execution times Ci,j > DR,i(= Ti). The
maximum burst length b̄ describes the maximum number of
successive jobs exceeding their recoverable Deadline DR,i.

Definition 6 (Minimum burst distance d): The minimum burst
distance d defines the minimum number of jobs between two
consecutive bursts for which applies Ci,j < DR,i(= Ti).

Since we do not accept the loss of jobs, a burst will postpone
every successive job, leading to a backlog of jobs (cf. lower

!

Fig. 5: Data trace taken from [4][Fig. 1]

half of Fig. 3). Still after the burst has subsided, the queued jobs
need to be processed, to achieve the normal timing behavior.
Consequently, during this time only one channel works reliably
and requires the other to work without any failure. The time
interval, from a burst’s beginning until the backlog is processed,
is called the recovery interval TR,i. We now state a formula to
check if a system is recoverable and proof by contradiction.

Theorem 1: Given the minimum distance d and the maximum
burst length b̄, a system is recoverable if

d∑
j=d0

(Ti − Ci,j)︸ ︷︷ ︸
TD

≥
b̄∑

j=b0

Ti ·
(⌈Ci,j

Ti

⌉
− 1

)
︸ ︷︷ ︸

TB

(7)

where b0 is the first job that exceeds its deadline, and d0 is the
first job that works reliably again after the burst. Furthermore,
TB is the processing time required by the burst and TD is the
remaining processing time per job inherent to normal operation.

Proof 1: Proven by contradiction. Let a system be recover-
able, then

d∑
j=d0

(Ti − Ci,j) <
b̄∑

j=b0

Ti ·
(⌈Ci,j

Ti

⌉
− 1

)
(8)

d∑
j=d0

(Ti − Ci,j)−
b̄∑

j=b0

Ti ·
(⌈Ci,j

Ti

⌉
− 1

)
< 0. (9)

Equation (9) is only valid if the the sum over d is smaller
than the sum over b̄, and therefore d < b̄. This means that the
maximum burst length is greater than the distance between two
bursts. The queued job can only be processed at the minimum
distance, since according to Def. 6 Ti > Ci,j and thus there is
a slack that can be used for processing. Since d < b̄, there is
no sufficient slack available to process the backlogged job. As
a result, an overload situation is caused in the channel and all
subsequent jobs of τi will exceed DR,i. Therefore, the system
is not recoverable and thus (7) applies.

By taking (7), we can calculate the maximum recovery
interval for each channel as

TCh
R,i = Ti ·

TB

TD
. (10)

To show the impact of our formulas, we present an example.

VI. EXAMPLE

We recently conducted a case study, the results were consis-
tent across all cases. Thus, we have chosen to include the results
from one representative use case illustrated in Fig. 5 [4] as an
example. Based on this setup and data trace, we demonstrate
the impact of our recovery mechanism (see Fig. 5). The system
consists of two identical platforms and a single task τ1, so we
omit the task index for legibility. Based on Fig. 5 we define
τ = {C = 730ms, D = T = 550ms}. But instead of the
proposed deadline of [4], we assume a slightly higher deadline
to make deadline violations clearly identifiable. Additionally,
we use an average execution time of C = 480ms, since we
cannot know the job’s execution times a priori. A series of
5 · 104 measurements were conducted for each platform in the
DMR setup. For Ch A 2 deadline violations were observed
and 4 for Ch B, respectively, and an (observed) WCET of
670ms for Ch A 730ms for Ch B, respectively. Even tough
both channel were configured identically, the measurements
resulted in different WCETs for each channel. This implies
that the number of tests were not sufficiently large to discover
the more infrequent WCET on Ch B, so we assume the more
pessimistic WCET of 730ms for Ch B as well. As a result,
we define τA1 = τB1 = τ . The maximum burst length on both
platforms are given by b = 1 and we estimate the minimum
burst distance on dA = 20, 000 and dB = 2, 000, respectively.

Given 2 and 4 deadline violations for 5 · 104 measurements,
respectively, we approximate the probability of a timing error
as PA(xR) = 4 · 10−5 and PB(xR) = 8 · 10−5. Under
the assumption of mutually independent channels, it follows
PA|B(xR) = 3.2 · 10−9. Consequently, a timing error statisti-
cally occurs for Ch B every 12, 500 jobs, i.e., 6875 s with a
period of T = 550ms. Now, we can calculate the error rate of
the DMR system to λD = 1

47 743.056 h and for the single system
to λS = 1

1.910 h . Assuming no recovery mechanism, the DMR
system would break-down after the second deadline violation,
so statistically, it would fail in less than four hours. Therefore,
despite redundancy it is necessary to deploy recovery.

To calculate the time to failure and the overall reliability with
recovery, we need to calculate the recovery interval TR, first.

!

Using (10), it follows TB = 550ms and TD = 70ms. So, the
maximum recovery interval for ChA and ChB is

TR = T · 550ms

70ms
≈ 4.321 s (11)

Considering a constant average execution time, the recovery
interval depends primarily on the period T . This correlation is
illustrated in Fig. 6. Note that at T = 730 the recovery time
jumps at 0ms, because T > C̄ = 730.

Fig. 6: Recovery interval TR for periods T

With TR = 4.321 s, NB = 6 deadline violations, and (6),
integration over reliability yields the mean time to failure as∫ ∞

t=0

e−(1
47 743.056 h+

6·4.321 s
0.55 s·50000·3600 ·

1
1.910 h)tdt ≈ 47 432 h (12)

Due the short maximum recovery interval T̄R, we achieve a
time to failure almost as good as under ideal conditions. Given a
instantaneous recovery, the time to failure would be statistically
47 743 h. Our recovery mechanism does decrease this time only
by marginal 0.65%.

VII. CONCLUSION

We presented a theoretical foundation of the Timing Di-
versity concept proposed by [4], [5] and showed compliance
with existing DMR systems w.r.t. hardware and software errors.
From the analysis, we saw that Timing Diversity alone would
still be insufficient to achieve a level of reliability that is
required by safety-critical systems. The drop in reliability fol-
lowing a channel deadline violation would enforce entering the
safety layer already after a mean time of few hours of operation,
as a comparison with experimental data showed. We presented
a fast recovery method and derived a formal model to calculate
the resulting combined system reliability. We used that model
to investigate and quantify the relation between task period,
recovery time and reliability. Using experimental data we saw
that rare timing outliers could be compensated by fast recovery
and formulated conditions that guarantee outlier compensation
for continuous service with sufficiently high reliability, even
for higher levels of criticality.

VIII. ACKNOWLEDGMENT

This work was funded by the German Federal Ministry
of Economic Affairs and Climate Action (BMWK) within
the Many-core Avionics Design, Architecture, Modeling and
Simulation (MC-ADAMS) project, funding number 20E1920B.

We would like to thank the other members of the MC-ADAMS
project for their support in our research.

REFERENCES

[1] J. Bin, D. Girbal, Sylvai nand Gracia Pérez, A. G. Grasset, and
A. Mérigot, “Studying co-running avionic real-time applications on multi-
core COTS architectures,” in ERTS 2014, 2014.

[2] C. Maiza, H. Rihani, J. M. Rivas, J. Goossens, S. Altmeyer, and
R. I. Davis, “A survey of timing verification techniques for multi-core
real-time systems,” ACM Comput. Surv., vol. 52, no. 3, jun 2019.
[Online]. Available: https://doi.org/10.1145/3323212

[3] R. I. Davis and L. Cucu-Grosjean, “A survey of probabilistic timing
analysis techniques for real-time systems: 03:1-03:60 pages / leibniz
transactions on embedded systems, vol 6, no 1 (2019),” LITES: Leibniz
Transactions on Embedded Systems, pp. 1–60, 2019.

[4] R. Hapka, A. Christmann, and R. Ernst, “Controlling high-performance
platform uncertainties with timing diversity,” in 2022 IEEE 28th Interna-
tional Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA), 2022, pp. 212–219.

[5] A. Christmann, A. Kostrzewa, R. Ernst, M. Rockschies, M. Halle,
F. Thielecke, A. Peuker, A. Kuzolap, M. Steen, P. Hecker, K.-F. Nessitt,
and S. Saidi, “Integrating multi-/many-cores in avionics: Open issues
and future concepts,” in 2021 IEEE/AIAA 40th Digital Avionics Systems
Conference (DASC). IEEE, 2021, pp. 1–8.

[6] “Amc-20 amendment 23 - amc 20-136a,” Jan 2022.
[Online]. Available: https://www.easa.europa.eu/en/document-library/
certification-specifications/amc-20-amendment-23

[7] F. Reghenzani, G. Massari, and W. Fornaciari, “chronovise: Measurement-
based probabilistic timing analysis framework,” Journal of Open
Source Software, vol. 3, no. 28, p. 711, 2018. [Online]. Available:
https://doi.org/10.21105/joss.00711

[8] F. Reghenzani, G. Massari, W. Fornaciari, and A. Galimberti,
“Probabilistic-wcet reliability: On the experimental validation of evt
hypotheses,” in Proceedings of the International Conference on Omni-
Layer Intelligent Systems, ser. COINS ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 229–234. [Online].
Available: https://doi.org/10.1145/3312614.3312660

[9] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memguard:
Memory bandwidth reservation system for efficient performance isolation
in multi-core platforms,” in 2013 IEEE 19th Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE, 2013.

[10] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar,
“Bounding and reducing memory interference in COTS-based multi-core
systems,” Real-Time Systems, vol. 52, no. 3, pp. 356–395, Feb. 2016.
[Online]. Available: https://doi.org/10.1007/s11241-016-9248-1

[11] A. Agrawal, G. Fohler, J. Freitag, J. Nowotsch, S. Uhrig, and
M. Paulitsch, “Contention-aware dynamic memory bandwidth isolation
with predictability in cots multicores: An avionics case study,” in 29th
Euromicro Conference on Real-Time Systems (ECRTS 2017), 2017.

[12] M. Hassan and R. Pellizzoni, “Bounding dram interference in cots
heterogeneous mpsocs for mixed criticality systems,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 37,
no. 11, pp. 2323–2336, 2018.

[13] ——, “Analysis of Memory-Contention in Heterogeneous COTS
MPSoCs,” in 32nd Euromicro Conference on Real-Time Systems (ECRTS
2020), ser. Leibniz International Proceedings in Informatics (LIPIcs),
M. Völp, Ed., vol. 165. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 2020, pp. 23:1–23:24. [Online]. Available:
https://drops.dagstuhl.de/opus/volltexte/2020/12386

[14] A. Schranzhofer, J.-J. Chen, and L. Thiele, “Timing predictability on
multi-processor systems with shared resources,” in Embedded Systems
Week-Workshop on Reconciling Performance with Predictability, 2009,
p. 87.

[15] F. Boniol, H. Cassé, E. Noulard, and C. Pagetti, “Deterministic execution
model on cots hardware,” in Proceedings of the 25th International
Conference on Architecture 700 of Computing Systems. Springer, Berlin,
Heidelberg, 2012, pp. 98–110.

[16] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and
R. Kegley, “A predictable execution model for cots-based embedded
systems,” in 2011 17th IEEE Real-Time and Embedded Technology and
Applications Symposium. IEEE, 2011.

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

