

Design of Large-Scale Stochastic Computing
Adders and their Anomalous Behavior

Timothy Baker and John P. Hayes
Department of Electrical Engineering and Computer Science

University of Michigan
Ann Arbor, MI, USA

{bakertim, jhayes}@umich.edu

Abstract— Stochastic computing (SC) uses streams of
pseudo-random bits to perform low-cost and error-tolerant
numerical processing for applications like neural networks and
digital filtering. A key operation in these domains is the
summation of many hundreds of bit-streams, but existing SC
adders are inflexible and unpredictable. Basic mux adders have
low area but poor accuracy while other adders like accumulative
parallel counters (APCs) have good accuracy but high area. This
work introduces parallel sampling adders (PSAs), a novel
weighted adder family that offers a favorable area-accuracy
trade-off and provides great flexibility to large-scale SC adder
design. Our experiments show that PSAs can sometimes achieve
the same high accuracy as APCs, but at half the area cost. We
also examine the behavior of large-scale SC adders in depth and
uncover some surprising results. First, APC accuracy is shown
to be sensitive to input correlation despite the common belief
that APCs are correlation insensitive. Then, we show that mux-
based adders are sometimes more accurate than APCs, which
contradicts most prior studies. Explanations for these anomalies
are given and a decorrelation scheme is proposed to improve
APC accuracy by 4x for a digital filtering application.

Keywords—stochastic computing, weighted addition, large
scale, design trade-offs, accuracy analysis, digital filtering

I. INTRODUCTION
Stochastic computing (SC) is a serial computing style that

uses pseudorandom bit-streams called stochastic numbers
(SNs) to encode and process data [1]. An SN 𝐗𝐗 =
𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝐿𝐿 is an L-bit sequence of pseudo-random bits that
have the same probability of taking value 1: 𝑃𝑃𝑋𝑋 = ℙ(𝑥𝑥𝑡𝑡 = 1).
The numerical value of X is derived from 𝑃𝑃𝑋𝑋 based on the
format used. In unipolar format X’s value is 𝑋𝑋 = 𝑃𝑃𝑋𝑋 . In
bipolar format, X’s value is 𝑋𝑋 = 2𝑃𝑃𝑋𝑋 − 1 which allows
representation of negative numbers. The SN encoding enables
the use of very small and power-efficient datapaths for compu-
tationally intensive applications like those in digital filtering
[2][3][4] and neural networks [5][6][7][8][9][10][11].

The main attraction of SC is its relatively small circuits for
multiplication and addition. Consider an AND gate with
unipolar SN inputs 𝐗𝐗 and 𝐘𝐘 and output 𝐙𝐙. The output SN’s
value 𝑍𝑍 = 𝑃𝑃𝑍𝑍 = ℙ(𝑧𝑧𝑡𝑡 = 1) can be expressed as ℙ�(𝑥𝑥𝑡𝑡 =
1) ∧ (𝑦𝑦𝑡𝑡 = 1)� and simplified to ℙ(𝑥𝑥𝑡𝑡 = 1)ℙ(𝑦𝑦𝑡𝑡 = 1) = 𝑋𝑋𝑋𝑋
provided X and Y are uncorrelated. Thus, 𝑍𝑍 = 𝑋𝑋𝑋𝑋 implying
that multiplication can be performed with just an AND gate
once data are encoded into unipolar SNs. For bipolar SNs, an
XNOR gate acts as an SN multiplier.

Like multiplication, adding SNs can also be low in cost
[1]. For example, the two-way mux in Fig. 1b performs scaled
addition 𝑍𝑍 = 0.5(𝑋𝑋 + 𝑌𝑌) on its data inputs X and Y by using
a control SN S with probability 𝑃𝑃𝑆𝑆 = 0.5. In each clock cycle,
𝐒𝐒 = 𝑠𝑠1𝑠𝑠2 … 𝑠𝑠𝐿𝐿 determines whether X is sampled (i.e., when

(b)

(a)

(c)

SN to fixed-
point interface

Stochastic
arithmetic cct

Fixed-point to
SN interface

Z X
Y

SNG

SNG
ˆ Z ≈XYCounter

X
Y

Stochastic
bitstream

with value X

XA < B

B

A

X
Fixed-point
input data

X

Y
Z

S
S = 0.5

0

1

M
U
X

Random no.
source

Z = 0.5(X + Y)

n
n
n

n

n

Fig. 1. (a) SC arithmetic circuit embedded in traditional computing system.
(b) Multiplexer (mux) based SN adder; (c) SN generator (SNG).

𝑠𝑠𝑡𝑡 = 0) or Y is sampled (i.e., 𝑠𝑠𝑡𝑡 = 1). Over the long run, half
of Z’s bits will be sampled from X and half from Y implying
that Z’s value is the average of X’s and Y’s values.

A tree of two-way muxes can be used to implement a large
adder with many inputs. However, such mux tree adders,
which exist in many variants [3][4], usually have poor
accuracy when used to sum hundreds of inputs [2][5]. Much
research has been devoted to implementing large-scale
stochastic addition, and many alternatives to mux adders have
been proposed. A common alternative adder is the accu-
mulative parallel counter (APC) [12] which counts in parallel
all the 1s appearing in its input SNs in each clock cycle. APCs
are usually more accurate than mux adders, but also have
much higher area cost due to their counting approach.

 Besides APCs, other novel SC adder types have been
proposed [2][7][8][9]. A cursory analysis reveals that existing
SC adders tend to belong to one of two extremes; either the
adder is accurate but large, or else it is small but inaccurate.
To increase the flexibility of SC adder design, this work
introduces parallel sampling adders (PSAs). The PSA
framework greatly improves SC adder design flexibility by
offering a smooth accuracy-area trade-off. The trade-off is
very favorable in some cases where PSAs achieve the same
accuracy as APCs while using half the area. This work also
examines the behavior of large-scale SC adders in depth and
finds some surprising results. The main contributions are:

1. Introduction of the parallel sampling adder which adds
great flexibility to the design of large-scale SC adders.

2. Demonstration that correlation impacts APC accuracy
despite the common belief that APCs are correlation
insensitive. A low-cost decorrelation scheme is
presented for improving APC accuracy.

This research was supported by the U.S. National Science Foundation
under Grant CCF-2006704.

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

Stochastic
number

generators
(SNGs)

Inversion
array

Y1

Y2

Y3

Y4

X1

CounterZMUX

X1

X2

X3

X4

Ẑ
X2

X3

X4

Input
values Mux select generation logic

S

Estimated
output
value

Implements
sign(Wi)

Implements
|Wi|

Fig. 2. Four-input bipolar mux adder that implements (1) with scale factor
𝛼𝛼 = ∑ |𝑊𝑊𝑖𝑖|4

𝑖𝑖=1 . There are various ways to configure the mux select generation
logic [3][4]. For example, the CeMux design [2] uses a plain binary counter
for the mux select generation logic.

3. A comprehensive comparison of large-scale adder
designs leading to some surprising results like mux
adders sometimes have better accuracy than APCs.

The rest of the paper is organized as follows: Sec. II
reviews relevant SC concepts while Sec. III then introduces
the novel PSA design. Sec. IV details case studies that
demonstrate the usefulness of PSAs and reveal surprising
behavior of large-scale SC adders. Sec. V draws conclusions.

II. STOCHATSIC COMPUTING ADDERS

A. Stochastic Computing Basics
To take advantage of low-cost SC multiplication and

addition circuits, data must first be converted into SN bit-
streams. The structure of an SC system intended to be
embedded in a larger, conventional computing system is
sketched in Fig. 1a. Here, SN generators (SNGs) are first used
to encode data into SNs. Specifically, SNs X and Y are
generated with corresponding values 𝑋𝑋 and 𝑌𝑌. Then X and Y
are multiplied using an AND gate to produce 𝐙𝐙 = 𝑧𝑧1𝑧𝑧2 … 𝑧𝑧𝐿𝐿
with numeric value 𝑍𝑍 = 𝑋𝑋𝑋𝑋 . Finally, a counter is used to
estimate Z’s value as 𝑍̂𝑍 = 1

𝐿𝐿
∑ 𝑧𝑧𝑡𝑡𝐿𝐿
𝑡𝑡=1 over 𝐿𝐿 clock cycles.

It is important to note the distinction between the various
values associated with an SN such as Z. There is the SN’s
expected value 𝑍𝑍 = 𝔼𝔼�𝑍̂𝑍� determined by the circuit design and
randomness sources. There is also Z’s estimated value 𝑍̂𝑍
found by counting the 1s in Z, and Z’s target value 𝑍𝑍∗
determined by the application. It is often the case that 𝑍𝑍 = 𝑍𝑍∗,
but 𝑍̂𝑍 ≠ 𝑍𝑍∗ due to the inherent randomness of SC. The
difference between 𝑍̂𝑍 and 𝑍𝑍∗ is the SN’s error 𝜖𝜖𝑍𝑍 = 𝑍̂𝑍 − 𝑍𝑍∗.

One design challenge of SC is that a stochastic circuit’s
output 𝑍̂𝑍 is a probabilistic approximation of the target output
value 𝑍𝑍∗. The accuracy of 𝑍̂𝑍 depends on the bit-stream length
L, the circuit design, and possibly other factors [14].
Generally, accuracy improves as L increases because random
fluctuations average out over many clock cycles. However,
using very large L means slow operation and high energy
consumption. Thus, a major focus of stochastic circuit design
is to improve accuracy for a given SN length [13][14].

 Another design challenge of SC is that generating SNs is
very costly compared to performing SN arithmetic. As
suggested in Fig. 1c, SNGs are large and typically consist of a
comparator alongside a pseudo-random number source like a
linear feedback shift register [1] or Sobol sequence generator
[13]. To amortize SNG overhead, SC is best used to
implement expensive operations like the large-scale weighted
summations found in digital filters or neural networks.

X2
W2

X2

W2 X3
W3

X3

W3 X4
W4

X4

W4

Parallel
counter Accumulator

X1
W1

Ẑ

Y1

Y2

Y3

Y4

Stochastic
number

generators
(SNGs)

X1

W1

Fig. 3. APC-based bipolar weighted adder. The XNOR gates multiply the
input SNs by the weight SNs. The parallel counter accumulates the
products.The accumulator stores the sum over the entire SN length.

B. Stochastic Computing Adder Design
SC weighted adders implement

𝑍𝑍∗ =
1
α
�𝑊𝑊𝑖𝑖𝑋𝑋𝑖𝑖

𝑀𝑀

𝑖𝑖=1

(1)

where 𝑋𝑋𝑖𝑖 are the input values with corresponding weight 𝑊𝑊𝑖𝑖
and 𝛼𝛼 is a scale factor which depends on the adder design.

 Multiplexers are the traditional weighted SC adder type.
Fig. 2 illustrates a bipolar mux adder with 𝑀𝑀 = 4 inputs. Input
values 𝑋𝑋1 to 𝑋𝑋4 are first encoded into bipolar SNs X1 to X4.
The inverter array with output Y1 to Y4 then implements the
sign of the input weights. If 𝑊𝑊𝑖𝑖 < 0, then Xi is inverted and Yi
has value 𝑌𝑌𝑖𝑖 = −𝑋𝑋𝑖𝑖, otherwise Xi is left unchanged and Yi has
value 𝑌𝑌𝑖𝑖 = 𝑋𝑋𝑖𝑖. Next, the mux samples one of its inputs. The
probability that Yi is sampled is made equal to its normalized
weight |𝑊𝑊𝑖𝑖|/∑ |𝑊𝑊𝑖𝑖|4

𝑖𝑖=1 and this sampling value effectively
implements the magnitude of the weights. The mux output Z’s
value is a weighted sum (1) with 𝑀𝑀 = 4 and 𝛼𝛼 = ∑ |𝑊𝑊𝑖𝑖|4

𝑖𝑖=1 .

Conventional mux adders require very long bitstreams to
achieve practical accuracy thresholds [2][3]. For instance,
when implementing a 267-input weighted summation, basic
mux adders required 22𝑛𝑛+1bit SNs to match the accuracy of a
conventional 𝑛𝑛 -bit binary design [3]. Thus, to match 8-bit
binary adder’s performance, SNs exceeding 100,000 bits in
length are needed and lead to high latency and energy
consumption. Recently, however, a mux adder named CeMux
[2] was introduced that has about 30% lower area and about
9x lower error than basic mux designs. CeMux achieves
higher accuracy and lower cost by ensuring all mux inputs are
maximally correlated and by using a deterministic sampling
process that does not bias the output [2].

 Another common SC weighted adder type employs APCs.
Fig. 3 illustrates a 4-input bipolar weighted APC. Here, the
input values 𝑋𝑋1 to 𝑋𝑋4 and the corresponding weights 𝑊𝑊𝑖𝑖 are
converted into bipolar SNs that are multiplied using XNOR
gates. The product SNs Y1 to Y4 with value 𝑌𝑌𝑖𝑖 = 𝑊𝑊𝑖𝑖𝑋𝑋𝑖𝑖 are then
summed using an accumulative parallel counter. The APC
output is 𝑍̂𝑍 with value ∑ 𝑌𝑌𝑖𝑖4

𝑖𝑖=1 = ∑ 𝑊𝑊𝑖𝑖𝑋𝑋𝑖𝑖4
𝑖𝑖=1 . Overall, APC

weighted adders implement (1) with no scale factor (𝛼𝛼 = 1).
APCs (sometimes called population counters) exhaustively
count all 1s from the product SNs in each clock cycle, and thus
have high accuracy as well as high cost. APC and mux adders
are the most common SC adders; other adder designs are
reviewed in [5] and discussed briefly in Secs. III and IV.

Normally, every input and weight SN requires its own
SNG (Fig. 1c) which can be costly in terms of area and power.
However, cost can be greatly reduced by sharing a single RNS
across several SNGs as in Fig. 4a. Such RNS sharing leads to
correlation amongst the generated SNs, and careful design is

!

!

RNS

X1
A < B

B

A
R

X2
A < B

B

A

X3
A < B

B

A

RNS
X1X1

A < B
B

A
R

A < B
B

A

X3
A < B

B

A

X2

X3

f2

f3

(a) (b)

f1
X1

X2

X3

Fig. 4. Sharing a single RNS amongst multiple SNGs. (a) direct sharing; (b)
sharing where each SNG applies a randomly chosen network of inverters to
the shared RNS value. The inverter networks are represented by the 𝑓𝑓𝑖𝑖 boxes.

required to avoid correlation-induced error. For mux adders, a
single RNS is shared amongst all input SNGs which has been
shown to improve accuracy [2]. For weighted APCs, one RNS
is shared amongst all input SNGs and a second RNS is shared
amongst all weight SNGs. Generating inputs and weights with
separate RNSs ensures input and weight SNs are independent
which is required for accurate XNOR multiplication.

III. PARALLEL SAMPLING ADDERS
 Parallel sampling adders (PSAs) combine mux adders and
APCs into a single flexible design. In a PSA, input SNs are
arranged into disjoint groups of size 𝐺𝐺 , each of which is
applied to a separate mux adder. The outputs of all muxes are
then accumulated by an APC. For example, Fig. 5a shows an
8-input PSA with two groups of size 𝐺𝐺 = 4. Both groups are
summed separately by muxes with outputs Y1 and Y2 that have
value 𝑌𝑌1 = 0.25 ∑ 𝑋𝑋𝑖𝑖4

𝑖𝑖=1 and 𝑌𝑌2 = 0.25∑ 𝑋𝑋𝑖𝑖8
𝑖𝑖=5 , respectively.

Left bit-shifts S are then used to remove the 0.25 scale factors
from the mux output values before Y1 and Y2 are accumulated
by a small APC whose output value is 𝑍𝑍 = ∑ 𝑋𝑋𝑖𝑖8

𝑖𝑖=1 .

 A PSA is parameterized by its group size 𝐺𝐺 which is the
maximum input size of any mux adder used in the PSA. For
example, the PSA in Fig. 5a has 𝐺𝐺 = 4 while the PSA in Fig.
5b has 𝐺𝐺 = 2. Group size represents the degree of
approximation of the PSA – higher 𝐺𝐺 means a more aggres-
sive approximation and typically lower area and accuracy. For
an M-input PSA, 𝐺𝐺 takes values between 1 and 𝑀𝑀 and is
restricted to be a power-of-two so that scale factors introduced
by the mux adders can always be removed by bit-shifts. All
muxes in a PSA are implemented as CeMux designs because
it is the smallest and most accurate mux adder [2].

A. Weighted PSAs
The basic PSA design in Fig. 5 is now extended to

implement general weighted addition (1) with 𝛼𝛼 = 1. Fig. 6
displays a bipolar weighted PSA with 𝑀𝑀 = 7 inputs and
group size 𝐺𝐺 = 4. First, inputs and weight SNs are multiplied
using XNOR gates to produce 7 product SNs {𝐏𝐏i}𝑖𝑖=17 with
value 𝑃𝑃𝑖𝑖 = 𝑊𝑊𝑖𝑖𝑋𝑋𝑖𝑖. The product SNs are then grouped into sets
of size 𝐺𝐺 = 4. In this case, one group is constructed:
{𝐏𝐏1,𝐏𝐏2,𝐏𝐏3,𝐏𝐏4}. Three SNs remain that cannot form another
four-element group, so 𝐺𝐺 is cut in half and one group of size 2
is constructed: {𝐏𝐏5,𝐏𝐏6}. As one SN remains, the group size is
again cut in half to size one and a final group {𝐏𝐏7} is formed.
Each group is input to a separate mux and all mux outputs are
summed with an APC to produce the final output 𝑍̂𝑍.

 One viewpoint on PSA design is that it uses mux adders to
approximate and reduce the size of a pure APC design. PSAs
may therefore seem superficially similar to approximate APC

 APC

X1

X2

X5

X6

X3

X4

X7

X8

 APC

X1

X2

X3

X4

X5

X6

X7

X8

Z

(a) (b)

ˆ Ẑ

Y1

Y2

Y1

Y2

Y3

Y4

Left bit-
shift block

Mux
adder

Mux
adder

S

S
3

S

S

n

S

S

S

S

2

2

2

2

n3

Fig. 5. Basic PSAs that implement 𝑍𝑍 = ∑ 𝑋𝑋𝑖𝑖8

𝑖𝑖=1 . S denotes a 1-bit shift left.
(a) PSA with group size 𝐺𝐺 = 4 (b) PSA with group size 𝐺𝐺 = 2.

Mux
adder

n

Mux
adder

W1

X1

Ẑ

Left bit-
shift block

P1

APC

W2

X2 P2

W3

X3 P3

W4

X4 P4

W5

X5 P5

W6

X6 P6

W7

X7
P7

S S

S

2 3

2

Fig. 6. Weighted PSA with group size 𝐺𝐺 = 4. An array of XNOR gates is
first used to multiply the bipolar inputs and weights. Product SNs are then
accumulated by mux adders of various sizes. All scale factors introduced by
the mux adders are removed with left bit-shifts S before the mux outputs are
accumilated by a small APC whose exepected output is 𝑍𝑍 = ∑ 𝑊𝑊𝑖𝑖𝑋𝑋𝑖𝑖7

𝑖𝑖=1 .

designs like AxPC [15] and SUC adders [7], but they actually
differ in fundamental ways. Unlike AxPC and SUC adders,
PSAs can be used with bipolar SNs. PSA weights also do not
need to be partitioned into disjoint subsets that sum to 1 as in
SUC adders. Lastly, PSA weights are programmable, whereas
changing weights in an SUC adder requires redesigning
hardwire interconnections.

B. Area-Accuracy Trade-off
A PSA’s area and accuracy depend on the PSA’s group

size 𝐺𝐺. Larger 𝐺𝐺 implies a higher level of approximation and
thus lower area and accuracy. To determine how area changes
with 𝐺𝐺 we used Synopsys Design Compiler (DC) with the
Nangate 45nm library [16] to synthesize PSAs with various
sampling group sizes, input sizes, and SN lengths.

Fig. 7a shows the area of a PSA configured to perform
weighted addition on 512 unipolar SNs of length 128. Here,
area varies roughly linearly with group size 𝐺𝐺. When 𝐺𝐺 = 1,
the PSA is equivalent to a pure APC adder and its area is about
70% higher than the smallest PSA design with 𝐺𝐺 = 512 .
These results make intuitive sense: as sampling group size
increases, the size of the APC in the PSA shrinks
proportionally thus decreasing area cost in a consistent
manner. Other SN lengths and input sizes were tested and
yielded similar normalized area results.

!

!

Fig. 7. PSA area and accuracy trade-offs: (a) Unipolar PSA synthesized
area as a function of group size. Area is normalized by dividing by a
weighted APC’s area; (b) Unipolar PSA error vs. group size.

 The impact of group size 𝐺𝐺 on accuracy was investigated
by simulating a unipolar 512-input PSA with SN length 𝐿𝐿. For
each pair of values 𝐺𝐺 and 𝐿𝐿, the PSA is simulated with
uniformly random input and weight values 𝑋𝑋𝑖𝑖 ,𝑊𝑊𝑖𝑖 ∈ [0,1].
Root mean square error (RMSE) is estimated as

 RMSE = �
1
R
��

𝑍̂𝑍𝑟𝑟 − 𝑍𝑍𝑟𝑟∗

𝛼𝛼
�
2R

𝑟𝑟=1

(2)

where 𝛼𝛼 = 1 is the PSA’s scale factor, 𝑍̂𝑍𝑟𝑟 is the PSA’s output
during a simulation run 𝑟𝑟, 𝑍𝑍𝑟𝑟∗ is the PSA’s target value found
using (1) during run 𝑟𝑟, and 𝑅𝑅 = 10,000 simulations are used
to yield statistically significant results. Note that RMSE is
normalized by the adder’s scale factor 𝛼𝛼 to facilitate fair
comparisons later in Sec. IV when adders with different 𝛼𝛼, and
thus different sensitivities to error magnitude, are compared.

 Fig. 7b plots the simulation results. Interestingly, all PSAs
with 𝐺𝐺 ≤ 16 have nearly the same RMSE as an APC, which
is equivalent to a PSA with 𝐺𝐺 = 1. This finding is significant
because a PSA with 𝐺𝐺 = 16 requires about 50% less area than
an APC, as shown in Fig. 7a. For 𝐺𝐺 ≥ 32 , the RMSE
increases roughly proportionally with 𝐺𝐺, so area can be traded
for accuracy by adjusting 𝐺𝐺. The SN length 𝐿𝐿 only affects the
magnitude of RMSE but does not affect the shape of the
RMSE vs. group size curve. Thus, the accuracy trade-off is
very consistent across different SN lengths.

IV. CASE STUDIES
Here, PSAs are compared against other high-performing

bipolar SC weighted adders in terms of area and accuracy for
large-scale weighted addition. The designs considered include
conventional mux trees (conv. mux) [3], CeMux [2], APC
[12], and a tree of T-flip-flop (TFF) adders [8]. To maximize
accuracy and minimize area, all the designs use a shared Sobol
RNS [13] for input SN generation. The APC, PSA and TFF
tree designs each use a second shared Sobol RNS to generate
their weight SNs, as is typical.

A. Baseline
First, each adder’s accuracy is assessed for general large-

scale bipolar weighted addition by testing each design with
random input and weight values. Each design uses 256-bit
SNs to perform weighted addition on 𝑀𝑀 inputs where 𝑀𝑀 is

Fig. 8. Error vs. number of addends for (a) various bipolar SC adders; (b)
bipolar PSA adders. Both plots have the same y-axis limits.

varied. For each value of 𝑀𝑀 , the design is simulated 𝑅𝑅 =
10,000 times with uniformly random input values and
weights, 𝑋𝑋𝑖𝑖 ,𝑊𝑊𝑖𝑖 ∈ [−1,1]. The RMSE estimated using (2) is
plotted as a function of input size in Fig. 8.

Fig. 8a demonstrates that the most accurate non-PSA
design is the APC followed by the TFF tree and then CeMux.
The conventional mux adder has the highest RMSE and thus
has the worst accuracy. Fig. 8b illustrates how the RMSE
varies for PSAs with various group sizes. As expected, as
group size is increased, the PSA’s error in terms of RMSE
smoothly rises for all input sizes. Thus, the PSAs accuracy and
area can be finely tuned by adjusting 𝐺𝐺.

B. Neural Network Case Study
Large-scale SC adders have been used to design low-

power neural network (NN) ASICs [5] which rely heavily on
the weighted summation operation (2). One such design [10]
uses SC to implement the first layer of a binarized NN (BNN).
BNNs are a class of NNs where all weights and activations are
binarized to take values ±1 . This extreme quantization
facilitates the design of low-cost NNs while maintaining high
classification accuracy on image classification benchmarks.

When used for image processing, BNNs often do not
binarize the raw (grayscale) pixel inputs because too much
information would be lost. Instead of employing traditional
fixed-point computing, implementing the first BNN layer with
SC and popcount circuits (i.e., APCs) leads to a 62%
reduction in overall area for the two-layer network in [10].
Here we investigate the extent to which PSAs can be used to
further improve hardware efficiency while maintaining
classification accuracy.

As in [10], we apply a binarized multi-layer perceptron
(MLP) with two 1,024-neuron hidden layers to the Fashion-
MNIST benchmark [17]. Fashion-MNIST consists of 28x28
grayscale images of fashion items that fall into one of ten
classes like “coat” or “sneaker” – eexamples are shown in Fig.
9a. The hybrid SC-BNN network employs PSA adders in the
first layer and the iterative training procedure from [10] was
used to train the network.

After training, the network is evaluated on the 10,000 test
images from the Fashion-MNIST dataset. The PSA’s group
size 𝐺𝐺 is varied while the RMSE (2) of the first layer
implemented with SC and the network’s overall classification

!

!

Fig. 9. Case study data: (a) example images from Fashion-MNIST
classification benchmark; (b) noisy ECG signal; (c) filtered ECG signal.

accuracy are measured. The SN length was set to 16 bits which
is the shortest length that gave the maximum classification
accuracy of about 88%, which matches the performance of a
non-SC version of the network. The area of a first-layer
neuron is measured for each value of 𝐺𝐺 using Synopsys DC
with the Nangate 45nm library [16] and area is normalized by
dividing by the area of a neuron that employs an APC adder.
Since SNGs can be shared across many neurons, normalized
neuron area is given both with and without SNGs. All results
are presented in Table I.

Table I shows that the first layer’s RMSE increases
roughly in proportion with group size 𝐺𝐺. For 𝐺𝐺 = 2 and 𝐺𝐺 =
4, the classification accuracy varies slightly compared to using
an APC, but area is much lower. Using a PSA with 𝐺𝐺 = 4 in
place of an APC reduces the neuron area by half while only
reducing classification accuracy by 0.26%. For larger group
sizes like 𝐺𝐺 = 8 and 𝐺𝐺 = 16 , the classification accuracy
drops by 1.6% and 3% in exchange for further area savings.
Group sizes beyond 𝐺𝐺 = 16 lead to poor results since the SN
length is only 16 bits.

A hybrid SC-BNN network that employs pure CeMux
adders in the first layer is also evaluated. The network’s
classification accuracy is only 25% because 16-bit SN length
is short relative to the number of inputs 784. In contrast, the
PSA avoids inaccuracy problems by employing several small
mux adders in parallel while saving area compared to an APC.

C. ECG Filtering
The World Health Organization estimates that 17.9

million people died of cardiovascular disease in 2019,
representing about 32% of global deaths [18]. Low-power
continuous heart rate monitoring can help to better address the
risk of cardiovascular disease. A key preprocessing step is the
denoising of the electrocardiogram (ECG) signal as in Fig. 9b
and 9c [19]. Denoising can be performed by finite impulse
response (FIR) filters. An M-tap FIR filter implements

𝑦𝑦𝑡𝑡 = � ℎ𝑘𝑘𝑥𝑥𝑡𝑡−𝑘𝑘

𝑀𝑀−1

𝑘𝑘=0

(3)

where {𝑥𝑥𝑡𝑡} is the noisy input signal, {ℎ𝑘𝑘} are the 𝑀𝑀 filter
coefficients and {𝑦𝑦𝑡𝑡} is the filtered output signal. Generally,
FIR filters with more taps (higher 𝑀𝑀) perform better filtering
at the cost of more computational resources. Due to their large
computational needs, SC has been proposed as a low-cost
solution to FIR filtering [2][3][4].

Here, each large-scale bipolar SC adder is used to
implement an FIR filter that denoises ECG signals from
Physiobank’s MIT arrhythmia database [20]. Random noise is
added to the benchmark signals to simulate three major noise
types: device noise, electrosurgical noise, and noise from
muscle contractions [21]. Fig. 10 plots the RMSE of each SC

TABLE I. PSA-BASED NEURAL NETWORK PERFORMANCE

Group
Size, 𝑮𝑮

First
Layer
RMSE

Classification
accuracy (%)

Normalized
area w/
SNGs

Normalized
area w/o

SNGs
1 (APC) 1.83 87.26 1 1

2 2.23 87.86 0.73 0.74
4 3.93 87.00 0.56 0.50
8 7.43 85.66 0.47 0.35

16 13.26 84.22 0.45 0.24

adder against the number of filter taps 𝑀𝑀 when 256-bit SNs
are used. Compared to the baseline test of Fig. 8, the APC’s
RMSE is 3.2x to 4.4x higher depending on 𝑀𝑀. Meanwhile,
CeMux’s error has decreased by 35x to 144x compared to the
baseline test. Similar results were found, but not explored in
depth in [2]. Overall, the relative ranking of adder accuracy
for filtering ECG signals differs significantly from the
baseline test with random data. The next section ventures to
explain this strange result.

D. Anomalous Behavior
An important, but sometimes overlooked influence on

circuit accuracy is the application’s input value distribution
[14]. For instance, [14] found that multiplication error in an
SC NN differed by as much as 2.3x depending on which
benchmark dataset was used. In the case of ECG filtering, the
input SNs have similar values because they are derived from
a continuous ECG signal like that of Fig. 9b and this similarity
of input values leads to higher mux accuracy [2]. Thus,
CeMux’s accuracy for ECG filtering is substantially (35x to
114x) higher than a baseline test with random data suggests.

On the other hand, the APC’s surprisingly poor accuracy
on ECG filtering is due to a combination of input value
distribution and bitstream correlation from RNS sharing.
Consider the APC of Fig. 3. Since the APC counts all 1s of the
product SNs Y1 to Y4, the APC’s error 𝜖𝜖𝑍𝑍 = 𝑍̂𝑍 − 𝑍𝑍∗ can be
expressed as the sum of multiplication errors 𝜖𝜖𝑌𝑌𝑖𝑖 = 𝑌𝑌�𝑖𝑖 − 𝑌𝑌𝑖𝑖∗
where 𝑌𝑌𝑖𝑖∗ = 𝑊𝑊𝑖𝑖𝑋𝑋𝑖𝑖. When no RNS sharing is used, the product
SNs are independent and about half the multiplication errors
𝜖𝜖𝑌𝑌𝑖𝑖 are positive and half are negative during any given
simulation run. These errors partially cancel out resulting in a
low overall summation error 𝜖𝜖𝑍𝑍 . In contrast, when RNS
sharing is employed, the product SNs Yi are correlated. In this
case, the multiplication errors have similar magnitude as in the
no-RNS-sharing case, but the errors are correlated and tend to
have the same sign. Consequently, the multiplication errors
cancel less often than when there is no RNS sharing, and the
overall summation error is much higher.

The APC’s accuracy can be improved by decorrelating its
inputs through not sharing RNSs, but this is prohibitively
costly. Instead, an RNS sharing scheme like that of Fig. 4b is
employed. Here, SNGs share an RNS, but each SNG inverts a
different subset of the RNS bits. The inversions are chosen
randomly but are fixed once chosen and partially decorrelate
the generated SNs [11]. Random permutations could also be

Fig. 10. ECG filtering error vs. input size for various bipolar SC adders.

!

!

Fig. 11. ECG filtering error for APCs with various RNS-sharing schemes.

applied to a shared RNS state for decorrelation purposes
[4][11][22]. However, when random permutations success-
fully decorrelate multiplication errors as desired, they
simultaneously disrupt the special low-discrepancy properties
of the Sobol RNS which tends to increase the magnitude of
the multiplication errors. The overall effect is that random
permutations increase summation error as the following data
suggests.

Fig. 11 plots the weighted APCs accuracy for ECG
filtering for various RNS sharing schemes. As before, all
schemes share one Sobol RNS amongst the input SNGs and
share one Sobol RNS amongst the weight SNGs, but each
scheme differs in whether random permutations or inversions
are applied to the shared RNS state. Compared to direct
sharing, sharing with inversions greatly decreases RMSE by
3.4x to 4.5x depending on input size whereas sharing with
permutations or with permutations and inversions increases
RMSE as suggested earlier. With inversion-based decor-
relation, the APC’s accuracy now matches its performance on
the baseline, but still has higher RMSE than CeMux for ECG
filtering.

Although inversion-based decorrelation significantly
improves the APC’s accuracy in the ECG filtering case, it does
not affect APC accuracy in either the earlier random baseline
test or the Fashion-MNIST case study. In those cases, the
multiplication errors are uncorrelated even when direct RNS
sharing is used, and so the decorrelation scheme does not
influence accuracy. The sensitivity of APCs to input
correlation therefore depends on the application’s input value
distribution. Since the inversion-based decorrelation either
decreases RMSE or leaves, it unchanged compared to direct
sharing, the technique appears generally useful given that
inverters are low-cost and can be absorbed into the SNGs’
comparators.

 Overall, CeMux has the lowest error for ECG filtering,
which corroborates the results of [2]. CeMux’s superior
accuracy is surprising since mux-based adders usually do not
outperform APCs. One drawback of CeMux, however, is that
weights are hardwired into the design. In the case that
programmable weights are desired, APCs or PSAs can be used
to achieve an appropriate balance between area and accuracy.

 In summary, the ECG filtering case study illustrates two
important and surprising behaviors of large-scale adders. First,
RNS sharing can impact the accuracy of APCs which
contradicts common belief [5][6]. Our proposed decorrelation
scheme with random inversions can decrease this correlation
and restore APC accuracy. Second, mux adders can
sometimes outperform APCs as first demonstrated in [2] and
investigated further here. CeMux’s accuracy improved by 35x

to 144x compared to the random baseline study while APC’s
accuracy, after decorrelation remained roughly the same.

V. CONCLUSION
SC offers the promise of low-cost large-scale weighted

adders. Here, we introduced the PSA adder which adds great
flexibility to SC adder design and leads to a 50% reduction in
SC neuron area in a hybrid SC-BNN model. Further
investigation of SC adders highlighted the importance of input
value distribution and the limitations of random-input-based
baseline studies. For some applications, mux adders can
outperform APCs. Furthermore, APCs are sometimes
correlation sensitive, but can be successfully decorrelated by
adding randomly chosen networks of inverters to the SNGs.

REFERENCES
[1] B.R.Gaines, “Stochastic computing systems,” Advances in Information

Systems Science, Springer New York, 37-172, 1969.
[2] T.J. Baker and J.P. Hayes, “CeMux: Maximizing the accuracy of

stochastic mux adders and an application to filter design,” ACM Trans.
Design Auto. Elec. Sys, 27, 3, 1-26, 2022.

[3] R. Wang, et al., “Design, evaluation and fault-tolerance analysis of
stochastic FIR filters," Microelectronics Reliability, 57, 111-127, 2016.

[4] H. Ichihara, et al., "Compact and accurate digital filters based on
stochastic computing," IEEE TETC, 7, 1, 31-43, 2019.

[5] Y. Liu, et al., “A survey of stochastic computing neural networks for
machine learning applications,” IEEE Trans. Neural Networks and
Learning Systems, 32, 7, 2809-2824, 2020.

[6] S.R. Faraji, et al., “Energy-efficient convolutional neural networks
with deterministic bit-stream processing,” Proc. DATE, 1757-1762,
2019.

[7] B. Li, M.H. Najafi, and D.J. Lilja, “Low-cost stochastic hybrid
multiplier for quantized neural networks”. J. Emerg. Technol. Comput.
Syst. 15, 2, 1-19, 2019.

[8] V.T. Lee, et al., "Energy-efficient hybrid stochastic-binary neural
networks for near-sensor computing," Proc. DATE, 13-18, 2017.

[9] A. Zhakatayev, et al., "Sign-magnitude SC: Getting 10X accuracy for
free in stochastic computing for deep neural networks," Proc. DAC, 1-
6, 2018.

[10] T. Hirtzlin, et al., “Stochastic computing for hardware implementation
of binarized neural networks,” IEEE Access, 7, 76394-76403, 2019.

[11] Y. Xie, et al., "Fully-parallel area-efficient deep neural network design
using stochastic computing," IEEE TCAS II, 64, 1382-1386, 2017.

[12] B. Parhami and C-H. Yeh, “Accumulative parallel counter,” Proc.
Asilomar Conf. on Signals, Systems and Computers, 2, 966-970, 1995.

[13] S. Liu and J. Han, “Energy efficient stochastic computing with Sobol
sequences,” Proc. DATE, 650–653, 2017.

[14] T.J. Baker and J.P. Hayes, “Bayesian accuracy analysis of stochastic
circuits,” Proc. ICCAD, 1-9, 2020.

[15] K. Kim, J. Lee and K. Choi, "Approximate de-randomizer for
stochastic circuits," Proc. ISOCC, 123-124, 2015.

[16] J.E. Stine, et al., “FreePDK: An open-source variation-aware design
kit,” Proc. IEEE MSE, 173-174, 2007.

[17] H. Xiao, et al., “Fashion-MNIST: a novel image dataset for
benchmarking machine learning algorithms.” arXiv:1708.07747, 2017.

[18] World Health Organization, “Cardiovascular Diseases,” www.who.int/
health-topics/cardiovascular-diseases/ (accessed Sept. 2022).

[19] M.A. Serhani, et al., “ECG Monitoring Systems: Review, Architecture,
Processes, and Key Challenges,” Sensors, 20, 2020.

[20] G.B. Moody and R.G. Mark, “The impact of the MIT-BIH Arrhythmia
Database” IEEE Eng in Med and Biol, 20, 45-50, 2001.

[21] G.M. Friesen, et al., “A comparison of the noise sensitivity of nine QRS
detection algorithms,” IEEE Trans. Bio. Eng., 37, 85-98, 1990.

[22] S.A. Salehi, "Low-cost stochastic number generators for stochastic
computing," IEEE Trans. VLSI, 28, 992-1001, 2020.

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

