
Efficient Software-Implemented HW Fault Tolerance
for TinyML Inference in Safety-critical Applications

Uzair Sharif, Daniel Mueller-Gritschneder, Rafael Stahl, Ulf Schlichtmann
Chair of Electronic Design Automation, Technical University of Munich (TUM), Munich, Germany

Email: {uzair.sharif, daniel.mueller, r.stahl, ulf.schlichtmann}@tum.de

Abstract—TinyML research has mainly focused on optimizing
neural network inference in terms of latency, code-size and energy-
use for efficient execution on low-power micro-controller units
(MCUs). However, distinctive design challenges emerge in safety-
critical applications, for example in small unmanned autonomous
vehicles such as drones, due to the susceptibility of off-the-shelf
MCU devices to soft-errors.

We propose three new techniques to protect TinyML inference
against random soft errors with the target to reduce run-
time overhead: one for protecting fully-connected layers; one
adaptation of existing algorithmic fault tolerance techniques to
depth-wise convolutions; and an efficient technique to protect the
so-called epilogues within TinyML layers. Integrating these layer-
wise methods, we derive a full-inference hardening solution for
TinyML that achieves run-time efficient soft-error resilience.

We evaluate our proposed solution on MLPerf-Tiny bench-
marks. Our experimental results show that competitive resilience
can be achieved compared with currently available methods, while
reducing run-time overheads by ∼120% for one fully-connected
neural network (NN); ∼20% for the two CNNs with depth-
wise convolutions; and ∼2% for standard CNN. Additionally,
we propose selective hardening which reduces the incurred run-
time overhead further by ∼2× for the studied CNNs by focusing
exclusively on avoiding mispredictions.

Index Terms—TinyML, safety, error detection, soft-error

I. INTRODUCTION

TinyML aspires to be a key enabler of pervasive Machine
Learning (ML), by synergizing deep learning with low-power
micro-controller units (MCUs). Research in this field has
mainly focused on optimizing neural network inference in terms
of latency, code-size and energy-use for efficient execution
on MCUs. Due to this, TinyML is particularly suitable for
deploying DNNs on systems such as unmanned autonomous
vehicles (UAVs), e.g., drones, which can only fit small MCU-
type compute devices due to energy and space constraints. Yet,
in such applications, also safety concerns need to be considered.
Progressive technology scaling has improved transistor-density
adequately within such MCUs. However, such advances in tech-
nology scaling also make the devices increasingly prone to reli-
ability concerns, such as random radiation-induced soft-errors.
To overcome such errors, special safety MCUs are available
that employ on-board HW-based safety mechanisms such as
lock-step processors, clock monitors or error correction logic.
However, such devices are usually quite costly such that in
many applications custom-off-the-shelf (COTS) MCU devices
are preferred. For such COTS MCUs, software-implemented
hardware fault tolerance (SIHFT) methods [1] are attractive
for hardening TinyML inference as they are highly flexible and

offer competitive soft error resilience. Among existing works,
instruction duplication (ID) based approaches (such as [2]–
[4]) can adequately tackle soft-errors by ensuring near zero
silent data corruptions (SDCs). However they incur excessive
run-time overheads (RTO) that results in high energy usage,
rendering them ill-suited for hardening TinyML computations
especially in real-time applications such as drones.

Recent works on SIHFT for large embedded ML sys-
tems have proposed alternate algorithmic-based fault tolerance
(ABFT) methods to reduce RTO while ensuring high soft error
resilience. However, our core insight is that such techniques
need to be adopted and extended for TinyML applications,
which have much severe resource and run-time constraints. For
example, TinyML layers often employ so-called epilogue [5],
that allow performing post-processing tasks (such as bias-
addition, re-quantization, activation, range-clipping etc.) on
each computed output value within the layer itself, to reduce
data movement during inference. Similarly, Tiny convolution
neural networks (CNNs) regularly carry out convolutions using
efficient depth-wise separable convolution procedure [6] that
employs depth-wise convolution layers that are more uncom-
mon in larger embedded ML systems. To protect such specific
operations, existing SIHFT solutions proposed to resort to using
ID causing high RTO. Furthermore, we find the established
ABFT strategy to protect the fully-connected layers to cause
excessive RTO (at par with ID methods) for TinyML inference.

In this work, we analyze the limitations of existing methods
for TinyML and propose an efficient SIHFT approach for
TinyML inference. For this,

1) we propose an ABFT solution to protect the matrix-vector
product operation in fully-connected TinyML layers,

2) we adapt an existing ABFT method for convolution op-
eration to also protect depth-wise convolution operation,

3) we propose source-level transformations to protect epi-
logue computations within layers.

Combining the newly proposed SIHFT methods with existing
works (for the rest of the TinyML inference task), we derive
a full-inference hardening solution for TinyML systems to
achieve run-time efficient soft-error resilience. Based on a
RISC-V simulation platform, our experimental results show
that compared with baseline SIHFT solution (existing SIHFT
approaches for entire inference), our solution offers competi-
tive soft-error resilience for all studied benchmarks. In terms
of RTO, our solution offers considerable benefit. Maximum
potential can be seen in hardening a fully-connected neural

2023 Design, Automation & Test in Europe Conference (DATE 2023)
Special Initiative "Autonomous Systems Design"	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

network by reducing RTO requirements by 120%. Meanwhile,
we observe RTO reduction by atleast 20% and 2% for CNNs
wih depth-wise convolutions and standard CNNs respectively.
Moreover, our approach offers flexibility via selective harden-
ing to further gain ∼2× reduction in RTO by focusing solely on
avoiding mispredictions instead of all possible data corruptions.

II. BACKGROUND AND RELATED WORKS

FC: Full-Checksum ABFT scheme for fully-connected
layers. Huang et al. [7] presented an elegant ABFT approach
to protect general matrix-matrix multiplication AB = C com-
putations. The proposed ABFT method entails carrying out
following left-sided and right-sided checks (see [8]):

(v
T
A)B

?
= vTC (1)

A(Bw)
?
= Cw (2)

where v,w are so-called checksum vectors. We refer to this
scheme as Full-Checksum (FC) method to distinguish with
other ABFT approaches in the rest of the paper. In [7], v,w are
chosen as all ones, which simplifies the required dot-products
vTA and vTC in (1) to be the column-summation vectors of
A and C respectively. Similarly row-summation vectors of B
and C represent respectively the dot-products Bw and Cw.

A fully-connected layer computation involves performing
the matrix vector product (MVP), between its inputs and its
weights, followed by epilogue to generate output. As MVP is
a specialized case for matrix-matrix product, existing SIHFT
solutions for ML networks have opted to use the FC method
to protect the MVP in fully-connected layers.

CoC-D, FIC: ABFT schemes for convolution layers.
Convolution layers such as Conv2D perform linear convolu-
tion operations (⊗) between the input feature-maps (fmaps)
{Dn} and the filter-array {Wk}, to generate output fmaps
{On}. Zhao et al. [9] presented comprehensive work on ABFT
schemes for hardening the convolution layers. The Checksum-
of-Checksum Detection (CoC-D) scheme is proposed to detect
errors in convolution operation during inference. An input-
checksum fmap Cd and filter-checksum Cw are generated,
which respectively represent the depth-wise sum of all input-
fmaps {Dn} and all filters {Wk}. The convolution operation
between Cd and Cw should match with the output-checksum.

Hari et al. [5] propose their Filter Input Checksum (FIC)
scheme which, in essence, extends the ABFT principles of
CoC-D by leveraging the transformation proposed in [10] to
match the size of Cd to the size of Cw. Due to size match,
the required convolution operation for the ABFT part can
be performed cheaply via simpler vector-vector dot-product
operation. The resulting scalar co should match with reduced
output so obtained via summing all elements of {On}.

ID: Instruction duplication schemes for other layers.
Neural networks employ other layers such as pooling, softmax
etc. Compiler-based ID methods, such as EDDI [2], NZDC [3]
or REPAIR [4], can be employed for hardening these layers.
Further, the so-called layer epilogues and activation function
also involve non-linear operations. Hari et al. [5] have proposed
to use ID methods for hardening these operations.

Ranger: Layer-wise range checks. In contrast to layer-
specific SIHFT solutions, Ranger [11] proposes performing
additional range-restriction operations at the end of each layer
to avoid the propagation of large deviations resulting from
computation errors. Small deviations are allowed to pass as they
are expected to be tolerated inherently by neural-networks.

III. TAILORED SIHFT FOR TINYML INFERENCE

We first analyze the limitations of existing SIHFT shemes
for TinyML inference and then propose an efficient tailored
TinyML SIHFT scheme.

A. Limitations of Existing SIHFT for TinyML

Most TinyML networks perform byte-quantization on the
trained model parameters. This effectively approximates each
determined floating-point parameter value to certain levels
within the integer-range [-128,127] to enable optimized in-
ference on MCUs. Due to this quantization, the Ranger [11]
method becomes ineffective as the network activations span the
entire range of allowed data values within TinyML networks.

Employing the FC method [7] to protect the fully-connected
layers in TinyML inference leads to excessive RTO. Specifi-
cally, carrying out FC check (2) essentially entails carrying out
the entire main MVP computation again. Thus, FC method at
least doubles the run-time, which is in line with ID costs for
protecting TinyML fully-connected layers.

Popularized by Howard et al. [6], depth-wise convolution lay-
ers feature regularly in TinyML networks. These layers perform
convolution operations on the input-activations {Dn} with the
layer filter W in a depth-wise manner. We have found recent
ABFT works [5], [9] to provide high resilience in protecting
convolution operations in TinyML networks, however, these
methods were not described for depth-wise convolutions.

Hari et al. [5] propose to protect the layer epilogues by
ID schemes. Partitioning the layer computations into non-ID
and ID regions reflect no major concerns for GPU-based plat-
forms as they offer substantially high thread-level parallelism.
However, for single-threaded MCU execution environments,
selective ID requires a context-switch between ID and non-ID
regions, which exacerbates the RTO.

In the following, we show how SIHFT can be efficiently
implemented for TinyML.

B. PC Scheme for Fully-connected Layers

Fully-connected layers within TinyML networks employ the
MVP operation on input-vector d and weights-matrix W to
generate intermediate output-vector o which is subsequently fed
into the epilogue to generate final layer output. To protect the
MVP operation cheaply, we modify the FC scheme to perform
only the left-sided check (1) and avoid the right-sided check (2).
The resulting ABFT approach, referred to as Partial-Checksum
(PC), is illustrated in Fig. 1 to protect (Wd = o) MVP.

Gunnels et al. [8] performed an analytical analysis to study
the propagation of errors during matrix-matrix product com-
putation when protected under FC method. We extend their
analysis for the considered MVP case when protected via PC
method in the following:

!

!

W

…w1 w2 wCvT (vTW) d =cd vT

(1) (2) (3)
o =co

(4)
cd = co
❓

Fig. 1. PC scheme (1-4) to protect MVP operation.

In case of erroneous computation, the MVP generates o′

instead of reference o. Let f=(o′−o), then ||f ||≠0 indicates
erroneous MVP operation. To perform this check at run-time
cheaply, the PC check introduces e=(vTo′−(vTW)d)=vT f
and computes ||e|| online alongside MVP as shown in Fig. 1.
Table I derives the relation between ||e|| and ||f ||, in case errors
occur (in W,d or o), to serve as a guideline in choosing v:

• v must have non-zero elements i.e. |vi| ≠ 0, so that PC
protects fully against errors in W and o as ||e||=0 implies
||f ||=0.

• v must not be normal to any column-vectors of W i.e.
vTwi ̸=0 for all i, so that PC protects fully against errors
in d as ||e||=0 implies ||f ||=0.

Implementation Aspects. Pure SW based implementations
of MVP iterate over elements of d while processing a W
row. Motivated by SIMD based implementations, TinyML
kernels perform the MVP in a partitioned fashion, for which
(parametrizable) M rows of the filter-matrix W are processed
with one cached input d to generate partial outputs for the
considered rows. This optimizes load operations and reduces
data movement. The process is repeated over all M -sized
blocks of rows of W to get the complete output o. Fig. 2
depicts this conceptually.

As d has to be reloaded for each partition/block, the error
in d can only persist for one block instead of persisting for
entire MVP computation. Due to this, the analysis shown in
Tab. I remains valid only for one block and we have to choose
v for each block separately. As highlighted on left of Fig. 2, we
choose vm for each partition m of W such that it has non-zero
elements, and it is not normal to any column-vector wm

i in that
partition. The chosen vm vectors are then augmented together
to form v so as to perform PC method outlined in Fig. 1.

For the MVP employed in TinyML’s fully-connected layers,
the filter-matrix W is known prior to TinyML inference,
thereby enabling:

• checksum-vector v can be determined (offline) prior to
inference instead of at inference-time.

• filter-summation vector (vTW) can be determined also
offline and stored in memory along with W.

TABLE I
GUIDELINE TO SELECT CHECKSUM-VECTOR v FOR PC METHOD

η: MAGNITUDE OF ERRORS, ui : UNIT VECTOR WITH ith COMPONENT AS 1

wij corrupted oi corrupted di corrupted

o′ (W + ηuiu
T
j)d o+ ηui W(d+ ηui)

||f || = ||o′ − o|| η|dj | η η||wi||
η|vi||dj | = η|vi| = η|vTwi| =

||e|| = ||vT f || |vi|||f || |vi|||f || |vTwi|
||wi||

||f ||

W
dM rows

M rows

o
1

3

2

m/M

d
d

d

v1

v2

v3

vm/M

M

M rows

M rows M rows

M rows

M rows

M rows

Fig. 2. Partitioned implementation of MVP operation.

Due to this, for an m × n weight-matrix W, the PC method
requires m and n additional multiply-accumulate operations for
computing vTo and (vTW)d respectively at run-time. The
required overhead of PC is deemed to be much cheaper than
double run-time of the FC method to protect MVP operation.

C. FICdw Scheme for Depth-wise Convolution Layers

The efficient FIC scheme [5] was so far only described for
convolutional layers. We propose an adoption for depth-wise
convolution layers, which perform the convolution operation
depth-wise on input fmaps {Dn} with the layer filter W to gen-
erate output fmaps {On}. An input-checksum Cd =

∑
n(Dn)

is first generated at run-time that sums up all input fmaps
depth-wise. Afterwards, output-checksum Co is computed by
performing a depth-wise convolution operation (⊛) between
Cd and W:

Co = Cd ⊛W =
N∑

n=1

(Dn)⊛W

The depth-wise convolution operation, as standard convolution,
is a linear operation that satisfies the distributive property for
(depth-wise) addition, hence

Co =
N∑

n=1

(Dn ⊛W) =
N∑

n=1

(On)

An ABFT check can be carried out at run-time that compares
Co with sum of all generated output fmaps:

(Cd ⊛W)
?
=

N∑
n=1

(On)

To perform the check cheaply, we can equivalently compare the
reduced-sums of these fmaps at run-time. Denoting reduced-
sum of generated outputs as so =

∑
x,y

∑
n(On), we get∑

x,y

(
∑
ch.

(Cd ⊛W))
?
=

∑
x,y

(
N∑

n=1

(On))∑
x,y

(
∑
ch.

(Cd ⊛W))
?
= so

Here the quantity
∑

ch.(C
d ⊛ W) in effect represents the

convolution operation (Cd ⊗W), hence the above check can
be expressed as: ∑

x,y

(Cd ⊗W)
?
= so

The quantity
∑

x,y(C
d⊗W) = co can be efficiently computed

at run-time using similar procedure to FIC method. We refer to
application of FIC method to depth-wise convolution operation
as FICdw scheme in remainder of the paper.

!

!

Implementation Aspects. We illustrate the process to per-
form the FICdw check in Fig. 3. For TinyML focused imple-
mentations, the shown procedure can be carried out efficiently
in the following manner: As inputs {Dn} are processed se-
quentially, an accumulator can be setup for Cd that sums up
the inputs depth-wise for (1). Similarly, as each output element
is generated it is also fed into a scalar accumulator so for (2).
On receiving the last input DN , we perform the reduction (per
[10]) on accumulated Cd for (3). Vector-vector dot-product on
this reduced channel is then performed with the filter W for
(4). We perform the final (5) check between co and so.

D. EPI and EPIsel Scheme for Layer Epilogues

In this work, we propose source-level transformations, re-
ferred collectively to as EPI hereinafter, geared towards protect-
ing the layer epilogues as a more efficient alternative compared
to ID approaches. The EPI transformations, as highlighted in
Fig. 4, include:

(i) Duplicate epilogue. All the key tasks in epilogue com-
putation are duplicated at source-level. As shown, each output
value generated from layer’s main computation (such as con-
volution, MVP etc.) is duplicated at run-time. The epilogue
task-pipeline is then executed twice using these redundant
values as inputs. This yields redundant final output values
epi-out, epi-out*.

(ii) Protect store to output-buffer. After performing the
final store of epi-out to the output-buffer, EPI performs an
additional load afterwards to the same location in the buffer.
The subsequent load, however, uses the copy of output-buffer’s
base-address. The loaded value is compared with the duplicated
epi-out* value to protect the store to output-buffer. In case
the offset to the base-address is corrupted before the final store
such that the effective address and its copy are corrupted,
then the above mentioned load-back would fail to detect the
error. To overcome this, EPI introduces a checksum value that
accumulates offsets for all stores to the output-buffer. After
the entire layer was executed, the offset-checksum is compared
with a reference value (from an error-free scenario) to detect
address errors.

(iii) Duplicate layer parameters. Layer parameters are
constants that are live (i.e. are in scope) during entire execution
of the layer. They are used in computing each output value
in the layer. For example, the out-offset adds a constant
value to the output element before the final store. EPI protects
such parameters by duplicating them before executing the layer.

Σ

Cd

Σ

Error
Handler()

(1)

(2)

(3)

(4)

so

co

s

Cd*r ≠

D1 D2
… DN

∗ ∗ ∗

O1 O2
…

ON

Σ
Cd

Σ

red.

Cd*

dot

=❓
(5)

depth-wise

element-wise

W

cd
co

Fig. 3. FICdw (1-5) for ABFT protection of Depth-wise Convolutions.

Fig. 4. EPI transformations for a given TinyML layer.

After executing the layer, these parameters are matched with
shadow values to detect errors.

(iv) Check control-flow to detect early return. EPI in-
troduces a simple layer-scope control flow monitoring flag,
which is set to ’0’ at start of layer execution. After the layer is
executed successfully, this flag is set to ’1’. The flag is checked
before returning from the layer function to make sure the return
is legal in terms of control-flow.

Selective EPIsel hardening. For relaxed safety require-
ments, some mechanisms in the proposed EPI approach could
be disabled to reduce RTO. The focus lies on ensuring that
no classification errors (misprediction) occur rather than no
Silent Data Corruptions (SDCs) (corruption in output class
probabilities). We noticed that often more than one activation
has to be corrupted to cause a misprediction. On the other
hand, corruptions to single activation elements can be often
tolerated inherently by CNNs (see also [11]). With this insight,
we can disable EPI mechanisms (ii), (iii) as they focus strictly
on ensuring that all individual output elements are computed
without error. This selective variant of EPI is referred to as
EPIsel in remainder of the paper. EPIsel still include mecha-
nisms, which are responsible for protecting layer parameters
and impact all output values. However, these mechanisms bear
very low overheads.

E. SIHFT Configuration for Hardening TinyML Inference

We integrate our proposed layer-specific SIHFT approaches
into a combined configuration to achieve cost-effective soft
error resilience for TinyML inference tasks. Table II provides
a comparison of this solution, in terms of how different
operations are protected during the inference, to the baseline
solution that is obtained by combining the state-of-the-art layer-
wise SIHFT solutions.

As shown, we employ the ABFT schemes FIC and the newly
proposed FICdw for protecting the convolution and depth-wise
convolution operations respectively in convolutional layers. The
MVP in fully-connected layers is protected via the newly
proposed PC method. Add layers employ an element-wise add
operation to its input tensors. Due to element-wise nature of the
operation, we can extend our EPI method (see Fig. 4) to protect
the entire layer by bringing the layer-computation (simple add)
into the sphere-of-replication (i.e. before the re-quantization
step within epilogue) as well. Apart from this, we employ
EPI to protect epilogues of already discussed convolution and
fully-connected layers. Moreover, we allow to replace EPI with

!

!

TABLE II
FULL-INFERENCE SIHFT SOLUTIONS FOR TINYML

Layer Baseline Ours
Convolution FIC (Conv.) + FIC (Conv.) +

ID (Epilogue) EPI / EPIsel (Epilogue)
Depth-wise FICdw (DW Conv.) +
convolution ID (Layer) EPI / EPIsel (Epilogue)
Fully-connected FC (MVP) + PC (MVP) +

ID (Epilogue) EPI / EPIsel (Epilogue)
Add ID (Layer) EPI / EPIsel (Layer)
Average Pool &
Softmax ID (Layer) ID (Layer)

EPIsel to seek RTO improvements without degrading error-
coverage for relaxed safety requirements. For other layers, such
as average-pool layers, we resort to using an ID scheme.

IV. EVALUATION

A. Experimental Setup

Benchmarks. We use the MLPerf-Tiny [12] suite for bench-
marks to evaluate our proposed methods on practical TinyML
networks, which span a range of varying model topologies
and carry out diverse learning tasks. The suite comprises three
CNNs — Audio Wakeup Word (AWW), Video Wakeup Word
(VWW) and RESNET for speech recognition, video recogni-
tion, and image classification respectively. The CNNs of AWW,
VWW use depth-wise separable convolutions. In addition, the
suite provides an Anamoly Detection (AD) network, which
employs primarily fully-connected layers.

Implementation. We use the Tensor Flow Lite for Micro-
controllers (TFLM) framework [13] to setup the execution
environment for deploying pre-trained MLPerf-Tiny networks
on MCUs. The TFLM run-time is configured to delegate
the deployed network’s operations to the CMSIS-NN [14]
kernels library for inference. We implement ABFT and our
EPI solution by hardening the C-Versions of the CMSIS-NN
kernels. Further, we implement NZDC method [3] to realize
ID hardening.

Evaluation Methodology. The inference tasks are compiled
for execution on an Instruction Set Simulator [15] with fault
injection support, which simulates a standard RISC-V processor
(RV32IMAC) at instruction-accurate level.

We employ statistical fault injection [16] to carry out a Monte
Carlo simulation based analysis for estimating the Silent Data
Corruption (SDC) rates for the studied TinyML tasks. For each
simulation run, one input is picked randomly from a subset of
the data set of size 30. During inference, a random instruction
point is chosen, whereby a bit-flip (soft error) is injected into
one of the simulated processor’s architectural registers. At the
end of simulation, we compare the network output to the
error-free reference values. In case of an undetected output
corruption, we mark the outcome of the run as SDC. We
perform 200,000 such runs to reliably assess SDC vulnera-
bility of unprotected as well as various hardened variants of
studied TinyML networks. We compare efficacy of various
implemented SIHFT solutions in terms of incurred run-time

overheads (RTO) relative to the run-time (r) of unprotected
programs as under:

RTO (%) =
rsihft − runprot.

runprot.
· 100 (3)

where run-time (rx) is measured as number of instructions
simulated for running task x on the simulator. After conducting
Ntrial trials, the SDC-rate for a given SIHFT can then be
determined as per Schirmeier correction [17]:

SDC (%) =
Nsdc

Ntrial
· rsihft
runprot.

·100 =
Nsdc

Ntrial
·(RTO+100) (4)

B. Layer-wise Evaluation

First we evaluate the proposed SIHFT methods on a per-layer
basis. Throughout this section, the value SDC(x) represents the
SDC rate that is caused due to soft errors within layer of type
x. Further please note: we omit results for TinyML benchmarks
that do not have a layer of the studied layer type.

Convolution Layers. The existing methods CoC-D, FIC (see
Sec. II) harden convolution layers efficiently as can be seen
in Table III. Both CoC-D, FIC schemes exceptionally reduce
the SDC(conv) by at least one order of magnitude. In terms of
costs, FIC offers less RTO of ∼1.65× than CoC-D. Further,
we inspect the remaining SDC(conv) and find them entirely to
be caused due to soft errors during epilogue computation.

For hardening the epilogues, we compare our EPI method
with ID. The corresponding SDC improvements are shown
on the right-side columns of Table III. Both ID and EPI
are effective in eliminating most of the remaining SDC(conv),
however, our solution offers a clear RTO benefit.

Depth-wise Convolution Layer. Table IV reports the SDC
evaluation for FICdw method in comparison with ID. As
seen, both solutions offer reliable SDC coverage by removing
almost all of SDC(dwconv). The proposed FICdw approach offers
significant benefit in terms of RTO.

Fully-connected Layer. Table V reports the SDC rate of the
proposed PC scheme compared to the existing FC scheme for
hardening MVP. We report this analysis for the AD network

TABLE III
EVALUATION OF SIHFT FOR CONVOLUTION LAYER

SDC-RATE [%], RTO [%]

FIC + FIC +
Unprt. CoCD FIC ID EPI

AWW SDC(conv) 13.98 1.347 1.313 0.0255 0.0252
RTO(conv) 0 5.084 3.391 17.71 13.78

VWW SDC(conv) 10.46 1.143 1.114 0.0238 0.0265
RTO(conv) 0 7.087 3.595 25.12 17.86

RES- SDC(conv) 26.97 2.002 1.886 0.0863 0.0815
NET RTO(conv) 0 7.054 4.685 13.56 10.49

TABLE IV
EVALUATION OF SIHFT FOR DEPTH-WISE CONVOLUTION LAYER

SDC-RATE [%], RTO [%]

Unprt. ID FICdw + EPI
AWW SDC(dwconv) 3.356 0.0021 0.0034

RTO(dwconv) 0 152.1 61.16
VWW SDC(dwconv) 3.104 0.0026 0.0029

RTO(dwconv) 0 152.1 56.07

!

!

TABLE V
EVALUATION OF SIHFT FOR FULLY-CONNECTED LAYER

SDC-RATE [%], RTO [%]

Unprt. FC + ID PC + EPI
AD SDC(fully-conn) 35.37 0.0015 0.0013

RTO(fully-conn) 0 135.8 10.49

as it solely relies on fully-connected layers. As shown, the PC
method achieves competitive SDC resilience compared to the
FC method at substantially lower RTO.

C. Evaluation for Full Inference

We evaluate the overall SDC resilience for the full inference
of the benchmark networks using the proposed full hardening
solutions (see Sec. III-E). The findings are reported in Table VI.

Run-time efficient SIHFT compared with baseline. As can
be seen, our proposed TinyML solution provides competitive
SDC resilience at lower RTO across all studied benchmarks.
The majority of the remaining observed SDCs are caused due to
soft errors in unprotected firmware modules such as the TFLM
run-time, and model I/O setup.

Selective EPI variant. Table VI also reports, for the studied
CNNs, the rates of mispredictions, which represent the prob-
ability of inferring wrong classifications in response to soft-
errors. As observed, the selective EPI variant constructively
leverage the inherent resilience of CNN topologies to offer
almost zero loss in prediction accuracy, relative to the full
solution, yet with inferior SDC resilience. Further, the selective
EPI scheme offers even more than 2× additional savings in
RTO.

Memory overhead. Further, we also report the memory
overheads incurred by implemented SIHFT solutions on stud-
ied TinyML networks. These costs arise primarily due to
increased code-size (for redundancy) and increased static data
(for checksum) in ROM use. Further, less available registers in
ID schemes could lead to more stack usage in RAM space. As
seen in Table VI, our solution does not impose high memory

TABLE VI
EVALUATION OF SIHFT FOR FULL TINYML INFERENCE

SDC-RATE [%], RTO [%], MISPRED.-RATE [%], MEMORY OV. [%]

Base- Ours
Unprt. line Ours (Sel.)

AD SDC 35.54 0.2011 0.1947 -
RTO 0 135.8 10.51 -

Memory ov. 0 2.694 4.768 -
AWW SDC 17.49 0.0216 0.0287 1.224

RTO 0 45.05 23.53 11.27
Mispred. 6.224 0.0018 0.0021 0.0025

Memory ov. 0 3.533 3.294 2.718
VWW SDC 13.71 0.1744 0.1750 0.952

RTO 0 48.92 24.64 12.56
Mispred. 2.405 0.0028 0.0039 0.0041

Memory ov. 0 1.613 1.490 1.361
RESNET SDC 27.81 0.0536 0.0679 1.527

RTO 0 17.07 14.42 5.949
Mispred. 7.944 0.0010 0.0011 0.0011

Memory ov. 0 4.874 4.357 4.182

requirements (< 5% for all benchmarks). Further, the incurred
memory overheads are inline with the baseline solution.

V. CONCLUSION

In this paper, we presented dedicated SIHFT solutions for
soft-error resilience that focus on reducing the associated RTO
specifically for TinyML inference.

ACKNOWLEDGMENT

This work was supported in part by the German Federal
Ministry of Education and Research (BMBF) within the project
Scale4Edge under contract no. 16ME0131.

REFERENCES

[1] O. Goloubeva, M. Rebaudengo, M. Sonza Reorda, and M. Violante,
Software-Implemented Hardware Fault Tolerance. Springer US, 2006.

[2] N. Oh, P. P. Shirvani, and E. J. McCluskey, “Error detection by duplicated
instructions in super-scalar processors,” IEEE Transactions on Reliability,
vol. 51, no. 1, pp. 63–75, 2002.

[3] M. Didehban and A. Shrivastava, “nzdc: A compiler technique for near
zero silent data corruption,” in 2016 53nd ACM/EDAC/IEEE Design
Automation Conference (DAC), 2016, pp. 1–6.

[4] U. Sharif, D. Mueller-Gritschneder, and U. Schlichtmann, “Repair: Con-
trol flow protection based on register pairing updates for sw-implemented
hw fault tolerance,” ACM Trans. Embed. Comput. Syst., vol. 20, no. 5s,
sep 2021.

[5] S. K. S. Hari, M. B. Sullivan, T. Tsai, and S. W. Keckler, “Making
convolutions resilient via algorithm-based error detection techniques,”
IEEE Transactions on Dependable and Secure Computing, vol. 19, no. 4,
pp. 2546–2558, 2022.

[6] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” 2017.

[7] K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for
matrix operations,” IEEE Transactions on Computers, vol. C-33, no. 6,
pp. 518–528, 1984.

[8] J. A. Gunnels, D. S. Katz, E. S. Quintana-Orti, and R. A. V. de Gejin,
“Fault-tolerant high-performance matrix multiplication: theory and prac-
tice,” in 2001 International Conference on Dependable Systems and
Networks, 2001, pp. 47–56.

[9] K. Zhao, S. Di, S. Li, X. Liang, Y. Zhai, J. Chen, K. Ouyang, F. Cappello,
and Z. Chen, “Ft-cnn: Algorithm-based fault tolerance for convolutional
neural networks,” IEEE Transactions on Parallel and Distributed Systems,
vol. 32, no. 7, pp. 1677–1689, 2021.

[10] T. Marty, T. Yuki, and S. Derrien, “Enabling overclocking through
algorithm-level error detection,” in 2018 International Conference on
Field-Programmable Technology (FPT), 2018, pp. 174–181.

[11] Z. Chen, G. Li, and K. Pattabiraman, “A low-cost fault corrector for
deep neural networks through range restriction,” in 2021 51st Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), 2021, pp. 1–13.

[12] C. Banbury, V. J. Reddi, P. Torelli, J. Holleman, N. Jeffries, C. Kiraly,
P. Montino, D. Kanter, S. Ahmed, D. Pau et al., “Mlperf tiny benchmark,”
Proceedings of the Neural Information Processing Systems Track on
Datasets and Benchmarks, 2021.

[13] “Tensorflow lite for micro-controllers,” 2022. [Online]. Available:
https://github.com/tensorflow/tflite-micro

[14] L. Lai, N. Suda, and V. Chandra, “Cmsis-nn: Efficient neural network
kernels for arm cortex-m cpus,” 2018.

[15] D. Mueller-Gritschneder, K. Devarajegowda, M. Dittrich, W. Ecker,
M. Greim, and U. Schlichtmann, “The extendable translating instruction
set simulator (etiss) interlinked with an mda framework for fast risc
prototyping,” in Proceedings of the 28th International Symposium on
Rapid System Prototyping, ser. RSP ’17, 2017, p. 79–84.

[16] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical fault
injection: Quantified error and confidence,” in 2009 Design, Automation,
Test in Europe Conference and Exhibition, 2009, pp. 502–506.

[17] H. Schirmeier, C. Borchert, and O. Spinczyk, “Avoiding pitfalls in fault-
injection based comparison of program susceptibility to soft errors,” in
2015 45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, 2015, pp. 319–330.

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

