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Abstract—We introduce Phalanx, a failure-resilient truck pla-
tooning system, where trucks in a platoon protect each other
from sensor failures despite the lack of redundant sensors. For
that, we first emulate the failed sensors by collectively utilizing
other sensors across the platoon. If the failed sensor cannot be
emulated, the control system is instantaneously reconfigured to a
cooperative protection mode using only the live sensors. We take
a scenario-based approach considering six scenarios with single
and dual failures of the essential sensors (i.e., lidar, encoder, and
camera) for platooning control. For each scenario, we present a
protection method that enables the safe maneuvering of platoons.
For the evaluation, Phalanx is implemented using our scale truck
testbed instrumented with fault injection modules, demonstrating
safe platooning controls for the failure scenarios.

I. INTRODUCTION

Truck platooning is an automation technology that maintains
close gaps between trucks at high speeds for enhanced fuel
efficiency and safety [1]–[3]. The leading vehicle (LV) is driven
by a human driver, whereas the following vehicles (FVs) are
autonomous with various sensors. Due to the strong dynamics
of such heavy-duty vehicles, even a single sensor failure in
a platooning truck can cause a catastrophic disaster. Thus,
the platooning system should be resilient to such failures by
retaining its safe maneuvering capability.

Most failure-resilient systems are based on redundant sen-
sors [4], [5]. However, making every sensor redundant leads
to undesirable complexity in terms of system architecture. In
contrast, we make the trucks protect each other without sensor
redundancy by exploiting platooning trucks’ unique driving
patterns and connectivity. Using the vehicle-to-vehicle (V2V)
communication between trucks, even remote sensors in other
trucks can be utilized to mitigate local sensor failures. Let us
take an example of a velocity sensor failure. Then we can
estimate the velocity by combining the preceding truck’s remote
velocity and the in-between gap distance from a local sensor.

Platooning trucks are equipped with various sensors [2], [3],
where the essential ones are

• Range sensor (e.g., lidar or radar),
• Velocity sensor (e.g., encoder), and
• Vision sensor (e.g., camera).

The range and velocity sensors are for the longitudinal control,
whose primary objective is to maintain the string stability with
a constant gap between trucks. The vision sensor is primarily
for the lateral control by detecting lanes. Besides, trucks are
connected through the V2V network to exchange real-time
information for the platooning control.

With the above motivation, we present a failure-resilient
truck platooning system, which is named Phalanx since the

Fig. 1: Scale truck platooning testbed equipped with lidar,
encoder, front- and rear-facing camera sensors.

trucks remind us of the ancient soldiers protecting each other by
tactical movements with spears and shields. We implemented a
testbed with three 1/14 scale platooning trucks (Fig. 1) that
are introduced in [6], equipped with three essential sensors
(i.e., lidar, encoder, and camera) and computers running per-
ception and control algorithms. In our testbed, the LV is also
autonomous, which is the only difference from the real-world
platooning with a human driver in charge of the LV. Thus,
this study focuses on the FVs since they have to be fully
autonomous even in emergencies.

With our scale trucks, we take a scenario-based approach,
where six sensor failure scenarios are considered: three single
sensor failures and three dual sensor failures. The case of triple
sensor failures is not considered. In such an unrecoverable
situation, an immediate safe stop should be enforced instead
of letting the failed trucks run on highways. Under the six
scenarios, we aim to preserve the platoon’s minimum safety
driving capability such that the trucks can be mobilized to a
safe location.

Our initial approach is to emulate failed sensors by utilizing
other (possibly remote) sensors. For example, if the lidar sensor
fails, the front-facing camera can be utilized to estimate the
gap by locating the preceding trailer in the camera image. If
the encoder fails, the preceding truck’s velocity and the gap
distance can be utilized to estimate the velocity, as previously
presented. However, we need a different approach for the front-
facing camera failure since emulating a camera is not viable
in our configuration. As an alternative approach, the control
system is reconfigured from lane-keeping control to target
tracking control upon a camera failure. Under the new control
mode, the control objective is to follow the preceding trailer’s
track by the lidar sensor instead of following lanes.

For dual sensor failures, one approach is to combine two
individual protection methods, each of which developed for
single sensor failures. This approach works well for the lidar
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Fig. 2: Scale truck proving ground.

and encoder sensor failures and the encoder and camera sensor
failures. However, it is not applicable to the camera and lidar
sensor failures because the lidar failure protection requires the
camera while the camera failure protection requires the lidar,
leading to a mutual contradiction. For that, our solution is
to utilize the preceding truck’s rear-facing camera. In many
countries, a rear-facing camera is mandated in heavy-duty
trucks for the safety monitoring purpose [7]. Then the troubled
truck can observe its own state through the preceding truck’s
rear-facing camera to make control decisions.

For the evaluation, we instrumented the platooning system
with fault injection modules that artificially trigger sensor
failures. Faults are injected based on the failure scenarios while
the trucks are running on our scale proving ground (Fig. 2).
The rigorous fault injection tests demonstrate that Phalanx can
safely protect the trucks against the six failure scenarios.

The contributions of this study can be summarized as:
• We propose a resilient truck platooning architecture, where

the trucks protect each other from sensor failures without
the need for redundant sensors.

• The proposed architecture is implemented based on our
scale truck testbed, where our failure protection methods
are evaluated for single and dual sensor failures.

II. BACKGROUND

A. System Model

Fig. 3 shows our system model for a truck platoon. There
are N identical trucks, where the LV is denoted by LV and
the FVs are denoted by FVi ∈ {FV1,FV2, · · · ,FVN−1},
in the platooning order. The set of FVs is denoted by FV∗.
Although LV is driven by a human driver in the real-world
platooning, we assume that all the trucks are autonomous.
Each truck is equipped with four sensors: (i) lidar, (ii) encoder,
(iii) front-facing camera, and (iv) rear-facing camera. The first
three are essential because they provide indispensable data for
the platooning control. The lidar measures the gap distance.
The encoder measures the velocity. The front-facing camera
detects the lane. In contrast, the rear-facing camera at each
trailer’s rear end is not essential since it is for safety monitoring.
However, even the rear-facing camera has to be utilized in an
emergency. Besides, the trucks are connected through a wireless
V2V network.

For the platooning control, LV is given a reference velocity,
while FV∗ is given a reference gap distance. Thus, they
have different control objectives (i.e., velocity control and gap
control, respectively), letting the velocity of the platoon be
governed by LV’s velocity. For FV∗’s longitudinal control,

Velocity

Gap 
Distance

Rear-facing CameraLidar Encoder Front-facing Camera

LV FV1 FV2

V2V Module

Fig. 3: System model of platooning trucks.

their main control objective is to maintain the string stability
between trucks with a constant gap. For the lateral control, both
lane-keeping control and target tracking control can be applied,
where our primary choice is the lane-keeping control, by which
each truck follows the center of its perceived lanes.

B. Failure Scenarios

With the above system model, the following six failure
scenarios are considered:

• Lidar failure, denoted by L .
• Encoder failure, denoted by E .
• Camera failure, denoted by C .
• Lidar and Encoder failures, denoted by L + E .
• Encoder and Camera failures, denoted by E + C .
• Lidar and Camera failures, denoted by L + C .

For the simplicity of explanation, the term “camera” means a
“front-facing camera” by default throughout this study. When
referring to a “rear-facing camera”, its full title is always used.
We do not consider the rear-facing camera’s failure since it is
not an essential sensor, meaning that the rear-facing camera
is not used for the platooning control in normal situations.
Among the scenarios, the first three are single sensor failures,
whereas the remaining three are more complex scenarios with
dual sensor failures. We do not consider the case of triple
essential sensor failures in this study.

Regarding the failure modes of sensors, we assume the
sensors are fail-silent, meaning that if there is a sensor failure,
the sensor becomes silent and does not provide incorrect data.
Besides, we assume that the sensor diagnostic test interval,
as defined in ISO 26262 (Part 3), is small enough to detect
the fault without noticeable delays. Thus, our focus is not on
detecting failures but on the protection methods after failure
detection.

C. Problem Description

With the above system model and failure scenarios, our
problem is to develop sensor failure protection methods for
the six scenarios. To be precise, we do not expect to maintain
the optimal control performance in such abnormal situations.
Instead, we try to maintain a minimum safety driving capability
such that the platooning trucks do not pose threats to road safety
by moving themselves to a safe place. By the minimum safety
driving capability, we expect the platoon to slow down to a safe
velocity while maintaining a somewhat relaxed gap distance
and keeping themselves at least within the lane. Throughout
this study, we assume sensor failures only in FV1. However,
without loss of generality, the developed methods are equally
applicable to other FVs.
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Fig. 4: Phalanx architecture for the failure-resilient truck platooning.

III. RESILIENT TRUCK PLATOONING ARCHITECTURE

Fig. 4 shows our failure-resilient truck platooning architec-
ture both in normal operations and failure protection operations,
assuming the ego truck is FV1 with its preceding truck LV .

In normal driving situations, data flow through the solid lines.
For example, the lidar data go through the obstacle detection
module to the gap measurement module to the gap control
module. The encoder data go through the velocity measurement
module to the velocity control module that produces actuation
signals (PWM) to the driving motor. Meanwhile, the lane
detection module uses the front-facing camera’s image to
produce the lane curvature, which in turn is used by the lane-
keeping control module to make steering signals (PWM) to
the steering motor. Even in normal driving situations, the gap
control module requires the preceding truck’s reference velocity
and reference gap distance through the V2V receiver module.
For more about normal platooning operations, refer to [6].

Upon sensor failures, data flow from the failed sensors stop,
as depicted by the red lightning icons with circled letters. In
such cases, since the original perception modules can no longer
produce outputs, the backup modules become active, enabling
new data flow depicted by dashed lines. For example, for L ,
the gap distance is no longer available, then the gap estimation
(to trailer) module utilizes the front-facing camera to estimate
the gap. For E , the velocity is not available. Then our velocity
estimation module utilizes the preceding truck’s velocity (from
the V2V receiver module) and the gap to the preceding truck
(from the gap measurement module) to estimate the ego truck’s
velocity. For C , the original lane-keeping control is no longer
available. Since there is no other way of detecting lanes without
the camera, our solution is to switch the lateral control mode
from lane-keeping control to target tracking control. Then
the target tracking control module uses the preceding truck’s
location from the obstacle detection module as its target. The
ego truck can now follow the preceding truck using the pure

pursuit algorithm [8] based on the lidar sensor. However, the
bent angle between the tractor and the trailer in semi-trailer
trucks may significantly mislead the ego truck on curved roads.
To solve this problem, the preceding truck’s rear-facing camera
image (from the V2V receiver module) is utilized to correct the
target point by estimating the lateral offset of the trailer from
the lane center.

For the dual failures of L + E and E + C , the individually
developed protection methods can be used in combination.
However, in L + C , we cannot reuse the individual failure
protection methods since the lidar failure protection method
requires the camera, while the camera failure protection method
requires the lidar. In that case, our solution is to switch to an
emergency control mode that depends on the preceding truck’s
rear-facing camera. Then the rear-view image is delivered to
the lane estimation module and the gap estimation (to tractor)
module, where the gap and lane information is extracted from
the image for the gap and lane-keeping controls.

IV. FAILURE PROTECTION METHODS

A. Gap Estimation

To estimate the gap to the preceding trailer in the case of L ,
we use a 2D object detection module that finds relevant objects
in the camera image. Since we are interested in the location of
the preceding trailer, the object detection network is retrained
by our custom-collected images of trailers. Fig. 5a shows an
example image that detects a trailer. Since this image is in the
camera coordinate, it should be transformed into a bird’s-eye
view (BEV) coordinate as in Fig. 5b. Then we count the pixels
between the bottom line and the trailer’s rear end. During the
camera calibration, we found that the 1.0 m distance in the real
world corresponds to 490 vertical pixels in the BEV coordinate,
by which the gap distance can be precisely estimated.
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(a) Detecting the trailer. (b) Estimating the gap.

Fig. 5: Camera-based gap estimation.

B. Velocity Estimation

The encoder measures velocity by counting the rotation of
the driving motor. In the case of E , we can estimate the
ego truck’s velocity (vi) by combining the preceding truck’s
velocity (vi−1) and the measured gap distance (di) between
them. For the notational simplicity, the index i is assumed to
be 0 for LV , while it corresponds to the index in FV∗ for the
remaining trucks. Since vi−1 and di are measured at discrete
time points with its sampling index k, they are denoted as
functions of k (i.e., vi−1(k) and di(k)). Then the estimated
velocity v̂i(k) can be calculated as

v̂i(k) = vi−1(k)−
di(k)− di(k − 1)

Ts
, (1)

where Ts is the sampling period for the gap measurement. The
second term on the right-hand side represents the instantaneous
velocity change between the (k − 1)-th and k-th sampling
points. To be precise, the transmitted velocity vi−1(k) can
be a few steps behind due to the wireless network latency,
causing slight delay errors. A first-order low-pass filter is used
to minimize estimation errors caused by delays and also lidar
sensor noises.

C. Target Tracking Control

In the case of C , we can no longer use lane-keeping control
that solely depends on the camera as in Fig. 6a. Then our lateral
control module is reconfigured to use target tracking control
that follows the preceding trailer based on the pure pursuit
algorithm [8] as in Fig. 6b. At first, the preceding trailer can
be located by the lidar sensor, and its center point, depicted
by a red dot, looks like a reasonable target point for the target
tracking control. However, this naı̈ve approach does not always
work well due to the off-tracking phenomenon in semi-trailer
trucks [9], where curved roads make significant bent angles
between the tractor and the trailer. As illustrated in Fig. 6b,
with a curvature to the left-hand side, the trailer’s rear end
naturally approaches the left lane. Thus, blindly following the
center point will invade the ego truck’s left lane. For this off-
tracking problem, our solution is to utilize the preceding truck’s
rear-facing camera. By detecting lanes in the rear-view image
as in the right-hand side of Fig. 6b, the offset between the
trailer’s center point (i.e., red dot) and the lane’s center point
(i.e., green dot) can be estimated. Then the offset can help
correct the incorrect target angle (i.e., red arrows) toward the
lane center (i.e., green arrows).

(a) Lane keeping. (b) Target tracking.

Fig. 6: Lane-keeping control vs. target tracking control.

(a) Detecting the tractor. (b) Estimating the gap. (c) Estimating the lane.

Fig. 7: Rear-facing camera-based gap and lane estimation.

D. Combining Individual Protection Methods for Dual Failures

For the dual failures of L + E and E + C , their respective
failure protection methods can be simply combined without
any modification. However, for L + C , combining their
individual protection methods presents a conflict that can never
be resolved. Recall that the protection method for L utilizes
the camera to estimate the gap distance, while the protection
method for C requires the lidar to enable the target tracking
control. Due to this deadlock-like situation, we cannot simply
combine the two protection methods. Instead, we need to devise
a different method, which will be presented in the next section.

E. Rear-facing Camera-based Lane and Gap Estimation

For the dual failure of L + C , our solution is to switch
to an emergency control mode that primarily depends on the
preceding truck’s rear-facing camera. Fig. 7a shows a rear-
view image that detects the ego truck’s tractor, where we can
estimate the gap distance and lane information. Fig. 7b shows a
BEV image that illustrates the gap estimation method, which is
similar to the method in Section IV-A. The figure shows a slight
discrepancy between the tractor and the bounding box caused
by the road curvature. We found that this discrepancy is neg-
ligible for the gap estimation. However, it cannot be neglected
when deciding the steering angle for the lateral control. Thus,
the BEV image is rotated to make the tractor’s face (depicted
by the yellow dashed line) horizontal as in Fig. 7c. Then the
left and right lanes can be estimated, producing the desired path
depicted by the green line.

For the implementation, the preceding truck sends raw rear-
view images to the ego truck through the V2V wireless net-
work, and the ego truck processes the gap and lane estimation
from the image. It would be interesting to compare this sec-
tion’s rear-facing camera-based lane-keeping control with the
lidar-based target tracking control in Section IV-C in terms of
the lateral control performance, which will be presented in the
experimental section.
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(a) Front-facing camera-based (to trailer).
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(b) Rear-facing camera-based (to tractor).

Fig. 8: Evaluation of gap estimation.
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Fig. 9: Evaluation of velocity estimation.

V. EXPERIMENTS

A. Implementation

Three 1/14 scale trucks are developed with a lidar (RPL-
idar A3), a magnetic encoder, and two USB cameras with
180 degrees field of view (FoV). The trucks are denoted by
{LV,FV1,FV2}. Among them, FV1 is the major experimen-
tal platform where faults are injected. As computing platforms,
an Nvidia Jetson AGX Xavier platform (high-level controller)
and an OpenCR embedded board (low-level controller) are
used. For the software platform, we use the robot operating
system (ROS), where perception and control modules are
developed as ROS nodes. Since an object detection module
is required, a YOLO-based object detection node is added to
the ROS network. More specifically, a YOLOv3-tiny network
is trained using our custom dataset of 2551 images captured
by FV1’s front-facing camera and 1676 images captured by
LV’s rear-facing camera for detecting the trailer and the tractor,
respectively. For the V2V communication, we use the 802.11ac
WIFI network.

B. Evaluation

Fig. 8 compares the camera-based gap estimation method
(Section IV-A and Section IV-E) with the lidar-based gap
measurement. In the figure, white areas denote the straight
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Fig. 10: Evaluation of lidar-based target tracking.
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Fig. 11: Evaluation of rear-facing camera-based lane keeping.

road segments while red areas denote the left curved road
segments in the proving ground (Fig. 2). Both experiments are
conducted by ramping down the reference gap from 1 m to
0.8 m to 0.6 m while the velocity is fixed at 0.8 m/s. The
average error is 3.86 cm in Fig. 8a and 2.54 cm in Fig. 8b,
respectively, having no meaningful impact on the longitudinal
control. One observation is that the estimation becomes more
accurate with shorter gaps. It is due to the disproportionate
pixel-to-pixel conversion ratio from the camera coordinate to
the BEV coordinate, which depends on the distance. It is a
positive property considering the close gaps between platooning
trucks.

Fig. 9 compares the velocity estimation method (Sec-
tion IV-B) with the encoder-based velocity measurement. The
reference velocity is ramped up from 0.6 m/s to 0.8 m/s to
1.0 m/s while the reference gap is fixed as 0.8 m. The figure
shows that the estimated velocity closely follows the measured
velocity, however, with noticeable time lags, which are vivid
around the time points 20 and 43. The time lag is caused
by the wireless network delay between LV and FV1 and the
processing delay of the low-pass filter in FV1. Its impact will
be evaluated later with scenario-based experiments.

Fig. 10 compares the lateral error of the lane-keeping control
and the target tracking control (Section IV-C) with and without
the rear-facing camera-based correction while the gap is 0.8 m
and the velocity is 0.6 m/s. In the figure, the lateral error of the
target tracking control without our correction method invades
the left lane on the curved road segments (red areas) due to the
off-tracking problem. In contrast, with our correction method,
the target tracking control ties with the lane-keeping control
without noticeable performance degradation.

Fig. 11 evaluates the rear-facing camera-based lane-keeping
control (Section IV-E) at the velocity of 0.6 m/s and the gap of
0.8 m. The figure compares the lateral error of the front-facing
camera-based and the rear-facing camera-based lane-keeping

!

!



0 5 10 15 20 25 30 35 40 45 50

Time [sec]

-15

-10

-5

0

5

10

15

L
a
te

ra
l 
e
rr

o
r 

[c
m

]

SS

SS

SS

SS + SS

SS + SS

SS + SS

Lateral error bound

Fault injection

L

E

C

L

E

L

E

C

C

+
+
+

(a) Lateral control performance.

0 5 10 15 20 25 30 35 40 45 50

Time [sec]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

G
a
p
 d

is
ta

n
c
e
 [
m

]

SS

SS

SS

SS + SS

SS + SS

SS + SS

Fault injectionL

E

C

L

E

L

E

C

C

+
+
+

(b) Longitudinal control performance.

Fig. 12: Failure scenario-based fault injection tests.

methods. Although both methods satisfy the given lateral error
bound without invading lanes, the rear-facing camera-based
control suffers significant fluctuations caused by the estimation
delay noticed in Fig. 9.

Fig. 12 shows the results of the fault injection tests with the
six scenarios. The platoon initially maneuvers in the normal
mode with the gap of 0.6 m and the velocity of 1.0 m/s.
Then faults are injected at time 5, and the platoon goes
into an emergency mode of a reduced velocity (0.6 m/s) and
an increased gap distance (0.8 m). Fig. 12a shows that the
lateral errors are maintained close to zero except the L + C
case that shows significant fluctuations caused by the limited
performance of the rear-facing camera-based control. However,
it is still within the lateral error bound. Fig. 12b shows stable
gap control performance across all the scenarios. One interest-
ing observation is the undershoot by E right after the fault
injection, which happens to be intensified by the sudden slow
down of LV and its velocity’s delayed transmission, making
FV1 mistakenly speed up briefly.

VI. RELATED WORK

Many fail-operational autonomous systems employ redun-
dancy architectures [4], [5], which have inherent cost issues.
However, safety is an issue of life and death rather than an
issue of cost. In this regard, we are not blindly against the
redundancy architecture due to the cost reason. Rather, our
proposed method further enhances the safety of heavy-duty
platooning trucks, regardless of their redundancy architecture.
Similarly, there are many studies on platooning trucks from
various aspects, for example, in terms of network issues [10],
[11], actuator faults [12], [13], and redundancy and diver-
sity [14]. In [15], a sensor fault detection and mitigation method
is presented assuming platooning vehicles, however, within a
limited scope of the longitudinal control.

VII. CONCLUSION

This study presents Phalanx, a failure-resilient truck pla-
tooning system that exploits platooning trucks’ unique driving
patterns and connectivity. Six sensor failure scenarios are con-
sidered and mitigated by emulating failed sensors and switching
control modes through cooperation between platooning trucks.
Phalanx is implemented on our scale trucks, which successfully
protect each other from sensor failures.
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