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Abstract— Stochastic computing (SC) uses streams of 
pseudo-random bits to perform low-cost and error-tolerant 
numerical processing for applications like neural networks and 
digital filtering. A key operation in these domains is the 
summation of many hundreds of bit-streams, but existing SC 
adders are inflexible and unpredictable. Basic mux adders have 
low area but poor accuracy while other adders like accumulative 
parallel counters (APCs) have good accuracy but high area. This 
work introduces parallel sampling adders (PSAs), a novel 
weighted adder family that offers a favorable area-accuracy 
trade-off and provides great flexibility to large-scale SC adder 
design. Our experiments show that PSAs can sometimes achieve 
the same high accuracy as APCs, but at half the area cost. We 
also examine the behavior of large-scale SC adders in depth and 
uncover some surprising results. First, APC accuracy is shown 
to be sensitive to input correlation despite the common belief 
that APCs are correlation insensitive. Then, we show that mux-
based adders are sometimes more accurate than APCs, which 
contradicts most prior studies. Explanations for these anomalies 
are given and a decorrelation scheme is proposed to improve 
APC accuracy by 4x for a digital filtering application. 

Keywords—stochastic computing, weighted addition, large 
scale, design trade-offs, accuracy analysis, digital filtering 

I. INTRODUCTION 
Stochastic computing (SC) is a serial computing style that 

uses pseudorandom bit-streams called stochastic numbers 
(SNs) to encode and process data [1]. An SN 𝐗𝐗 =
𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝐿𝐿  is an L-bit sequence of pseudo-random bits that 
have the same probability of taking value 1: 𝑃𝑃𝑋𝑋 = ℙ(𝑥𝑥𝑡𝑡 = 1). 
The numerical value of X is derived from 𝑃𝑃𝑋𝑋  based on the 
format used. In unipolar format X’s value is 𝑋𝑋 = 𝑃𝑃𝑋𝑋 . In 
bipolar format, X’s value is 𝑋𝑋 = 2𝑃𝑃𝑋𝑋 − 1  which allows 
representation of negative numbers. The SN encoding enables 
the use of very small and power-efficient datapaths for compu-
tationally intensive applications like those in digital filtering 
[2][3][4] and neural networks [5][6][7][8][9][10][11]. 

The main attraction of SC is its relatively small circuits for 
multiplication and addition. Consider an AND gate with 
unipolar SN inputs 𝐗𝐗 and 𝐘𝐘 and output 𝐙𝐙. The output SN’s 
value 𝑍𝑍 = 𝑃𝑃𝑍𝑍 = ℙ(𝑧𝑧𝑡𝑡 = 1)  can be expressed as ℙ�(𝑥𝑥𝑡𝑡 =
1) ∧ (𝑦𝑦𝑡𝑡 = 1)� and simplified to ℙ(𝑥𝑥𝑡𝑡 = 1)ℙ(𝑦𝑦𝑡𝑡 = 1) = 𝑋𝑋𝑋𝑋 
provided X and Y are uncorrelated. Thus, 𝑍𝑍 = 𝑋𝑋𝑋𝑋 implying 
that multiplication can be performed with just an AND gate 
once data are encoded into unipolar SNs. For bipolar SNs, an 
XNOR gate acts as an SN multiplier. 

Like multiplication, adding SNs can also be low in cost 
[1]. For example, the two-way mux in Fig. 1b performs scaled 
addition 𝑍𝑍 = 0.5(𝑋𝑋 + 𝑌𝑌) on its data inputs X and Y by using 
a control SN S with probability 𝑃𝑃𝑆𝑆 = 0.5. In each clock cycle, 
𝐒𝐒 = 𝑠𝑠1𝑠𝑠2 … 𝑠𝑠𝐿𝐿  determines whether X is sampled (i.e., when  
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Fig. 1.  (a) SC arithmetic circuit embedded in traditional computing system. 
(b) Multiplexer (mux) based SN adder; (c) SN generator (SNG). 

𝑠𝑠𝑡𝑡 = 0) or Y is sampled (i.e., 𝑠𝑠𝑡𝑡 = 1). Over the long run, half 
of Z’s bits will be sampled from X and half from Y implying 
that Z’s value is the average of X’s and Y’s values. 

A tree of two-way muxes can be used to implement a large 
adder with many inputs. However, such mux tree adders, 
which exist in many variants [3][4], usually have poor 
accuracy when used to sum hundreds of inputs [2][5]. Much 
research has been devoted to implementing large-scale 
stochastic addition, and many alternatives to mux adders have 
been proposed. A common alternative adder is the accu-
mulative parallel counter (APC) [12] which counts in parallel 
all the 1s appearing in its input SNs in each clock cycle. APCs 
are usually more accurate than mux adders, but also have 
much higher area cost due to their counting approach. 

 Besides APCs, other novel SC adder types have been 
proposed [2][7][8][9]. A cursory analysis reveals that existing 
SC adders tend to belong to one of two extremes; either the 
adder is accurate but large, or else it is small but inaccurate. 
To increase the flexibility of SC adder design, this work 
introduces parallel sampling adders (PSAs). The PSA 
framework greatly improves SC adder design flexibility by 
offering a smooth accuracy-area trade-off. The trade-off is 
very favorable in some cases where PSAs achieve the same 
accuracy as APCs while using half the area. This work also 
examines the behavior of large-scale SC adders in depth and 
finds some surprising results. The main contributions are: 

1. Introduction of the parallel sampling adder which adds 
great flexibility to the design of large-scale SC adders. 

2. Demonstration that correlation impacts APC accuracy 
despite the common belief that APCs are correlation 
insensitive. A low-cost decorrelation scheme is 
presented for improving APC accuracy. 

This research was supported by the U.S. National Science Foundation 
under Grant CCF-2006704. 
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Fig. 2. Four-input bipolar mux adder that implements (1) with scale factor 
𝛼𝛼 = ∑ |𝑊𝑊𝑖𝑖|4

𝑖𝑖=1 . There are various ways to configure the mux select generation 
logic [3][4]. For example, the CeMux design [2] uses a plain binary counter 
for the mux select generation logic. 

3. A comprehensive comparison of large-scale adder 
designs leading to some surprising results like mux 
adders sometimes have better accuracy than APCs. 

The rest of the paper is organized as follows: Sec. II 
reviews relevant SC concepts while Sec. III then introduces 
the novel PSA design. Sec. IV details case studies that 
demonstrate the usefulness of PSAs and reveal surprising 
behavior of large-scale SC adders. Sec. V draws conclusions. 

II. STOCHATSIC COMPUTING ADDERS 

A. Stochastic Computing Basics 
To take advantage of low-cost SC multiplication and 

addition circuits, data must first be converted into SN bit-
streams. The structure of an SC system intended to be 
embedded in a larger, conventional computing system is 
sketched in Fig. 1a. Here, SN generators (SNGs) are first used 
to encode data into SNs. Specifically, SNs X and Y are 
generated with corresponding values 𝑋𝑋 and 𝑌𝑌. Then X and Y 
are multiplied using an AND gate to produce 𝐙𝐙 = 𝑧𝑧1𝑧𝑧2 … 𝑧𝑧𝐿𝐿 
with numeric value 𝑍𝑍 = 𝑋𝑋𝑋𝑋 . Finally, a counter is used to 
estimate Z’s value as 𝑍̂𝑍 = 1

𝐿𝐿
∑ 𝑧𝑧𝑡𝑡𝐿𝐿
𝑡𝑡=1  over 𝐿𝐿 clock cycles. 

It is important to note the distinction between the various 
values associated with an SN such as Z. There is the SN’s 
expected value 𝑍𝑍 = 𝔼𝔼�𝑍̂𝑍� determined by the circuit design and 
randomness sources. There is also Z’s estimated value 𝑍̂𝑍 
found by counting the 1s in Z, and Z’s target value 𝑍𝑍∗ 
determined by the application. It is often the case that 𝑍𝑍 = 𝑍𝑍∗, 
but 𝑍̂𝑍 ≠ 𝑍𝑍∗  due to the inherent randomness of SC. The 
difference between 𝑍̂𝑍 and 𝑍𝑍∗ is the SN’s error 𝜖𝜖𝑍𝑍 = 𝑍̂𝑍 − 𝑍𝑍∗. 

One design challenge of SC is that a stochastic circuit’s 
output 𝑍̂𝑍 is a probabilistic approximation of the target output 
value 𝑍𝑍∗. The accuracy of 𝑍̂𝑍 depends on the bit-stream length 
L, the circuit design, and possibly other factors [14]. 
Generally, accuracy improves as L increases because random 
fluctuations average out over many clock cycles. However, 
using very large L means slow operation and high energy 
consumption. Thus, a major focus of stochastic circuit design 
is to improve accuracy for a given SN length [13][14]. 

 Another design challenge of SC is that generating SNs is 
very costly compared to performing SN arithmetic. As 
suggested in Fig. 1c, SNGs are large and typically consist of a 
comparator alongside a pseudo-random number source like a 
linear feedback shift register [1] or Sobol sequence generator 
[13]. To amortize SNG overhead, SC is best used to 
implement expensive operations like the large-scale weighted 
summations found in digital filters or neural networks. 
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Fig. 3. APC-based bipolar weighted adder. The XNOR gates multiply the 
input SNs by the weight SNs. The parallel counter accumulates the 
products.The accumulator stores the sum over the entire SN length. 

B. Stochastic Computing Adder Design 
SC weighted adders implement 

𝑍𝑍∗ =
1
α
�𝑊𝑊𝑖𝑖𝑋𝑋𝑖𝑖

𝑀𝑀

𝑖𝑖=1

(1) 

where 𝑋𝑋𝑖𝑖 are the input values with corresponding weight 𝑊𝑊𝑖𝑖 
and 𝛼𝛼 is a scale factor which depends on the adder design.  

 Multiplexers are the traditional weighted SC adder type. 
Fig. 2 illustrates a bipolar mux adder with 𝑀𝑀 = 4 inputs. Input 
values 𝑋𝑋1 to 𝑋𝑋4 are first encoded into bipolar SNs X1 to X4. 
The inverter array with output Y1 to Y4 then implements the 
sign of the input weights. If 𝑊𝑊𝑖𝑖 < 0, then Xi is inverted and Yi 
has value 𝑌𝑌𝑖𝑖 = −𝑋𝑋𝑖𝑖, otherwise Xi is left unchanged and Yi has 
value 𝑌𝑌𝑖𝑖 = 𝑋𝑋𝑖𝑖. Next, the mux samples one of its inputs. The 
probability that Yi is sampled is made equal to its normalized 
weight |𝑊𝑊𝑖𝑖|/∑ |𝑊𝑊𝑖𝑖|4

𝑖𝑖=1  and this sampling value effectively 
implements the magnitude of the weights. The mux output Z’s 
value is a weighted sum (1) with 𝑀𝑀 = 4 and 𝛼𝛼 = ∑ |𝑊𝑊𝑖𝑖|4

𝑖𝑖=1 . 

Conventional mux adders require very long bitstreams to 
achieve practical accuracy thresholds [2][3]. For instance, 
when implementing a 267-input weighted summation, basic 
mux adders required 22𝑛𝑛+1bit SNs to match the accuracy of a 
conventional 𝑛𝑛 -bit binary design [3]. Thus, to match 8-bit 
binary adder’s performance, SNs exceeding 100,000 bits in 
length are needed and lead to high latency and energy 
consumption. Recently, however, a mux adder named CeMux 
[2] was introduced that has about 30% lower area and about 
9x lower error than basic mux designs. CeMux achieves 
higher accuracy and lower cost by ensuring all mux inputs are 
maximally correlated and by using a deterministic sampling 
process that does not bias the output [2]. 

 Another common SC weighted adder type employs APCs. 
Fig. 3 illustrates a 4-input bipolar weighted APC. Here, the 
input values 𝑋𝑋1  to 𝑋𝑋4  and the corresponding weights 𝑊𝑊𝑖𝑖  are 
converted into bipolar SNs that are multiplied using XNOR 
gates. The product SNs Y1 to Y4 with value 𝑌𝑌𝑖𝑖 = 𝑊𝑊𝑖𝑖𝑋𝑋𝑖𝑖 are then 
summed using an accumulative parallel counter. The APC 
output is 𝑍̂𝑍  with value ∑ 𝑌𝑌𝑖𝑖4

𝑖𝑖=1 = ∑ 𝑊𝑊𝑖𝑖𝑋𝑋𝑖𝑖4
𝑖𝑖=1 . Overall, APC 

weighted adders implement (1) with no scale factor (𝛼𝛼 = 1). 
APCs (sometimes called population counters) exhaustively 
count all 1s from the product SNs in each clock cycle, and thus 
have high accuracy as well as high cost. APC and mux adders 
are the most common SC adders; other adder designs are 
reviewed in [5] and discussed briefly in Secs. III and IV. 

Normally, every input and weight SN requires its own 
SNG (Fig. 1c) which can be costly in terms of area and power. 
However, cost can be greatly reduced by sharing a single RNS 
across several SNGs as in Fig. 4a. Such RNS sharing leads to 
correlation amongst the generated SNs, and careful design is  
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Fig. 4. Sharing a single RNS amongst multiple SNGs. (a) direct sharing; (b) 
sharing where each SNG applies a randomly chosen network of inverters to 
the shared RNS value. The inverter networks are represented by the 𝑓𝑓𝑖𝑖 boxes. 

required to avoid correlation-induced error. For mux adders, a 
single RNS is shared amongst all input SNGs which has been 
shown to improve accuracy [2]. For weighted APCs, one RNS 
is shared amongst all input SNGs and a second RNS is shared 
amongst all weight SNGs. Generating inputs and weights with 
separate RNSs ensures input and weight SNs are independent 
which is required for accurate XNOR multiplication. 

III. PARALLEL SAMPLING ADDERS 
 Parallel sampling adders (PSAs) combine mux adders and 
APCs into a single flexible design. In a PSA, input SNs are 
arranged into disjoint groups of size 𝐺𝐺 , each of which is 
applied to a separate mux adder. The outputs of all muxes are 
then accumulated by an APC. For example, Fig. 5a shows an 
8-input PSA with two groups of size 𝐺𝐺 = 4. Both groups are 
summed separately by muxes with outputs Y1 and Y2 that have 
value 𝑌𝑌1 = 0.25 ∑ 𝑋𝑋𝑖𝑖4

𝑖𝑖=1 and 𝑌𝑌2 = 0.25∑ 𝑋𝑋𝑖𝑖8
𝑖𝑖=5 , respectively. 

Left bit-shifts S are then used to remove the 0.25 scale factors 
from the mux output values before Y1 and Y2 are accumulated 
by a small APC whose output value is 𝑍𝑍 = ∑ 𝑋𝑋𝑖𝑖8

𝑖𝑖=1 . 

 A PSA is parameterized by its group size 𝐺𝐺 which is the 
maximum input size of any mux adder used in the PSA. For 
example, the PSA in Fig. 5a has 𝐺𝐺 = 4 while the PSA in Fig. 
5b has 𝐺𝐺 = 2.  Group size represents the degree of 
approximation of the PSA – higher 𝐺𝐺 means a more aggres-
sive approximation and typically lower area and accuracy. For 
an M-input PSA, 𝐺𝐺  takes values between 1 and 𝑀𝑀  and is 
restricted to be a power-of-two so that scale factors introduced 
by the mux adders can always be removed by bit-shifts. All 
muxes in a PSA are implemented as CeMux designs because 
it is the smallest and most accurate mux adder [2]. 

A. Weighted PSAs 
The basic PSA design in Fig. 5 is now extended to 

implement general weighted addition (1) with 𝛼𝛼 = 1. Fig. 6 
displays a bipolar weighted PSA with 𝑀𝑀 = 7  inputs and 
group size 𝐺𝐺 = 4. First, inputs and weight SNs are multiplied 
using XNOR gates to produce 7 product SNs {𝐏𝐏i}𝑖𝑖=17  with 
value 𝑃𝑃𝑖𝑖 = 𝑊𝑊𝑖𝑖𝑋𝑋𝑖𝑖. The product SNs are then grouped into sets 
of size 𝐺𝐺 = 4.  In this case, one group is constructed: 
{𝐏𝐏1,𝐏𝐏2,𝐏𝐏3,𝐏𝐏4}. Three SNs remain that cannot form another 
four-element group, so 𝐺𝐺 is cut in half and one group of size 2 
is constructed: {𝐏𝐏5,𝐏𝐏6}. As one SN remains, the group size is 
again cut in half to size one and a final group {𝐏𝐏7} is formed. 
Each group is input to a separate mux and all mux outputs are 
summed with an APC to produce the final output 𝑍̂𝑍. 

 One viewpoint on PSA design is that it uses mux adders to 
approximate and reduce the size of a pure APC design. PSAs 
may therefore seem superficially similar to approximate APC  
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Fig. 5. Basic PSAs that implement 𝑍𝑍 = ∑ 𝑋𝑋𝑖𝑖8

𝑖𝑖=1 .  S denotes a 1-bit shift left. 
(a) PSA with group size 𝐺𝐺 = 4 (b) PSA with group size 𝐺𝐺 = 2. 
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Fig. 6. Weighted PSA with group size 𝐺𝐺 = 4. An array of XNOR gates is 
first used to multiply the bipolar inputs and weights. Product SNs are then 
accumulated by mux adders of various sizes. All scale factors introduced by 
the mux adders are removed with left bit-shifts S before the mux outputs are 
accumilated by a small APC whose exepected output is 𝑍𝑍 = ∑ 𝑊𝑊𝑖𝑖𝑋𝑋𝑖𝑖7

𝑖𝑖=1 .  

designs like AxPC [15] and SUC adders [7], but they actually 
differ in fundamental ways. Unlike AxPC and SUC adders, 
PSAs can be used with bipolar SNs. PSA weights also do not 
need to be partitioned into disjoint subsets that sum to 1 as in 
SUC adders. Lastly, PSA weights are programmable, whereas 
changing weights in an SUC adder requires redesigning 
hardwire interconnections. 

B. Area-Accuracy Trade-off  
A PSA’s area and accuracy depend on the PSA’s group 

size 𝐺𝐺. Larger 𝐺𝐺 implies a higher level of approximation and 
thus lower area and accuracy. To determine how area changes 
with 𝐺𝐺  we used Synopsys Design Compiler (DC) with the 
Nangate 45nm library [16] to synthesize PSAs with various 
sampling group sizes, input sizes, and SN lengths. 

Fig. 7a shows the area of a PSA configured to perform 
weighted addition on 512 unipolar SNs of length 128. Here, 
area varies roughly linearly with group size 𝐺𝐺. When 𝐺𝐺 = 1, 
the PSA is equivalent to a pure APC adder and its area is about 
70% higher than the smallest PSA design with 𝐺𝐺 = 512 . 
These results make intuitive sense: as sampling group size 
increases, the size of the APC in the PSA shrinks 
proportionally thus decreasing area cost in a consistent 
manner. Other SN lengths and input sizes were tested and 
yielded similar normalized area results. 
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Fig. 7. PSA area and accuracy trade-offs: (a) Unipolar PSA synthesized 
area as a function of group size. Area is normalized by dividing by a 
weighted APC’s area; (b) Unipolar PSA error vs. group size. 

 The impact of group size 𝐺𝐺 on accuracy was investigated 
by simulating a unipolar 512-input PSA with SN length 𝐿𝐿. For 
each pair of values 𝐺𝐺  and 𝐿𝐿, the PSA is simulated with 
uniformly random input and weight values 𝑋𝑋𝑖𝑖 ,𝑊𝑊𝑖𝑖 ∈ [0,1]. 
Root mean square error (RMSE) is estimated as 

 RMSE = �
1
R
��

𝑍̂𝑍𝑟𝑟 − 𝑍𝑍𝑟𝑟∗

𝛼𝛼
�
2R

𝑟𝑟=1

(2) 

where 𝛼𝛼 = 1 is the PSA’s scale factor, 𝑍̂𝑍𝑟𝑟 is the PSA’s output 
during a simulation run 𝑟𝑟, 𝑍𝑍𝑟𝑟∗ is the PSA’s target value found 
using (1) during run 𝑟𝑟, and 𝑅𝑅 = 10,000 simulations are used 
to yield statistically significant results. Note that RMSE is 
normalized by the adder’s scale factor 𝛼𝛼  to facilitate fair 
comparisons later in Sec. IV when adders with different 𝛼𝛼, and 
thus different sensitivities to error magnitude, are compared.  

 Fig. 7b plots the simulation results. Interestingly, all PSAs 
with 𝐺𝐺 ≤ 16 have nearly the same RMSE as an APC, which 
is equivalent to a PSA with 𝐺𝐺 = 1. This finding is significant 
because a PSA with 𝐺𝐺 = 16 requires about 50% less area than 
an APC, as shown in Fig. 7a. For 𝐺𝐺 ≥ 32 , the RMSE 
increases roughly proportionally with 𝐺𝐺, so area can be traded 
for accuracy by adjusting 𝐺𝐺. The SN length 𝐿𝐿 only affects the 
magnitude of RMSE but does not affect the shape of the 
RMSE vs. group size curve. Thus, the accuracy trade-off is 
very consistent across different SN lengths. 

IV. CASE STUDIES 
Here, PSAs are compared against other high-performing 

bipolar SC weighted adders in terms of area and accuracy for 
large-scale weighted addition. The designs considered include 
conventional mux trees (conv. mux) [3], CeMux [2], APC 
[12], and a tree of T-flip-flop (TFF) adders [8]. To maximize 
accuracy and minimize area, all the designs use a shared Sobol 
RNS [13] for input SN generation. The APC, PSA and TFF 
tree designs each use a second shared Sobol RNS to generate 
their weight SNs, as is typical. 

A. Baseline 
First, each adder’s accuracy is assessed for general large-

scale bipolar weighted addition by testing each design with 
random input and weight values. Each design uses 256-bit 
SNs to perform weighted addition on 𝑀𝑀 inputs where 𝑀𝑀 is  

 
Fig. 8. Error vs. number of addends for (a) various bipolar SC adders; (b) 
bipolar PSA adders. Both plots have the same y-axis limits. 

varied. For each value of 𝑀𝑀 , the design is simulated 𝑅𝑅 =
10,000  times with uniformly random input values and 
weights, 𝑋𝑋𝑖𝑖 ,𝑊𝑊𝑖𝑖 ∈ [−1,1]. The RMSE estimated using (2) is 
plotted as a function of input size in Fig. 8.  

Fig. 8a demonstrates that the most accurate non-PSA 
design is the APC followed by the TFF tree and then CeMux. 
The conventional mux adder has the highest RMSE and thus 
has the worst accuracy. Fig. 8b illustrates how the RMSE 
varies for PSAs with various group sizes. As expected, as 
group size is increased, the PSA’s error in terms of RMSE 
smoothly rises for all input sizes. Thus, the PSAs accuracy and 
area can be finely tuned by adjusting 𝐺𝐺. 

B. Neural Network Case Study 
Large-scale SC adders have been used to design low-

power neural network (NN) ASICs [5] which rely heavily on 
the weighted summation operation (2). One such design [10] 
uses SC to implement the first layer of a binarized NN (BNN). 
BNNs are a class of NNs where all weights and activations are 
binarized to take values ±1 . This extreme quantization 
facilitates the design of low-cost NNs while maintaining high 
classification accuracy on image classification benchmarks. 

When used for image processing, BNNs often do not 
binarize the raw (grayscale) pixel inputs because too much 
information would be lost. Instead of employing traditional 
fixed-point computing, implementing the first BNN layer with 
SC and popcount circuits (i.e., APCs)  leads to a 62% 
reduction in overall area for the two-layer network in [10]. 
Here we investigate the extent to which PSAs can be used to 
further improve hardware efficiency while maintaining 
classification accuracy. 

As in [10], we apply a binarized multi-layer perceptron 
(MLP) with two 1,024-neuron hidden layers to the Fashion-
MNIST benchmark [17]. Fashion-MNIST consists of 28x28 
grayscale images of fashion items that fall into one of ten 
classes like “coat” or “sneaker” – eexamples are shown in Fig. 
9a. The hybrid SC-BNN network employs PSA adders in the 
first layer and the iterative training procedure from [10] was 
used to train the network. 

After training, the network is evaluated on the 10,000 test 
images from the Fashion-MNIST dataset. The PSA’s group 
size 𝐺𝐺  is varied while the RMSE (2) of the first layer 
implemented with SC and the network’s overall classification  
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Fig. 9. Case study data: (a) example images from Fashion-MNIST 
classification benchmark; (b) noisy ECG signal; (c) filtered ECG signal. 

accuracy are measured. The SN length was set to 16 bits which 
is the shortest length that gave the maximum classification 
accuracy of about 88%, which matches the performance of a 
non-SC version of the network. The area of a first-layer 
neuron is measured for each value of 𝐺𝐺 using Synopsys DC 
with the Nangate 45nm library [16] and area is normalized by 
dividing by the area of a neuron that employs an APC adder. 
Since SNGs can be shared across many neurons, normalized 
neuron area is given both with and without SNGs. All results 
are presented in Table I. 

Table I shows that the first layer’s RMSE increases 
roughly in proportion with group size 𝐺𝐺. For 𝐺𝐺 = 2 and 𝐺𝐺 =
4, the classification accuracy varies slightly compared to using 
an APC, but area is much lower. Using a PSA with 𝐺𝐺 = 4 in 
place of an APC reduces the neuron area by half while only 
reducing classification accuracy by 0.26%. For larger group 
sizes like 𝐺𝐺 = 8  and 𝐺𝐺 = 16 , the classification accuracy 
drops by 1.6% and 3% in exchange for further area savings. 
Group sizes beyond 𝐺𝐺 = 16 lead to poor results since the SN 
length is only 16 bits. 

A hybrid SC-BNN network that employs pure CeMux 
adders in the first layer is also evaluated. The network’s 
classification accuracy is only 25% because  16-bit SN length 
is short relative to the number of inputs 784. In contrast, the 
PSA avoids inaccuracy problems by employing several small 
mux adders in parallel while saving area compared to an APC. 

C. ECG Filtering 
The World Health Organization estimates that 17.9 

million people died of cardiovascular disease in 2019, 
representing about 32% of global deaths [18]. Low-power 
continuous heart rate monitoring can help to better address the 
risk of cardiovascular disease. A key preprocessing step is the 
denoising of the electrocardiogram (ECG) signal as in Fig. 9b 
and 9c [19]. Denoising can be performed by finite impulse 
response (FIR) filters. An M-tap FIR filter implements 

𝑦𝑦𝑡𝑡 = � ℎ𝑘𝑘𝑥𝑥𝑡𝑡−𝑘𝑘

𝑀𝑀−1

𝑘𝑘=0

(3) 

 

where {𝑥𝑥𝑡𝑡}  is the noisy input signal, {ℎ𝑘𝑘}  are the 𝑀𝑀  filter 
coefficients and {𝑦𝑦𝑡𝑡} is the filtered output signal. Generally, 
FIR filters with more taps (higher 𝑀𝑀) perform better filtering 
at the cost of more computational resources. Due to their large 
computational needs, SC has been proposed as a low-cost 
solution to FIR filtering [2][3][4].  

Here, each large-scale bipolar SC adder is used to 
implement an FIR filter that denoises ECG signals from 
Physiobank’s MIT arrhythmia database [20]. Random noise is 
added to the benchmark signals to simulate three major noise 
types: device noise, electrosurgical noise, and noise from 
muscle contractions [21]. Fig. 10 plots the RMSE of each SC  

TABLE I.  PSA-BASED NEURAL NETWORK PERFORMANCE 

Group 
Size, 𝑮𝑮 

First 
Layer 
RMSE 

Classification 
accuracy (%) 

Normalized 
area w/ 
SNGs 

Normalized 
area w/o 

SNGs 
1 (APC) 1.83 87.26 1 1 

2 2.23 87.86 0.73 0.74 
4 3.93 87.00 0.56 0.50 
8 7.43 85.66 0.47 0.35 

16 13.26 84.22 0.45 0.24 
 

adder against the number of filter taps 𝑀𝑀 when 256-bit SNs 
are used. Compared to the baseline test of Fig. 8, the APC’s 
RMSE is 3.2x to 4.4x higher depending on 𝑀𝑀. Meanwhile, 
CeMux’s error has decreased by 35x to 144x compared to the 
baseline test. Similar results were found, but not explored in 
depth in [2]. Overall, the relative ranking of adder accuracy 
for filtering ECG signals differs significantly from the 
baseline test with random data. The next section ventures to 
explain this strange result. 

D. Anomalous Behavior 
An important, but sometimes overlooked influence on 

circuit accuracy is the application’s input value distribution 
[14]. For instance, [14] found that multiplication error in an 
SC NN differed by as much as 2.3x depending on which 
benchmark dataset was used. In the case of ECG filtering, the 
input SNs have similar values because they are derived from 
a continuous ECG signal like that of Fig. 9b and this similarity 
of input values leads to higher mux accuracy [2]. Thus, 
CeMux’s accuracy for ECG filtering is substantially (35x to 
114x) higher than a baseline test with random data suggests.  

On the other hand, the APC’s surprisingly poor accuracy 
on ECG filtering is due to a combination of input value 
distribution and bitstream correlation from RNS sharing. 
Consider the APC of Fig. 3. Since the APC counts all 1s of the 
product SNs Y1 to Y4, the APC’s error 𝜖𝜖𝑍𝑍 = 𝑍̂𝑍 − 𝑍𝑍∗ can be 
expressed as the sum of multiplication errors 𝜖𝜖𝑌𝑌𝑖𝑖 = 𝑌𝑌�𝑖𝑖 − 𝑌𝑌𝑖𝑖∗ 
where 𝑌𝑌𝑖𝑖∗ = 𝑊𝑊𝑖𝑖𝑋𝑋𝑖𝑖. When no RNS sharing is used, the product 
SNs are independent and about half the multiplication errors 
𝜖𝜖𝑌𝑌𝑖𝑖  are positive and half are negative during any given 
simulation run. These errors partially cancel out resulting in a 
low overall summation error 𝜖𝜖𝑍𝑍 . In contrast, when RNS 
sharing is employed, the product SNs Yi are correlated. In this 
case, the multiplication errors have similar magnitude as in the 
no-RNS-sharing case, but the errors are correlated and tend to 
have the same sign. Consequently, the multiplication errors 
cancel less often than when there is no RNS sharing, and the 
overall summation error is much higher. 

The APC’s accuracy can be improved by decorrelating its 
inputs through not sharing RNSs, but this is prohibitively 
costly. Instead, an RNS sharing scheme like that of Fig. 4b is 
employed. Here, SNGs share an RNS, but each SNG inverts a 
different subset of the RNS bits. The inversions are chosen 
randomly but are fixed once chosen and partially decorrelate 
the generated SNs [11].  Random permutations could also be 

 
Fig. 10. ECG filtering error vs. input size for various bipolar SC adders. 
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Fig. 11. ECG filtering error for APCs with various RNS-sharing schemes. 

applied to a shared RNS state for decorrelation purposes 
[4][11][22]. However, when random permutations success-
fully decorrelate multiplication errors as desired, they 
simultaneously disrupt the special low-discrepancy properties 
of the Sobol RNS which tends to increase the magnitude of 
the multiplication errors. The overall effect is that random 
permutations increase summation error as the following data 
suggests. 

Fig. 11 plots the weighted APCs accuracy for ECG 
filtering for various RNS sharing schemes. As before, all 
schemes share one Sobol RNS amongst the input SNGs and 
share one Sobol RNS amongst the weight SNGs, but each 
scheme differs in whether random permutations or inversions 
are applied to the shared RNS state. Compared to direct 
sharing, sharing with inversions greatly decreases RMSE by 
3.4x to 4.5x depending on input size whereas sharing with 
permutations or with permutations and inversions increases 
RMSE as suggested earlier. With inversion-based decor-
relation, the APC’s accuracy now matches its performance on 
the baseline, but still has higher RMSE than CeMux for ECG 
filtering. 

Although inversion-based decorrelation significantly 
improves the APC’s accuracy in the ECG filtering case, it does 
not affect APC accuracy in either the earlier random baseline 
test or the Fashion-MNIST case study. In those cases, the 
multiplication errors are uncorrelated even when direct RNS 
sharing is used, and so the decorrelation scheme does not 
influence accuracy. The sensitivity of APCs to input 
correlation therefore depends on the application’s input value 
distribution. Since the inversion-based decorrelation either 
decreases RMSE or leaves, it unchanged compared to direct 
sharing, the technique appears generally useful given that 
inverters are low-cost and can be absorbed into the SNGs’ 
comparators. 

 Overall, CeMux has the lowest error for ECG filtering, 
which corroborates the results of [2]. CeMux’s superior 
accuracy is surprising since mux-based adders usually do not 
outperform APCs. One drawback of CeMux, however, is that 
weights are hardwired into the design. In the case that 
programmable weights are desired, APCs or PSAs can be used 
to achieve an appropriate balance between area and accuracy.  

 In summary, the ECG filtering case study illustrates two 
important and surprising behaviors of large-scale adders. First, 
RNS sharing can impact the accuracy of APCs which 
contradicts common belief [5][6]. Our proposed decorrelation 
scheme with random inversions can decrease this correlation 
and restore APC accuracy. Second, mux adders can 
sometimes outperform APCs as first demonstrated in [2] and 
investigated further here. CeMux’s accuracy improved by 35x 

to 144x compared to the random baseline study while APC’s 
accuracy, after decorrelation remained roughly the same. 

V.  CONCLUSION 
SC offers the promise of low-cost large-scale weighted 

adders. Here, we introduced the PSA adder which adds great 
flexibility to SC adder design and leads to a 50% reduction in 
SC neuron area in a hybrid SC-BNN model. Further 
investigation of SC adders highlighted the importance of input 
value distribution and the limitations of random-input-based 
baseline studies. For some applications, mux adders can 
outperform APCs. Furthermore, APCs are sometimes 
correlation sensitive, but can be successfully decorrelated by 
adding randomly chosen networks of inverters to the SNGs. 
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