
Accurate yet Efficient Stochastic Computing Neural
Acceleration with High Precision Residual Fusion

Yixuan Hu1, Tengyu Zhang1, Renjie Wei1, Meng Li213∗, Runsheng Wang134, Yuan Wang13 and Ru Huang134
1School of Integrated Circuits & 2Institute for Artificial Intelligence, Peking University, Beijing, China

3Beijing Advanced Innovation Center for Integrated Circuits, Beijing, China
4Institute of Electronic Design Automation, Peking University, Wuxi, China

Abstract—Stochastic computing (SC) emerges as a fault-tolerant
and area-efficient computing paradigm for neural acceleration.
However, existing SC accelerators suffer from an intrinsic trade-
off between inference accuracy and efficiency: accurate SC re-
quires high precision computation but suffers from an exponential
increase of bitstream length and inference latency. In this paper,
we discover the high precision residual as a key remedy and
propose to combine a low precision datapath with a high precision
residual to improve inference accuracy with minimum efficiency
overhead. We also propose to fuse batch normalization with the
activation function to further improve the inference efficiency.
The effectiveness of our proposed method is verified on a recently
proposed SC accelerator. With extensive results, we show that
our proposed SC-friendly network achieves 9.43% accuracy im-
provements compared to the baseline low precision networks with
only 1.3% area-delay product (ADP) increase. We further show
3.01× ADP reduction compared to the baseline SC accelerator
with almost iso-accuracy.

Index Terms—Stochastic computing, neural acceleration, low
precision datapath, high precision residual

I. INTRODUCTION

Deep neural networks (DNNs) have achieved state-of-the-art
(SOTA) accuracy in a wide range of applications. However, the
fast scaling of DNNs introduces a rapid increase in network
parameters and computation, which poses new challenges to
computation resources and power budgets, especially for em-
bedded edge devices. Stochastic computing (SC) emerges as a
new computing paradigm and has gained a lot of attention in
recent years for low-cost neural acceleration [1]–[7].

In SC, a number is represented by a bitstream in which the
probability of 1s denotes its value [5]. The bitstream-based rep-
resentation makes SC more tolerable to the errors compared to
conventional binary representation [5]–[8]. Meanwhile, SC also
achieves high area efficiency as its arithmetic operations can be
processed by simple logic circuits. For example, multiplication
and addition can be performed by a single AND and OR gate,
respectively, which has a considerably lower hardware cost than
a regular multiplier and adder [5].

Despite the aforementioned benefits, SC encounters an in-
trinsic trade-off between inference accuracy and efficiency [9],
[10]. Specifically, the bitstream length (BSL) of the SC number
representation increases exponentially concerning the inference
precision. Hence, as shown in Figure 1, while efficient inference
prefers low precision computation, e.g., BSL equals to 2 bit,
the inference accuracy degrades significantly, e.g., more than

∗Corresponding author: meng.li@pku.edu.cn

Fig. 1. The trade-off between inference accuracy and efficiency (measured by
area-delay product, i.e., ADP): SC with 2b BSL achieves the highest efficiency
at the cost of more than 10% accuracy degradation (we fix the weight BSL to
2 bit and sweep the activation BSL).

10%. By increasing BSL to 4 bit, the accuracy can be enhanced
but at the cost of nearly 3x efficiency overhead.

To enhance the inference efficiency and accuracy for SC,
different optimizations have been proposed [4], [6], [9]–[13] to
improve the SC multiplier or SC accelerators. However, they
either suffer from the exponential increase of BSL for accurate
inference [9], [10], [12], [13] or force low precision SC to
trade-off inference accuracy with efficiency.

In this paper, we examine the origin of the accuracy degra-
dation for low precision SC and observe that low precision
activation results in limited network representation capability
and is the root cause of low inference accuracy. As a remedy,
we propose to leverage high precision residual connections to
improve the network representation capability while keeping
the majority of the computation in low precision. We verify our
proposed strategy on a recently proposed SC-based accelerator
and demonstrate both high inference accuracy and efficiency.
Our contributions can be summarized as follows:

• We study the root cause of accuracy degradation for
low precision SC and propose to combine high precision
residual with low precision datapath to enable accurate yet
efficient SC acceleration.

• We perpose to fuse batch normalization (BN) with ac-
tivation function to further improve the SC inference
efficiency.

• We verify our method on a baseline end-to-end SC-based
accelerator and design customized SC modules to enable
high precision residual fusion.

• We demonstrate 9.43% accuracy improvement for

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA 

	



TABLE I
THE CORRESPONDING BINARY PRECISION AND THE REPRESENTED RANGE

FOR THERMOMETER CODING OF DIFFERENT BSL.

BSL Binary
Precision Range Thermometer Coding

2 - -1, 0, 1 00, 10, 11
4 2 -2, -1, 0, 1, 2 0000, 1000, 1100, 1110, 1111
8 3 -4, -3 · · · 3, 4 00000000, 10000000 · · · 11111110, 11111111

16 4 -8, -7 · · · 7, 8 0000000000000000, 1000000000000000 · · ·
1111111111111110, 1111111111111111

TABLE II
COMPARISON WITH OTHER SC ACCELERATORS.

Scale BSL BN
Support NN Co-Opt Conv Cost

w.r.t. Accuracy
[10], [12], [13] Multiplier 256b - - Exponential

[3] Full System 256b - 1024b No No Exponential
[6], [8] Full System 2b No No Exponential

[11] Full System 32b Yes Yes Exponential

This work Full System 2b (Conv)
16b (residual) Yes Yes Constant

ResNet18 on CIFAR10 dataset with almost iso-ADP. We
also show 3.01× ADP reduction compared to the baseline
SC accelerator with almost the same inference accuracy.

II. BACKGROUND

In this section, we introduce the basic concepts of SC [8]
and the baseline fully parallel SC-based accelerator architecture
[6]. In Section IV, we verify our proposed method on the
baseline SC accelerator while we emphasize our method can
be generally applied to other SC accelerators.

A. SC Overview

In the conventional binary representation, a n-bit number x
represents

∑n−1
i=0 x[i]2i, where x[i] is the i-th bit of x and has

a weight of 2i. By contrast, SC leverages the uniform weight
coding, i.e., a number is represented by a bitstream and each
bit has the same weight. We refer interested readers to [5] for
a more detailed introduction.

In our work, we leverage the thermometer coding scheme,
which is deterministic with all the 1s appearing at the beginning
of the bitstream. With thermometer coding, x is represented
with a L-bit sequence as

x = αxq = α(
L−1∑
i=0

x[i]− L

2
),

where xq =
∑L−1

i=0 x[i] − L
2 is the quantized value of range

[−L
2 ,

L
2 ] and α is a scaling factor obtained by training. Follow-

ing [14], α can be limited to the power of 2 to enable hardware-
friendly processing. Because each bit x[i] shares the same
weights, a bit flip in SC results in a smaller error compared to
the binary representation, which makes SC more error resilient
[8]. Besides error resilience, SC can also achieve high area
efficiency as simple AND and OR gates can implement approx-
imate multiplication and addition operations, respectively. The
high area efficiency and error resilience make SC a promising
candidate for neural acceleration.

However, the uniform weight coding scheme is a double-
edged sword. In Table I, we show the range and the binary
precision for thermometer coding with different BSL. We

Fig. 2. The fully SC architecture in [6]. It is designed for ternary neural
networks and purely uses thermometer coding.

can observe an exponential increase of BSL with the binary
precision, which renders high precision SC very expensive. To
improve the SC efficiency, [10] proposes a novel SC multipli-
cation algorithm based on a deterministic bitstream generation
algorithm, which reduces the computation randomness for
better accuracy and latency. [12], [13] proposes a counter-based
approximate multiplier and introduces new scale bits to improve
the inference accuracy. Though effective, [10], [12] and [13] are
only at multiplier level and still suffer from the exponential BSL
increase for accurate inference. It is also unclear how to support
other important NN structures, e.g., BN, etc. In the full level,
[3] compares the system impact of different convolution block
designs but suffers from high BSL and low efficiency. [6], [8]
and [11] propose to directly leverage low precision bitstreams
for better efficiency. Specifically, [11] co-optimizes the network
and SC accelerator and allows using variable BSL for different
layers while [6], [8] directly implements ternary convolutions.
However, they all ignore the BN support and suffer from a large
accuracy degradation. In Table II, we compare our work with
the previous SC accelerator designs. Our design features co-
designing the networks and the accelerator to achieve constant
convolution cost with high inference accuracy.

B. Baseline SC-based Architecture

To verify our proposed method, in this paper, we select a
recently proposed SC-based accelerator [6] for a case study.
[6] is end-to-end SC-based without the need of frequent
conversion between SC and binary formats. It leverages the
thermometer coding scheme with 2b BSL for both weights and
activations. The accelerator features 3 major components as
shown in Figure 2, including an exact SC multiplier, a bitonic
sorting network (BSN), and a selective interconnect. The BSN
ranks all the 1s in the front of the bitstream and implements
exact accumulation in the thermometer coding scheme. The
selective interconnect encodes different functions by controlling
the input-to-output connections. Compared to other designs
[3], it achieves higher accuracy, better parallelism, and more
flexibility to support different activation functions.

The accelerator [6] is free of random fluctuations and
achieves very high efficiency due to the low precision operands
and highly parallel accumulation and activation functions.
However, it suffers from a large accuracy degradation for
large datasets. Directly increasing the inference precision of
the accelerator incurs a large efficiency overhead as shown
in Figure 1. Meanwhile, it is also unclear how to deal with
network structures like residual, BN, etc, in the original design.

III. SC-FRIENDLY LOW PRECISION NETWORK

In this section, we analyze the origin of the accuracy
degradation for low precision networks. Based on the analysis,
we propose to augment the low precision networks with high

!

!



TABLE III
NETWORK ACCURACY COMPARISON OF DIFFERENT QUANTIZED

NETWORKS ON CIFAR10: THE LOW PRECISION ACTIVATION NETWORK
SUFFERS FROM SIGNIFICANT ACCURACY DEGRADATION COMPARED TO THE

FLOATING POINT BASELINE AND LOW PRECISION WEIGHT NETWORK.

Network Weight/BSL Act/BSL Top-1 Accuracy (%)
baseline FP FP 94.27

weight quantized 2 FP 93.98
activation quantized FP 2 84.18

fully quantized 2 2 83.51

precision residual and SC-friendly operator fusion to improve
both the inference accuracy and efficiency.
A. Accuracy Degradation of Low precision Networks

As shown in Figure 1, low precision network with 2b BSL
achieves high inference efficiency but suffers from more than
10% accuracy degradation. Though efficient, such a large accu-
racy gap is clearly unacceptable for real-world applications. To
understand the origin of the accuracy degradation, we quantize
the network weights and activations to low precisions sepa-
rately. As shown in Table III, the low precision weight network
achieves very similar accuracy compared to the floating point
baseline. By contrast, activation quantization with 2b BSL leads
to 10% accuracy degradation. Hence, low precision activation
is the root cause of the accuracy loss.

We hypothesize the poor performance of the low precision
activation network is caused by its low representation capacity.
Following [15], we define the representation capability of a
tensor as the number of all possible configurations. As shown
in Figure 3(a), after the low precision quantization, the range
of activation is {−1, 0,+1} for 2b BSL and hence, its total
representation capacity is 3H×W×C , where H , W , and C
denote the activation height, width, and channels, respectively.
Compared to the high precision activation of the baseline
network, the representation capability is reduced drastically.

To enhance the network representation capability, one naive
solution is to increase the quantization precision and enhance
the range of the activation. However, such solution comes
at a large efficiency cost as shown in Figure 1. We observe
the widely used residual connections can act as a remedy
and propose to use high precision residual connections to
improve the network representation capacity. As shown in
Figure 3(b), the residual connects the inputs to the activation
low precision quantization layer to the output of the convolution
layer, and these two activations are added before the BN. The
proposed structure enables efficient BN processing as detailed
in Section III-B. We keep the residual in high precision (e.g.,
16b BSL, i.e., 4 bit binary precision), which, on one hand,
does not impact the efficiency of the convolution; on the other
hand, increases the range of the activation to {−8,−7, . . . , 7, 8}
and enhance the representation capability to 17H×W×C . As we
will show in the experiments, high precision residual helps to
improve the inference accuracy significantly while incurring
minimum efficiency overhead.

B. BN Fusion for High Inference Efficiency
Besides the high precision residual, another remaining ques-

tion is how to efficiently process BN. BN is proposed to enable

Fig. 3. High precision residual helps to achieve better representation capability.

training very deep networks and is essential for training low
precision networks [16]. Previous works [17], [18] only focus
on optimizing the convolution layers and use floating point
computation for BN, which is unfriendly to SC and incurs
a large overhead. We propose to fuse BN with the ReLU
activation function as below:

BN(x) = γ(x− β)

ReLU(BN(x)) =

{
γ(x− β) x ≥ β

0 x < β
(1)

where γ and β are trainable parameters for BN. The fused
BN and ReLU function can be accurately and efficiently
processed in SC through the selective interconnect as explained
in Section IV-B.

IV. CASE STUDY: END-TO-END SC ACCELERATOR WITH
HIGH PRECISION RESIDUAL

In this section, we demonstrate the effectiveness of the
proposed high precision residual and BN fusion on the SC
accelerator proposed in [6]. While we select an end-to-end SC
accelerator for the case study, our proposed principle is general
and can be applied to other SC accelerator designs.

A. Example of a Convolution Layer

We first use an example of a single convolution layer shown
in Figure 4 to explain the hardware blocks required to support
our proposed high precision residual. Assume we use 16b
and 2b BSL for the high precision residual and low precision
convolution, respectively. Then, a convolution layer involves 5
major steps:

1 The 16b BSL high precision activations are first sub-
sampled to 2b BSL before feeding to the convolution. To
keep the range of values constant, the scaling factor α of
the activation is updated to 1/4× 16÷ 2 = 2.

2 2b BSL activations and weights are multiplied using the
low precision multipliers from the baseline accelerator [6].

3 Due to the scaling factor mismatch between the residual
and the multiplication products, we re-scale the residual
first. Thanks to the uniform weight coding in SC , we just
need to replicate the residual 2 times to reduce the scaling
factor α from 1/4 to 1/8.

4 The residual and the multiplication products are concate-
nated and accumulated through the sorting network.

5 The fused operation of BN, ReLU, and activation re-
quantization is conducted by the selective interconnect.

!

!



Fig. 4. A convolution layer of the proposed SC accelerator.

B. SC Accelerator with High Precision Residual

Based on the example described above, we can summarize
the major components to support the high precision residual in
SC as follows:

• Activation sub-sampling block: sub-sample the high pre-
cision activation to low precision for efficient convolution
computation.

• Low precision multiplier: multiply the low precision
weights and activations.

• Residual re-scaling block: re-scale the residual to match
the scaling factor of the residual and multiplication prod-
ucts before accumulation.

• BSN-based accumulation block: sum the multiplication
products and the residual together.

• Selective interconnect for the activation function: han-
dle the fused operation of BN, activation function (e.g.,
ReLU), and activation re-quantization.

The low precision multiplier and the accumulation block can be
directly inherited from the baseline accelerator as introduced in
Section II-B. In this section, we focus on introducing the design
of the other blocks.

Activation Sub-sampling Block and Activation Function
Block: Both blocks can be implemented with the selective
interconnect. We use the sub-sampling block as an example to
explain the implementation. The activation sub-sampling block
implements the following conversion:

yq = round(
αx

αy
xq)

where xq and yq denote the high precision and low precision
quantized activations, respectively. Assume αx

αy
= 1

4 , then, we
have

yq =


−1 (00), −8 ≤ xq < −2

−0 (10), −2 ≤ xq < 3

−1 (11), −3 ≤ xq ≤ 8

.

-8 -6 -4 -2 0 2 4 6 8

-1

0

1
1 x[15]
1 x[14]
1 x[13]
1 x[12]
1 x[11]
1 x[10]
1 x[9]
1 x[8]
0 x[7]
0 x[6]
0 x[5]
0 x[4]
0 x[3]
0 x[2]
0 x[1]
0 x[0]

1
y[1]= x[10]

0 
y[0]= x[5]

SEL

(a) (b)

y=

y=�
−1, x∈[−8,−2)
0, x∈[−2,3)
1, x∈[3,8]

1, x ∈ [3, 8]
0, x ∈ [−2, 3)
−1, x ∈ [−8, −2)

Fig. 5. A 16-to-2 activation sub-sampling block.

Fig. 6. Two examples of BN-fused activation function with 16b BSL output.
The red lines are the expected BN-fused ReLU curve mentioned in Equation 1
and the blue dots are the outputs of the proposed design.

Hence, we can derive yq[1] and yq[0] as

yq[1] =

{
0, −8 ≤ xq < −2

1, −2 ≤ xq ≤ 8
, yq[0] =

{
0, −8 ≤ xq < 3

1, −3 ≤ xq ≤ 8
.

As we use thermometer coding for both xq and yq , we can
further derive yq[1] = xq[5] and yq[0] = xq[10]. Therefore, for
a given αx

αy
, the sub-sampling block is equivalent to connecting

each output bit with a certain input bit. To further support
flexible scaling factor ratios, two multiplexers with the corre-
sponding select signal are added to control the connection. In
Figure 5, we show the sub-sampling function and the hardware
implementation for the example above.

Following a similar methodology, we can implement the
activation function block. We omit the detailed explanation
but show two examples in Figure 6. As can be observed,
with selective interconnect, we can achieve a very accurate
approximation of the fused activation function.

Residual Re-scaling Block: The residual re-scaling block
aligns the scaling factors for the residual and multiplication
products before the accumulation. Since we limit the scaling
factors to be the power of 2 following [14], in the re-scaling
block, we just need to multiply or divide the residual by a
factor 2N , where N is an integer. In Algorithm 1, we describe
the logic for the residual re-scaling block assuming 16b BSL
residual. To multiply the residual by 2N , we just need to
replicate the residual by 2N times. This is realized by writing
the same residual to the buffer 2N times. When dividing the
residual by 2N , we make a 1-out-of-2 bit selection of the
residual every cycle and generate the final result after N cycles.
To keep the BSL for residual constant, we always concatenate
8b’11110000 (equal to 0) in each cycle of the division.

!

!



Algorithm 1: Residual Re-scaling Block.

Input: 16b BSL input Din, scaling factor 2N , mode M
(multiplication or division)

Output: Calculation result Dout
if M == “multiplication” then

for i = 1 : 2N do
Dout = Din;
output Dout; // Output Dout every cycle

end
else

for i = 1 : N do
Dout = {Din[15 : 0 : 2], 8′b11110000};

end
output Dout; // Output Dout only once

end

V. EXPERIMENTAL RESULTS

A. Experiment setup

Models and Datasets: We evaluate our methods on two
modern convolutional networks (ResNet18 and ResNet34 [19])
that are widely used and two datasets (CIFAR10 and CIFAR100
[20]). We adjust the total strides of both networks from 32 to
8 to deal with the small input resolutions of CIFAR datasets.

Training Settings: We train all the models for 310 epochs
with 10 warm-up epochs and use an AdamW optimizer [21]
with a momentum of 0.9, an initial learning rate of 7.5e-4,
and a cosine learning rate schedule. We set the training batch
size to 128. We follow [17] for the data augmentation and use
learned step size quantization (LSQ) to quantize both weights
and activations [22]. To improve the accuracy of the quantized
network, we follow [17] to use the progressive quantization
algorithm, i.e., we first train a network with floating point
weights and quantized activations; then, in the second step, we
re-load the checkpoint and train a fully quantized network. We
use knowledge distillation (KD) in both steps with the floating
point model as a teacher.

Hardware Evaluation: We implement the register transfer
level (RTL) code for both baseline SC accelerator and our
improved design and then, synthesize both designs using Syn-
opsys Design Compiler with TSMC 28nm technology library.
We report the hardware metrics based on the synthesis results.
The implemented SC accelerator has 144 multipliers, each
supporting 2b BSL for weights, 2/4 bit BSL for activations, and
2/4/8/16 bit BSL for the residual. Depending on the BSL for the
activations, a 320-bit BSN and a 640-bit BSN are implemented
for the accumulation and residual connection.

B. Main Results

Network Accuracy Comparison: We compare the fully
ternarized network with our proposed SC-friendly network that
features high precision residual and BN fusion. We have the
following findings based on the results shown in Table IV:

• With the high precision residual, network accuracy is
improved significantly by 8.69% and 8.12% for low preci-
sion ResNet18 on CIFAR10 and CIFAR100, respectively.

TABLE IV
IMPROVE INFERENCE ACCURACY WITH HIGH PRECISION RESIDUAL (I.E.,

16B BSL) AND NOVEL NETWORK TRAINING STRATEGIES. NOTE THAT
FULLY TERNARIZED RESNET34 DOES NOT CONVERGE ON CIFAR100.

Network Variant CIFAR10 (%) CIFAR100 (%)

ResNet18
2b BSL W & Act 82.58 55.89

+ 16b BSL Residual 91.29 64.01
+ Two-step Quant 91.95 68.58

+ KD 92.01 71.31

ResNet34
2b BSL W & Act 76.11 -

+ 16b BSL Residual 91.13 66.77
+ Two-step Quant 91.77 68.12

+ KD 91.75 70.80

TABLE V
IMPACT OF RESIDUAL PRECISION ON RESNET18 ACCURACY.

Network Weight/BSL Act/BSL Res/BSL *Accuracy (%)
Baseline 2 2 2 86.23

ResNet18

2 2 4 90.40
2 2 6 91.61
2 2 8 91.64
2 2 16 92.01
2 2 FP 92.16

*All (including baseline) using the novel training techniques in Section V-A.

Combined with the novel training techniques, network
accuracy can be improved in total by 9.43% and 15.42%,
respectively.

• Low precision networks with 2b BSL for weights and
activations can be hard to converge when the network
gets deeper and the dataset gets harder (see low preci-
sion ResNet34 trained on CIFAR100). By contrast, high
precision residual improves the training convergence and
helps the network to gain higher accuracy.

We also observe the low precision ResNet34 in general per-
forms worse compared to the ResNet18. We hypothesize this
is because deep, low precision networks are harder to converge.
We leave more in-depth study as our future work.

Impact of High Precision Residual: We take ResNet18
trained on CIFAR10 to analyze the impact of residual precision
on network accuracy. We fix the weight and activation precision
to 2b BSL and sweep the residual precision from 2b BSL to
16b BSL. We report the network accuracy in Table V. We
also report the network with floating point residual although it
cannot be directly supported by the SC accelerator. As shown
in Table V, increasing the residual precision from 2b BSL to 4b
BSL enhances the inference accuracy by more than 4%. While
the accuracy gain slows down with the increase of residual
precision, the network with 16b BSL residual achieves almost
the same accuracy as the network with floating point residual.

Accelerator Efficiency Comparison: We now compare dif-
ferent accelerators with 3 different precision configurations on
their area, delay, and ADP. As shown in Table VI, compared to
the baseline accelerator with 2b BSL for the weight, activation,
and residual, our proposed design achieves 9.43% accuracy
improvements with only 1.3% ADP overhead. Meanwhile,
compared to the accelerator with 2b BSL weight and 4b
BSL activation/residual, we achieve 3.01× ADP reduction with
almost iso-accuracy (less than 0.35% difference).

Accelerator Area Breakdown and Energy Breakdown: We
further show the area and energy breakdown of the accelerator

!

!



TABLE VI
INFERENCE EFFICIENCY AND ACCURACY COMPARISON.

W-A-R/BSL Area (um²) Delay (ns) ADP (um²·us) Accuracy (%)

Baseline [6] 2-2-2 4349.7 51.81 225.36 82.58
2-4-4 10683.3 64.35 687.47 92.35

This work 2-2-16 4406.9 51.81 228.32 92.01

Fig. 7. For a 3x3x512 convolution kernel, the a) area breakdown and b) energy
breakdown of the SC accelerator for different BSLs of residual from 2 to 16.
The left part corresponds to 2b BSL activation and the right part corresponds
to 4b BSL activation. And 2b BSL weight is used in all cases.

with different precisions for the residual. We fix the weight
precision to 2b BSL and evaluate the breakdown for both
2b BSL and 4b BSL activations. We sweep the precision of
the residual and the results are shown in Figure 7. As we
can see, while the area and energy to handle the residual
increases with the residual precision, it only accounts for a
very small portion, i.e., 2.08% area and 8.08% energy for 2b
BSL activations. When increasing the activation precision to
4b BSL, the residual takes an even smaller area and energy.
This further verifies the low overhead and high efficiency of
our proposed method.

VI. CONCLUSION

In this paper, we study the accuracy-efficiency trade-off of
SC-based neural acceleration. We discover the low precision
activation as the major accuracy bottleneck and propose to
leverage the high precision residual as a remedy. We combine
the low precision computation with a high precision residual
to enable accurate yet efficient SC inference. The proposed
method is verified on a recently proposed end-to-end SC-based
accelerator. Compared to the baseline design, we achieve 9.43%
accuracy improvement with only 1.3% efficiency overhead and
achieve 3× efficiency improvement with comparable accuracy.

REFERENCES

[1] Z. Xia, R. Wan, J. Chen, and R. Wang, “Reconfigurable spatial par-
allel stochastic computing for accelerating sparse convolutional neural
networks,” in SCIENCE CHINA Information Sciences, 2022.

[2] S. Liu and J. Han, “Energy efficient stochastic computing with sobol
sequences,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2017, pp. 650–653.

[3] A. Ren, Z. Li, C. Ding, Q. Qiu, Y. Wang, J. Li, X. Qian, and B. Yuan, “Sc-
dcnn: Highly-scalable deep convolutional neural network using stochastic
computing,” in International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). ACM,
2017, p. 405–418.

[4] R. Hojabr, K. Givaki, S. R. Tayaranian, P. Esfahanian, A. Khonsari,
D. Rahmati, and M. H. Najafi, “Skippynn: An embedded stochastic-
computing accelerator for convolutional neural networks,” in ACM/IEEE
Design Automation Conference (DAC). IEEE, 2019, pp. 1–6.

[5] Y. Liu, S. Liu, Y. Wang, F. Lombardi, and J. Han, “A survey of stochastic
computing neural networks for machine learning applications,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 32, no. 7,
pp. 2809–2824, 2020.

[6] Y. Zhang, S. Lin, R. Wang, Y. Wang, Y. Wang, W. Qian, and R. Huang,
“When sorting network meets parallel bitstreams: A fault-tolerant parallel
ternary neural network accelerator based on stochastic computing,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2020, pp. 1287–1290.

[7] Y. Song, E. H.-M. Sha, Q. Zhuge, R. Xu, Y. Zhang, B. Li, and L. Yang,
“Bsc: Block-based stochastic computing to enable accurate and efficient
tinyml,” in Asia and South Pacific Design Automation Conference (ASP-
DAC). IEEE, 2022, pp. 314–319.

[8] Y. Hu, Y. Zhang, R. Wang, Z. Zhang, J. Song, X. Tang, W. Qian, Y. Wang,
Y. Wang, and R. Huang, “A 28-nm 198.9-tops/w fault-tolerant stochastic
computing neural network processor,” IEEE Solid-State Circuits Letters,
vol. 5, pp. 198–201, 2022.

[9] H. Xiong, G. He et al., “Hardware implementation of an improved
stochastic computing based deep neural network using short sequence
length,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 67, no. 11, pp. 2667–2671, 2020.

[10] H. Sim and J. Lee, “A new stochastic computing multiplier with ap-
plication to deep convolutional neural networks,” in ACM/IEEE Design
Automation Conference (DAC). IEEE, 2017, pp. 1–6.

[11] W. Romaszkan, T. Li, T. Melton, S. Pamarti, and P. Gupta, “Acoustic:
Accelerating convolutional neural networks through or-unipolar skipped
stochastic computing,” in Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE). IEEE, 2020, pp. 768–773.

[12] S. Yu, Y. Liu, and S. X.-D. Tan, “Cosaim: Counter-based stochastic-
behaving approximate integer multiplier for deep neural networks,” in
ACM/IEEE Design Automation Conference (DAC). IEEE, 2021, pp.
499–504.

[13] S. Yu and S. X.-D. Tan, “Scaled-cbsc: scaled counting-based stochastic
computing multiplication for improved accuracy,” in ACM/IEEE Design
Automation Conference (DAC), 2022, pp. 1003–1008.

[14] L. Lai, N. Suda, and V. Chandra, “Cmsis-nn: Efficient neural network
kernels for arm cortex-m cpus,” arXiv preprint arXiv:1801.06601, 2018.

[15] Z. Liu, B. Wu, W. Luo, X. Yang, W. Liu, and K.-T. Cheng, “Bi-real net:
Enhancing the performance of 1-bit cnns with improved representational
capability and advanced training algorithm,” in European conference on
computer vision (ECCV), 2018, pp. 722–737.

[16] T. Chen, Z. Zhang, X. Ouyang, Z. Liu, Z. Shen, and Z. Wang, “Bnn-
bn=?: Training binary neural networks without batch normalization,”
in IEEE/CVF conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, 2021, pp. 4619–4629.

[17] B. Martinez, J. Yang, A. Bulat, and G. Tzimiropoulos, “Training bi-
nary neural networks with real-to-binary convolutions,” arXiv preprint
arXiv:2003.11535, 2020.

[18] Z. Liu, B. Oguz, A. Pappu, L. Xiao, S. Yih, M. Li, R. Krishnamoorthi, and
Y. Mehdad, “Bit: Robustly binarized multi-distilled transformer,” arXiv
preprint arXiv:2205.13016, 2022.

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

[20] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
in Tech Report, 2009.

[21] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
arXiv preprint arXiv:1711.05101, 2017.

[22] S. K. Esser, J. L. McKinstry, D. Bablani, R. Appuswamy, and
D. S. Modha, “Learned step size quantization,” arXiv preprint
arXiv:1902.08153, 2019.

!

!


	Select a link below
	Return to Previous View
	Return to Main Menu


