
Reinforcement-Learning-Based Job-Shop Scheduling
for Intelligent Intersection Management

Shao-Ching Huang1, Kai-En Lin1, Cheng-Yen Kuo1, Li-Heng Lin1, Muhammed O. Sayin2, Chung-Wei Lin1

1National Taiwan University, 2Bilkent University
{b08902049, r11922065, b08902069, b06902043}@ntu.edu.tw, sayin@ee.bilkent.edu.tr, cwlin@csie.ntu.edu.tw

Abstract—The goal of intersection management is to organize
vehicles to pass the intersection safely and efficiently. Due to
the technical advance of connected and autonomous vehicles,
intersection management becomes more intelligent and potentially
unsignalized. In this paper, we propose a reinforcement-learning-
based methodology to train a centralized intersection manager.
We define the intersection scheduling problem with a graph-based
model and transform it to the job-shop scheduling problem (JSSP)
with additional constraints. To utilize reinforcement learning, we
model the scheduling procedure as a Markov decision process
(MDP) and train the agent with the proximal policy optimization
(PPO). A grouping strategy is also developed to apply the trained
model to streams of vehicles. Experimental results show that the
learning-based intersection manager is especially effective with
high traffic densities. This paper is the first work in the literature
to apply reinforcement learning on the graph-based intersection
model. The proposed methodology can flexibly deal with any
conflicting scenario and indicate the applicability of reinforcement
learning to intelligent intersection management.

Index Terms—Intelligent intersection management, job-shop
scheduling, proximal policy optimization, reinforcement learning.

I. INTRODUCTION

Intersection is a main cause of congestion. Intersection man-
agement has a long history, starting from fixed-phase signals
and then dynamic-phase signals, which control the lengths of
traffic lights. Due to the technical advance of connected and
autonomous vehicles, intersection management becomes more
intelligent and potentially unsignalized as connectivity provides
more information, and autonomy provides more precise control.

Regarding intelligent intersection management, there have
been many research achievements in the literature. The first-
come-first-serve (FCFS) scheduling policy is the most straight-
forward one, and the performance is quite decent when the
traffic density is low. Dresner and Stone [1] introduced the
concept of reservation tiles, which are areas reserved for
specific vehicles to occupy, and thus the granularity of the
FCFS scheduling policy can be adjusted to trade off scheduling
efficiency and system robustness. Yang et al. [2] proposed a bi-
level optimization model, where an intersection manager inte-
grates departure sequences and trajectory design for vehicles
based on their arrival information. Lin et al. [3] developed
a graph-based model and a divide-and-conquer scheduling

This work is partially supported by Ministry of Education (MOE) in Taiwan
under Grant Number NTU-111V1901-5, National Science and Technology
Council (NSTC) in Taiwan under Grant Number NSTC-111-2636-E-002-
018, and TUBITAK BIDEB 2232-B International Fellowship for Early Stage
Researchers under Grant Number 121C124.

policy which guarantees a deadlock-free passing order for
vehicles. Guney and Raptis [4] proposed an optimization-based
policy to minimize the delays of vehicles. A broad survey can
be obtained in a review paper [5]. It should be mentioned
that, besides centralized approaches which have intersection
managers to perform scheduling, distributed approaches based
on communication between vehicles and decision of each
vehicle are also possible solutions to intelligent intersection
management.

Recently, machine learning has been applied to intelligent
intersection management. Especially, reinforcement learning
can be applied to interact with the environment and adjust the
corresponding scheduling policy according to a reward func-
tion. Guan et al. [6] proposed a centralized coordination scheme
using reinforcement learning. Incorporating the reinforcement
learning model into the proximal policy optimization (PPO) en-
hances the sample efficiency, but the computational overhead is
high due to huge observation space. Haarnoja et al. [7] designed
a learning agent following two key principles: off-policy and
maximum entropy. Under the maximum entropy framework,
the learning agent aims to derive the soft policy iteration which
alternates between policy evaluation and policy improvement.
Wu et al.[8] adopted distributed reinforcement learning, divided
learning agents and vehicles into the corresponding coordina-
tion or independent states, and reduced the space complexity. Li
et al. [9] proposed another distributed reinforcement learning
model and utilized convolutional neural network for extracting
feature vectors to deal with huge observation space.

In this paper, we propose a reinforcement-learning method-
ology to train a centralized intersection manager. We utilize
the graph-based intersection model [3], but, different from
the heuristic policy in the work, we develop a reinforcement-
learning-based intersection manager. We adopt a similar learn-
ing approach which models job-shop scheduling problem
(JSSP) instances as Markov decision processes (MDP) [10] and
learns the best dispatch policy with proximal policy optimiza-
tion (PPO) [11]. However, to apply the learning approach to
intersection management, we design a transformation between
the graph-based intersection scheduling problem [3] and the
JSSP with blocking, deadlock, and arrival time constraints
and apply PPO training to the constrained-JSSP. A grouping
strategy is also developed to apply the trained model to streams
of vehicles. Experimental results show that, with high traffic
densities, the learning-based intersection manager can outper-
form an improved greedy scheduling policy. This paper is the

2023 Design, Automation & Test in Europe Conference (DATE 2023)
Special Initiative "Autonomous Systems Design"	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

first work in the literature to apply reinforcement learning to
the graph-based intersection model [3]. Different from other
learning-based counterparts, the proposed methodology can
flexibly deal with any conflicting scenario (e.g., any shape of
intersection, lane merging, lane changing), and it also indicates
the applicability of reinforcement learning to intelligent inter-
section management.

The rest of this paper is structured as follows. Section II
introduces the graph-based intersection management model
and the job-shop scheduling problem. Section III presents the
problem statement, the methodology, and the grouping strat-
egy. Section IV demonstrates the experiments, and Section V
concludes this paper.

II. BACKGROUNDS

In this section, we provide the backgrounds including the
graph-based intersection management model [3] and the job-
shop scheduling problem.

A. Graph-Based Intersection Management Model

To achieve intelligent intersection management, how to
model the safety constraints and the intersection geometric
structure is a crucial issue. In the graph-based intersection man-
agement model [3], the geometric structure of an intersection is
captured by a number of non-overlapping conflict zones which
partition the whole intersection area. A conflict zone can only
be occupied by at most one vehicle at any moment. With this
formulation, a possible trajectory of the intersection (e.g., go
straight, turn left, turn right) can be viewed as a sequence of
conflict zones to be passed. To model constraints in the process
of intersection management, the work proposed a timing conflict
graph. Within the graph, a vertex is a pair of a vehicle and a
conflict zone, denoting the status that the vehicle occupies the
conflict zone; an edge represents the timing constraint (or the
passing order) between vehicles on conflict zones.

Specifically, assume that a set of vehicles X is about to be
scheduled by the intersection manager. Let xi denote the i-th
vehicle and zj denote the j-th conflict zone. The timing conflict
graph G = (V,E) corresponding to the intersection and the set
of vehicles X is defined as follows [3]:

• There is a vertex vi,j ∈ V if zj is on the trajectory of xi.
• There is a Type-1 edge (vi,j , vi,j′) ∈ E if both vi,j and

vi,j′ exist, and zj′ is the next conflict zone of zj on the
trajectory of xi.

• There is a Type-2 edge (vi,j , vi′,j) ∈ E if both vi,j and
vi′,j exist, xi and xi′ are from the same source lane, and
xi is in front of xi′ .

• There are two Type-3 edges (vi,j , vi′,j) ∈ E and
(vi′,j , vi,j) ∈ E if both vi,j and vi′,j exist, and xi and
xi′ are from different source lanes.

Type-1 edges ensure that a vehicle only passes the conflict
zones with the specified order. Type-2 edges ensure that
vehicles from the same source lane do not overtake each
other. Type-3 edges represent the undecided passing order
between two vehicles entering the same conflict zone. With
this definition, the scheduling problem is reduced to choosing
one edge (to be removed) from each pair of Type-3 edges.

Using the graph-based intersection management model has
several advantages:

• Generality. All kinds of intersections can be modeled as
directed graphs connecting conflict zones. Even for the
same intersection, different structures and granularity of
conflict-zones can also be chosen to meet specific pur-
poses, e.g., higher granularity gives higher expressiveness
and more detailed maneuver; lower granularity gives better
computational efficiency.

• Simplicity. The main goal of the model is to decide the
passing order between two vehicles and leave the low-level
control to underlying systems.

• Collision-Freeness. The definition of conflict zones guar-
antees that no two vehicles can occupy the same conflict
zone at any moment. If all vehicles follow the decided
passing orders, then the collision-freeness is guaranteed.
Besides, the deadlock-freeness can also be analyzed and
verified.

B. Job-Shop Scheduling Problem

The job-shop scheduling problem (JSSP) is an NP-hard
optimization problem. It aims to find the optimal scheduling
of a set of jobs involving some machines to minimize the total
processing time. A JSSP instance consists of a set of jobs and a
set of machines. Each job bi is a sequence of operations which
will be processed on ni machines sequentially. The operation
sequence of a job bi is denoted as oi,1 → oi,2 → · · · → oi,ni ,
and each operation oi,j (1 ≤ j ≤ ni) has its corresponding
processing time pi,j . To solve a JSSP instance, the start time
si,j of each operation needs to be determined, such that the
overall makespan, maxi,j{si,j + pi,j}, is minimized.

A JSSP instance can also be modeled as a mixed graph
G′ = (O,

−→
E ,E). O denotes the vertex set, which includes

all the operations oi,j and one dummy operation S denoting
the starting status with zero processing time.

−→
E is the set of

directed edges representing the orders of consecutive operations
of the same job. E is the set of undirected edges representing
the undecided orders between two operations of different jobs
to be processed on the same machine. Using this model, solving
the JSSP instance is equivalent to fixing the direction of each
undirected edge in E, i.e., transforming G′ to a directed acyclic
graph. We will refer this as the JSSP graph-based formulation
in the following sections.

Recently, there are numerous heuristic or learning-based ap-
proaches trying to push the JSSP scheduling limits. For exam-
ple, JSSP instances are modeled as Markov decision processes
(MDP) and solved with a sequence of decision steps [10].
The policy is trained with the proximal policy optimization
(PPO) [11], an on-policy actor-critic reinforcement learning
algorithm which achieves promising results comparing with the
optimal solution as well as other heuristic approaches.

III. APPROACH

One challenge of solving the scheduling problem with rein-
forcement learning is to define the problem formulation, i.e.,
defining the state, action, and reward. Through the resemblance

!

!

to the JSSP, we are able to reuse the JSSP graph-based formu-
lation. However, since our problem has more constraints and
parameters compared with the JSSP, the existing formulation
needs modifications (additional constraints). We also find that
the growing number of states in the reinforcement learning
needs to be handled carefully.

A. Problem Statement

We model the target intersection as a tuple I = (Z, T).
Z denotes the set of conflict zones. T denotes the set of all
possible trajectories given the structure of the conflict zones
of the intersection, and a trajectory is defined as a sequence
of conflict zones. A vehicle xi passing the intersection I is
defined as a tuple xi = (ri, ti), where ri denotes the earliest
arrival time, and ti ∈ T represents the trajectory.

Given an intersection I and a set of incoming vehicles
X = {x1, x2, . . . , x|X|}, the corresponding timing conflict
graph G = (V,E) can be constructed as mentioned in Sec-
tion II-A. Assuming Ek ⊆ E as the set of Type-k edges in
E and defining G′ = (O,

−→
E ,E) as the JSSP graph-based

formulation, we can construct G′ from G as follows:
• O ← V . The vertex sets are the same. A vehicle xi with

trajectory zi,1 → zi,2 → · · · → zi,ni
is represented as

ni vertices vi,zi,1 , vi,zi,2 , . . . , vi,zi,ni
in the timing conflict

graph and ni operations oi,1, oi,2, . . . , oi,ni in the JSSP
graph-based formulation. Note that j of vi,j is the index
of a conflict zone, and j of oi,j is the index of the j-th
operation of a job bi, i.e., oi,j is the j-th operation of bi.

•
−→
E ← E1 ∪ E2.

−→
E contains all of the Type-1 and Type-2

edges.
• E ← {(v, u) | (v, u) ∈ E3 ∧ (u, v) ∈ E3}, where u, v are

vertices. The paired Type-3 edges are transformed into one
undirected edge.

• The processing time pi,j of each operation oi,j is defined
as the minimum time needed for vehicle xi to pass the
j-th conflict zone of its trajectory.

After the transformation, the scheduling problem of intel-
ligent intersection management can be represented as a JSSP
instance and solved by fixing the direction of each undirected
edge. However, there are more constraints required to be
considered:

• Blocking Constraint. Different from a JSSP instance,
we cannot temporarily remove a vehicle from the latest
conflict zone that it occupies. That is, if an operation
involving a job and a machine is chosen to be performed,
any other operation involving the machine is blocked until
the job leaves the machine and moves to its next machine.

• Deadlock Constraint. As a result of the previous con-
straint, scheduling an operation may introduce deadlocks
to the intersection, and thus the operation needs to be
excluded until it no longer introduces deadlocks.

• Arrival Time Constraint. Any operation oi,j should be
assigned with a start time si,j larger than or equal to the
earliest arrival time ri.

Regarding the objective, we no longer minimize the overall
makespan. Instead, we minimize the total delay time of vehicles

(indeed, the overall makespan and the total delay time of
vehicles are positively correlated) as follows:

min

|X|∑
i=1

max
j
{si,j + pi,j} − ri −

ni∑
j=1

pi,j

 ,

where maxj{si,j +pi,j} is the leaving time of vehicle xi, ri is
the earliest arrival time of vehicle xi, and

∑
j pi,j is the total

passing time needed for vehicle xi.

B. Reinforcement-Learning-Based Methodology

Following one existing approach [10], we model the proce-
dure as an MDP. For a JSSP graph-based formulation G′ =

(O,
−→
E ,E), we use |O| steps of decision to produce a solution

to the instance. We also use a similar MDP formulation as the
existing approach [10] with some modifications. The details are
as follows:

• State. For time step t, the state st is the current graph
representation of the solution, G′(t) = (O,

−→
E ∪E∗(t), E \

E∗(t)). E∗(t) denotes the set of directed edges originally
belonging to E whose direction becomes fixed during
the decision process. Besides the graph structure, each
operation oi,j ∈ O also contains two features at time
step t: a binary di,j(t) representing if the operation oi,j
has been scheduled, and ci,j(t) indicating the earliest
completion time of the operation oi,j , which can be
recursively computed with previous scheduling results.
Note that di,j(0) is false and ci,j(0) = 0 for each operation
oi,j .

• Action. The action space A(t) includes all the possible
operations for the current time step. At time step t, an
operation oi,j is in A(t) if (1) for each operation oi′,j′

satisfying (oi′,j′ , oi,j) ∈
−→
E , di′,j′ is true, i.e., all of the

preceding operations of oi,j have been scheduled, (2) the
machine of oi,j is not blocked by other operations (the
blocking constraint), (3) scheduling oi,j will not introduce
a deadlock (the deadlock constraint), and (4) ri ≤ t (the
arrival time constraint).

• State Transition. Given the chosen action at ∈ A(t), the
earliest possible time of the operation can be determined
by the previous scheduling. The chosen operation is then
assigned with the earliest possible time as its start time,
and the graph representation G′(t) is updated according
to the temporal relations.

• Reward. We measure the reward at time step t as the extra
delay produced by the chosen action at. Specifically, we
define the reward wt to be

|X|∑
i=0

(ci,ni
(t)− ci,ni

(t− 1)) ,

which is the summation of the difference of the earliest
completion times of each job bi, i.e., the extra delay of bi
introduced at time step t.

• Policy. Given a state st, the policy π(at|st) outputs a
distribution over the current action space At.

!

!

z2z3

z4 z1

x1

x3

x2

Fig. 1. An example scenario including 4 conflict zones (z1, z2, z3, z4) and 3
vehicles (x1, x2, x3).

o1,1

z2

o1,2

z3

o1,3

z4

o2,1

z2

o3,1

z4

o3,2

z1

o3,3

z2

S

(a)

o1,1

z2

o1,2

z3

o1,3

z4

o2,1

z2

o3,1

z4

o3,2

z1

o3,3

z2

S

(b)

Scheduled Schedulable Unschedulable Directed Undirected

Fig. 2. Given the scenario in Figure 1, (a) shows the initial state of the
scheduling, where the first conflict zone of the first vehicle of each lane is the
only schedulable operations (i.e., o1,1 and o3,1). (b) shows the state transition
after the policy chooses to schedule operation o1,1, where o1,2 becomes
schedulable since o1,1 has been scheduled, and o2,1 is still unschedulable
since the conflict zone z2 is still occupied (although o1,1 has been scheduled).

Given an example scenario in Figure 1, Figure 2(a) shows the
initial state of the scheduling, where the first conflict zone of
the first vehicle of each lane is the only schedulable operations
(i.e., o1,1 and o3,1). Figure 2(b) shows the state transition
after the policy chooses to schedule operation o1,1, where o1,2
becomes schedulable since o1,1 has been scheduled, and o2,1 is
still unschedulable since the conflict zone z2 is still occupied
(although o1,1 has been scheduled).

We follow the method in [10] to parameterize the policy,
which applies the graph isomorphism network [12] to capture
the features of graph-based data and has been proven to
be powerful compared with other variants of graph neural
networks [13]. As for the learning algorithm, we apply the
PPO [11] for policy network training. The PPO is an on-policy
actor-critic reinforcement learning algorithm which achieves
promising results for various reinforcement learning tasks.

C. Grouping Strategy

As vehicles come as a stream, we need to group vehicles and
apply the trained model to each group one by one. We also
observe that, when the group size is larger, the performance
of the trained PPO models decreases, and they also suffer
longer training time. Therefore, we aim to group vehicles
according to their arrival times. To cluster 1-dimensional data,
there are two common approaches. The Jenks natural breaks
optimization [14] aims to find the specified number of breaks by
minimizing the variance within each class and maximizing the
variance between classes simultaneously. The Kernel density
estimation [15] aims to estimate the probability density function

Intersection IA Intersection IB Intersection IC Intersection ID

Fig. 3. Different structures of conflict zones in the experiments.

based on the given finite data samples and kernel function.
Here, we choose the Jenks natural breaks optimization since
the pre-determined group number makes a group size more
likely to match the group size of training (the experimental
results will show that this usually leads to better performance).
For example, if there are 30 vehicles and the group number is
set to 3, then the group size will be closer (though not always
equal) to 10. Note that, it is required to solve each group of
vehicle as a JSSP-based formulation. Indeed, this may lose the
optimal solution from the solution space (e.g., of 30 vehicles),
but it allows us to train a model with a smaller group size
(e.g., 10 vehicles) and reduce the computational overhead in
both training time and runtime.

IV. EXPERIMENTS

In this section, we describe the experimental setting and
demonstrate the experimental results.

A. Experimental Setting

Various environments are tested in the experiments, and they
are different in three aspects:

• Different kinds of intersections, i.e., different structures of
conflict zones, are tested as shown in Figure 3.

• Different traffic densities, defined as the average numbers
of vehicles arrived at the intersection from one lane, are
tested.

• Different group sizes, defined as the numbers of vehicles
being scheduled at a time, are tested.

To train our PPO model, we create our own reinforcement
learning environment according to the formulation in Sec-
tion III-B and apply training configuration in [10]. However,
to boost the performance of PPO, we also adopt the recom-
mendations in [16]. The modifications are as follows:

• To accommodate different environment complexities, we
adjust dimensions of both policy and value networks for
the different structures of conflict zones.

• We use an orthogonal initializer for network weight ini-
tialization to stabilize training.

• We find that using a higher gradient clipping threshold
ϵ = 0.5 gives better performance.

We compare the trained PPO models with an improved
greedy (iGreedy) policy within different environments. Note
that, it is challenging to compare with other approaches due to
the underlying features of the graph-based intersection model
and the deadlock constraint. The iGreedy policy is a greedy-
based scheduling policy that schedules an operation once it

!

!

TABLE I
LIST OF ENVIRONMENTS

Structure of Traffic Group Experiment
Conflict Zones Density Size 1 2 3

E1 IA 0.3 10
√ √

E2 IA 0.7 10
√ √ √

E3 IB 0.3 10
√ √

E4 IB 0.7 10
√ √

E5 IA 0.7 30
√

E6 IC 0.3 10
√

E7 IC 0.7 10
√

E8 ID 0.3 10
√

E9 ID 0.7 10
√

is presented in the current action space A(t). Also, to meet
the deadlock constraint in intersection scheduling with conflict
zones, the iGreedy policy first checks each operation (by the
verification approach in [3]) before actually performing the
operation. If an operation may produce a deadlock, then it
will not be chosen, i.e., the iGreedy policy chooses an op-
eration which guarantees deadlock-freeness. By the setting, the
iGreedy policy also guarantees deadlock-freeness. To evaluate
the solution quality, we also use constraint programming and
Google OR-Tools [17] to compute optimal solutions.

For our learning-based policy and the iGreedy policy, the
experiments are performed on a machine with 8 Intel Core
i7-9700 CPUs and 1 NVIDIA GeForce RTX 2080 Ti GPU.
For the constraint programming for optimal solutions, the
experiments are performed on a machine with Intel Xeon Gold
5218 Processor with 16 physical cores and 128 logical cores.

B. Experimental Results

In the following sections, we present the experimental results
and report the gaps to the objective of an optimal solution, i.e.,

W −W ∗

W ∗ ,

where W is the objective of an output solution, and W ∗ is the
objective of an optimal solution. The training environments for
the main experiments are listed in Table I, including different
structures of conflict zones, different traffic densities, and differ-
ent group sizes. Regarding runtime, the training of our learning-
based policy takes about 2 to 6 hours to converge in most cases,
depending on the complexity of training intersections. However,
if we increase the group size in the training environment, the
training time gets longer. For example, the training time in
the environment E5 (30 vehicles) is about 4 times more than
that in the environment E2 (10 vehicles). As for evaluation
(scheduling), both of our learning-based policy and the iGreedy
policy can output solutions within seconds in most cases. Even
with complex structures of conflict zones like ID, they can also
output solutions within 30 seconds. On the other hand, even
with a more powerful machine, the constraint programming for
optimal solutions takes up to hours (for example, more than 8
hours for an environment with 4 conflict zones and 30 vehicles).
We believe that the constraint programming can only be used
for the evaluation of solution quality, not for real-time usage.

TABLE II
RESULTS (GAPS TO OPTIMAL OBJECTIVES) OF EXPERIMENT 1: TRAINING

ENVIRONMENT AND TRAFFIC DENSITY

E1 E2 E3 E4

Intersection IA IA IB IB
Traffic Density 0.3 0.7 0.3 0.7

Group Size 10 10 10 10
PPO(E1) 62.4% 25.0% 43.7% 20.3%
PPO(E2) 43.8% 22.6% 55.3% 27.9%
PPO(E3) 171.8% 60.8% 23.1% 16.8%
PPO(E4) 171.1% 61.8% 25.9% 14.1%
iGreedy 29.2% 43.8% 12.0% 17.5%

TABLE III
RESULTS (GAPS TO OPTIMAL OBJECTIVES) OF EXPERIMENT 2: GROUP

SIZE

E2 E5

Intersection IA IA
Traffic Density 0.7 0.7

Group Size 10 30
PPO(E2) 22.6% 100.9%
PPO(E5) 43.4% 82.8%
iGreedy 43.8% 83.9%

PPO(E2) + Grouping 22.6% 76.1%

1) Experiment 1: Training Environment and Traffic Density:
In this experiment, we investigate the impact of different
training environments to the PPO model and consider four en-
vironments E1, E2, E3, E4 with different structures of conflict
zones and different traffic densities. The results are listed in
Table II which presents the gaps to the objective of an optimal
solution. In the table, PPO(Ek) denotes that the PPO model is
trained with the environment Ek, and, for each environment,
the best result is in bold. We first focus on the best PPO models
in different environments. Most of the best PPO models (among
all PPO models) are trained in the same environments, except
the best PPO model for E1 is PPO(E2). This indicates that
a learning-based policy may not be generalizable to different
structures of conflict zones or different traffic densities: the
training environment plays an essential role and needs to be
chosen carefully. We then compare the PPO models with the
iGreedy approach. The PPO models have better performance
and outperform the iGreedy approach when the traffic density
is higher (E2 and E4), and the iGreedy policy has better
performance when the traffic density is lower (E1 and E3).

2) Experiment 2: Group Size: In this experiment, we con-
sider different group sizes. The results are listed in Table III
which also presents the gaps to the objective of an optimal so-
lution. The PPO models can outperform the iGreedy approach,
but they actually do not perform well (the gap to the optimal
solution is up to 82.8%) with a larger group size. Another
disadvantage of training a PPO model with a larger group size
is its training time. As mentioned before, PPO(E5) takes about
4 times more training time than PPO(E2) to complete the same
number of update steps.

The results of the grouping strategy are also listed in Ta-
ble III. We can improve the performance of PPO(E2) from
100% gap to the optimal solution to 75.1% gap to the opti-
mal solution. Especially, the performance is even better than

!

!

TABLE IV
RESULTS (GAPS TO OPTIMAL OBJECTIVES) OF EXPERIMENT 3: OVERALL

COMPARISON

E1 E3 E6 E8

Intersection IA IB IC ID
Traffic Density 0.3 0.3 0.3 0.3

Group Size 10 10 10 10
PPO 43.8% 25.9% 40.2% 14.3%

iGreedy 29.2% 12.0% 26.1% 17.9%

E2 E4 E7 E9

Intersection IA IB IC ID
Traffic Density 0.7 0.7 0.7 0.7

Group Size 10 10 10 10
PPO 22.6% 14.1% 28.0% 20.6%

iGreedy 43.8% 17.5% 29.3% 26.1%

PPO(E5), demonstrating that we can train a model with a
smaller group size, apply the grouping strategy to a stream
of vehicles, and then apply the trained model to each group
one by one.

3) Experiment 3: Overall Comparison: We summarize the
best results of all PPO models in Table IV. As mentioned be-
fore, the PPO models perform better when the traffic density is
higher, and the iGreedy policy performs better when the traffic
density is lower. The problem of intersection management is
more critical when the traffic density is higher, as it creates
more serious congestion. We believe that a hybrid approach,
which switches from a simple rule-based policy (such as the
FCFS policy or the iGreedy policy) to a learning-based policy
when the traffic density becomes higher, can be a good solution
in practice.

V. CONCLUSION

In this paper, we proposed a reinforcement-learning-based
methodology to train a centralized intersection manager. We
transformed the intersection scheduling problem to the JSSP
with additional constraints. We modeled the scheduling pro-
cedure as an MDP and trained the agent with the PPO. Ex-
perimental results showed that the learning-based intersection
manager is especially effective with high traffic densities. This
paper is the first work in the literature to apply reinforcement
learning on the graph-based intersection model. The proposed
methodology can flexibly deal with any conflicting scenario and
indicate the applicability of reinforcement learning to intelligent
intersection management.

Potential future directions include training acceleration, other
grouping strategies (preventing training with a large group size),
and cross-model scheduling metrics. The first two directions
are to address the issue that training may take a long time
when the number of vehicles and conflict zones increases. The
third direction is to achieve fair and comprehensive compar-
ison between different intersection models. Another relevant
research topic is the management and coordination of multiple
intersections based on reinforcement learning.

REFERENCES

[1] K. Dresner and P. Stone, “A multiagent approach to autonomous inter-
section management,” Journal of artificial intelligence research, vol. 31,
pp. 591–656, 2008.

[2] K. Yang, S. I. Guler, and M. Menendez, “Isolated intersection control
for various levels of vehicle technology: Conventional, connected, and
automated vehicles,” Transportation Research Part C: Emerging Tech-
nologies, vol. 72, pp. 109–129, 2016.

[3] Y.-T. Lin, H. Hsu, S.-C. Lin, C.-W. Lin, I. H.-R. Jiang, and C. Liu,
“Graph-based modeling, scheduling, and verification for intersection
management of intelligent vehicles,” ACM Transactions on Embedded
Computing Systems, vol. 18, no. 5s, 2019.

[4] M. A. Guney and I. A. Raptis, “Scheduling-based optimization for motion
coordination of autonomous vehicles at multilane intersections,” Journal
of Robotics, vol. 2020, 2020.

[5] M. Khayatian, M. Mehrabian, E. Andert, R. Dedinsky, S. Choudhary,
Y. Lou, and A. Shirvastava, “A survey on intersection management of
connected autonomous vehicles,” ACM Transactions on Cyber-Physical
Systems, vol. 4, no. 4, pp. 1–27, 2020.

[6] Y. Guan, Y. Ren, S. E. Li, Q. Sun, L. Luo, and K. Li, “Centralized
cooperation for connected and automated vehicles at intersections by
proximal policy optimization,” IEEE Transactions on Vehicular Technol-
ogy, vol. 69, no. 11, pp. 12 597–12 608, 2020.

[7] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International Conference on Machine Learning, vol. 80, 2018,
pp. 1861–1870.

[8] Y. Wu, H. Chen, and F. Zhu, “DCL-AIM: Decentralized coordination
learning of autonomous intersection management for connected and auto-
mated vehicles,” Transportation Research Part C: Emerging Technologies,
vol. 103, pp. 246–260, 2019.

[9] G. Li, J. Wu, and Y. He, “HARL: A novel hierachical adversary rein-
forcement learning for automoumous intersection management,” 2022,
arXiv:2205.02428.

[10] C. Zhang, W. Song, Z. Cao, J. Zhang, P. S. Tan, and X. Chi, “Learning
to dispatch for job shop scheduling via deep reinforcement learning,”
in International Conference on Neural Information Processing Systems,
2020, pp. 1621–1632.

[11] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017, arXiv:1707.06347.

[12] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” 2018, arXiv:1810.00826.

[13] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zam-
baldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner,
C. Gulcehre, F. Song, A. Ballard, J. Gilmer, G. Dahl, A. Vaswani,
K. Allen, C. Nash, V. Langston, C. Dyer, N. Heess, D. Wierstra, P. Kohli,
M. Botvinick, O. Vinyals, Y. Li, and R. Pascanu, “Relational inductive
biases, deep learning, and graph networks,” 2018, arXiv:1806.01261.

[14] G. F. Jenks, “The data model concept in statistical mapping,” Interna-
tional Yearbook of Cartography 7, pp. 186–190, 1967.

[15] E. Parzen, “On estimation of a probability density function and mode,”
The Annals of Mathematical Statistics, vol. 33, no. 3, pp. 1065–1076,
1962.

[16] M. Andrychowicz, A. Raichuk, P. Stańczyk, M. Orsini, S. Girgin,
R. Marinier, L. Hussenot, M. Geist, O. Pietquin, M. Michalski, S. Gelly,
and O. Bachem, “What matters in on-policy reinforcement learning? A
large-scale empirical study,” in International Conference on Learning
Representations, 2020.

[17] L. Perron and V. Furnon, “OR-Tools,” Google. [Online]. Available:
https://developers.google.com/optimization/

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

