
Timing Predictability for SOME/IP-based
Service-Oriented Automotive In-Vehicle Networks
Enrico Fraccaroli∗, Prachi Joshi†, Shengjie Xu∗, Khaja Shazzad†, Markus Jochim†, and Samarjit Chakraborty∗
∗University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA, email:{enrifrac, sxunique, samarjit}@unc.edu

†Research and Development, General Motors, Michigan, USA

Abstract—In-vehicle network architectures are evolving from a
typical signal-based client-server paradigm to a service-oriented
one, introducing flexibility for software updates and upgrades.
While signal-based networks are static by nature, service-oriented
ones can more easily evolve during and after the design phase. As a
result, service-oriented protocols are becoming more prominent in
automotive in-vehicle networks. While applications like infotain-
ment are less sensitive to delays, others like sensing and control
have more stringent timing and reliability requirements. Hence,
wider adoption of service-oriented protocols requires addressing
the timing analysis and predictability of such protocols, which
is more challenging than in their signal-oriented counterparts.
In service-oriented architectures, the discovery phase defines how
clients find their required services. The time required to complete
the discovery phase is an important parameter since it determines
the readiness of a sub-system or even the vehicle. In this paper,
we develop a formal timing analysis of the discovery phase of
SOME/IP, which is an emerging service-oriented protocol being
considered for adoption by several automotive Original Equipment
Manufacturers (OEMs) and suppliers.

Index Terms—Service-oriented architecture, SOME/IP, service
discovery, worst-case timing analysis

I. INTRODUCTION

Over the past few decades, automotive electrical and elec-
tronic (E/E) architectures have followed a trend depicted in
Fig. 1. They have transitioned from being modular: where
each function was allocated to a dedicated Electronic Control
Unit (ECU), to becoming more integrated: where functionalities
were combined into ECUs as domains. Serial data communica-
tion protocols such as CAN, CAN-FD, LIN, and FlexRay have
played an important role in in-vehicle network communication
for these architectures (using signal-based communication).
More recently, the move to create a layered architecture where
input/output devices and sensors/actuators are separated from
the compute layer and are interfaced via “zonal gateways” is
gaining momentum in the automotive industry. Additionally,
service-oriented communication and Ethernet are replacing the
underlying communication protocols for such architectures.
The main motivation behind this trend is the growing demand
for computation and communication bandwidth and the need
for flexibility to add software. This transformation towards
software-defined platforms, where innovation in software drives
the main value-add, is now the key trend in the automotive
industry [1]; and this is likely to remain in the near future.

Service-oriented communication & timing analysis: Here,
service-oriented communication is key to flexibility for fre-
quent software updates in an architecture. This is because

Mechanics
Electronic
Support

Infotain-
ment

Linked
Networks

90% of all
innovations

All major
innova-

tions are
driven
by E/E

1970 1980 1990 2000 2010 2020

Modular
Integration

Centralization

Domain
Fusion

In-vehicle
Computation

Deeply Embedded ECUs
Vehicle/Domain Controller
Obsolete ECUs
Integration process

Figure 1: Trends in automotive E/E architectures [2].

services are independent software providing functionalities
through implementation-independent interfaces. This decou-
pling between how functionality is implemented and how to
gain access to it makes it scalable and easy to maintain.
However, it also poses new challenges in analyzing its timing
behavior. Timing analysis techniques are used to study the
timing behavior of lower layers of the protocol stack, e.g.,
in CAN [3], [4] and Ethernet [5]–[7]. While well-developed
for such signal-oriented protocols, they have not yet been
sufficiently studied for service-oriented middleware such as the
“Scalable service-Oriented MiddlewarE over IP (SOME/IP)” or
“Data Distribution Service (DDS)”.

This paper focuses on the specific middleware, SOME/IP.
As the name implies, it is an application layer Ethernet-
based protocol that can be paired with both TCP/IP and UDP
protocols. In SOME/IP, clients and services that need to com-
municate must first discover each other through a process called
service discovery [8]. This aspect of dynamically discovering
entities that are to communicate and realize a particular service
is a key difference from signal-based communication, where
communicating entities are always pre-configured. Such static
configuration in signal-oriented communication makes timing
analysis much easier. In service-oriented communication, it is
important to assess how long a discovery phase lasts since this
duration determines the readiness of a component or subsystem
within an automotive architecture. However, very little study
has been devoted to analyzing this discovery latency. The work
in [9] has been one of the first attempts toward timing analysis
of the discovery phase in SOME/IP. But it does not suitably
consider all the scenarios involved and, as a result, returns
incorrect estimates of the discovery latency, as we show later in
our paper. Other studies have attempted to reduce the discovery
latency by optimally determining the SOME/IP parameters [10]
or by starting clients and services in an optimal order [11].

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

Table I: Service-oriented communication taxonomy.

One-to-One One-to-Many

Sync. Request/Response –
Async. Request/Async. Response, Fire-and-Forget Publish/Subscribe

The improved timing model proposed in this paper would also
impact these results.

This paper proposes a timing model to estimate the discovery
latency of SOME/IP. It builds upon the work in [9] and
addresses its shortcomings. In particular, it accounts for all
the different scenarios arising in the discovery phase and their
impact on the discovery latency. We believe the resulting timing
model is more intuitive and can be easily validated under
different scenarios, as shown in this paper.

II. BACKGROUND

This section explains what a Service-Oriented Architecture
(SOA) is and what is the timing analysis problem for it. The
focus is on the service discovery phase of SOME/IP.

A. Service-Oriented Architecture (SOA)

All SOAs have one or more service providers and clients
that need their service [12]. As shown in Table I, we can
create a taxonomy of SOA communication patterns based on
whether (1) one or many services handle a client request,
and (2) the communication happens synchronously or asyn-
chronously. When only one service handles a request, we
are in a one-to-one configuration. Conversely, when multiple
services handle it, we are in a one-to-many configuration. In
synchronous communications, the client sends either a blocking
or non-blocking request for the service and expects a timely
response. In asynchronous ones, the client sends a non-blocking
request to the service and does not expect an immediate
response or any response at all.

The main pattern of synchronous communications is the
request/response one. Here, the client makes a request to a
service, which then answers the request and marks the end of
the interaction. This pattern requires the client to know the
address and port where the service resides. With asynchronous
communication like the request/async response pattern, where
responses are not expected to be received in a timely fashion,
the client does not block its execution and handles responses
as they arrive. In the fire-and-forget pattern, the client sends a
request but does not expect a response.

But this paper focuses on protocols that follow the Pub-
lish/Subscribe pattern. Publish-subscribe is a data distribution
architecture where a series of entities owning information
(publishers) send it to those who want it (subscribers) through
a middle-man (broker). Subscription and publishing are per-
formed for a specific topic of interest to avoid broadcasting
undesired data. Publish/subscribe architectures may be further
categorized, e.g., as brokered vs. broker-less.

In the brokered scenario, both publishers and subscribers
communicate through the broker. There are pros and cons of
having a broker. With a broker, for instance, publishers do not
need to know the address of all the subscribers but just that of

LiDAR Zone
Controller

Brake
Sensor/Actuator

Zone
Controller

Brake
Sensor/Actuator

Parking
Sensor

SOCMCUCAN
Ethernet

Ethernet
Backbone

Figure 2: Example of In-Vehicle Network (IVN).

the broker. They also do not need to communicate with every
single member of a subscription group; the broker takes care
of delivering the message. The broker can also deal with data
availability from “offline publishers”: even if a publisher goes
offline, the messages sent up until that moment are safely stored
inside the broker’s queue. There are also drawbacks of this
communication pattern. First, it is a traffic-intense architecture
since all data published to the broker must then be re-sent to
subscribers. Second, the broker might become a bottleneck or
a single point of failure. To avoid bottlenecks and increase
throughput and availability, a network can rely on multiple
brokers, forming what is known as a broker federation.

In a broker-less scenario, messages go directly from pub-
lishers to subscribers, and do not go through a broker. One of
the benefits of this architecture is a lighter network traffic with
reasonable latency. Without a broker, there is no chance for it
to become a bottleneck or a single point of failure. However,
clients and services need to know each other’s address, or rely
on a discovery mechanism to find it [8]. Unlike the brokered
pattern, both sender and receiver must be online and available
for the message to be correctly delivered.

B. Timing analysis problems in Service-Oriented Architectures

As mentioned in the previous section, electronics and soft-
ware are becoming an integral part of the automotive domain,
boosting non-critical functionalities like infotainment and crit-
ical ones like assisted driving. Safety-critical functions involve
sensors, actuators, and control units combined. Looking at
Fig. 2, if the sensor data is made available by an ECU and sent
to a System-on-Chip (SOC) or a Micro-Controller Unit (MCU)
for processing, the time the data takes to get to the destination
is critical. The path that leads from sensors to actuators
(and back) involves different communication protocols (e.g.,
CAN, CAN-FD, LIN, and FlexRay), and computing sensor-to-
actuator delays is a non-trivial endeavor. Knowing this delay
is vital to design control software and to ensure stability
and control performance of feedback controllers implementing
safety-critical functions like brake control.

Deterministic sensor-to-actuator delays and their safe, but
tight estimates, is paramount in the automotive domain. Time-
critical functionalities require that the IVN transmits sensor and
control data in a fixed amount of time to avoid uncontrolled
behaviors. Bounded delays must be ensured throughout all
the design phases of the vehicle architecture. Two prominent
families of techniques aid designers in doing this: formal and
simulation-based timing analysis. The former is an exhaustive
analysis that can guarantee upper bounds on end-to-end laten-
cies. Still, detailed models are hard to come by, and it often
suffers from what is referred to as a “state-space explosion”

!

!

Down Initial Wait Phase Repetition Phase Main Phase

Prevent bursts that could overload the system.
Each entity stays in this phase for a random pe-
riod of time InitDel, between InitDelMin and
InitDelMax.

The client does not send find messages. It moves to
the main phase upon receiving an offer message. At
the end of the phase, it sends its first find message.

The service does not send offer messages, and
ignores find messages. At the end of the phase, it
sends its first offer message.

Each entity has a base delay RepDel, and will trans-
mit for RepMax times. The delay is computed with
the formula RepDel · 2Run , where Run is counter
that starts from 0.

The client sends find messages. As soon as the
client receives either an offer message, or an answer
to its find message, it will move to the main phase.

The service sends offer messages. It answers to find
messages with an offer after a random period of time
AnsDel.

Keep the network load produced by the service dis-
covery as low as possible in normal operation.

The client does not send any find message.

The service sends offer messages with a period of
CycDel. It answers to find messages.

Figure 3: Service discovery phases in SOME/IP.

Table II: SOME/IP configuration parameters mapping.

Parameter name from [14] Symbol

INITIAL_DELAY_MIN InitDelMin
INITIAL_DELAY_MAX InitDelMax
REPETITIONS_BASE_DELAY RepDel
REPETITIONS_MAX RepMax
REQUEST_RESPONSE_DELAY AnsDel
CYCLIC_OFFER_DELAY CycDel

or lack of scalability. The latter approach does not guarantee
safe upper bounds on end-to-end latencies but can discover
timing issues faster and might be more scalable. In this paper,
we propose a formal timing analysis to estimate the worst-case
timing bounds on the service discovery phase of SOME/IP.

C. SOME/IP service discovery

SOME/IP is a middle-ware solution that provides service-
oriented communication in automotive in-vehicle networks.
The protocol is based on the concept of a broker-less pub-
lisher/subscriber architecture outlined above, i.e., the protocol
defines how services can offer their data and how clients
can find the desired data. How the discovery phase works is
defined in AUTOSAR [13], while the specifics of the SOME/IP
discovery phase are detailed in [14]. The discovery process
is subdivided into three phases for both clients and services:
initial wait phase, repetition phase, and main phase. Services
send broadcast offer messages, specifying which services they
provide. Clients send broadcast find messages specifying which
service they require. Only during specific phases do services
and clients send their messages. The behavior of clients and
services is detailed in Fig. 3. For the rest of this paper, we are
going to map the parameters found in the SOME/IP Service
Discovery Protocol Specification [14] to the variables outlined
in Table II and use them for bounding the SOME/IP discovery
latency.

III. ESTIMATING THE SOME/IP DISCOVERY LATENCY

This section estimates the discovery latency for a single
client/service pair, where the objective is for the client to
discover the desired service. Typical scenarios have several
services and clients, and the following analysis is a necessary
step for handling those scenarios. The idea is that once we
compute the discovery time for each client/service pair of
the system, the maximum among those values represents the
discovery time of our entire system. In the equations used in
this section, we will use c to identify the properties of a client,
s to identify those of a service, and e to identify those of a

generic entity, which can be either be a client or a service. The
communication delay tc is computed using approaches like the
ones in [6], [7]. Let us now define two variables:

cinit = cBootDel + cInitDel , (1)
sinit = sBootDel + sInitDel , (2)

where BootDel is the period of time when clients and services
are down, and InitDel is the length of their initial wait phase.
As mentioned above, the delays between messages sent by both
client and service during the repetition phase are doubled with
each consecutive message. We can compute the delay before
sending the i-th message using the following:

d(e, i) = 2i · eRepDel , (3)
where eRepDel represents the repetition delay. The actual size
of the repetition phase is given by summing all those delays.
We can compute its size, up to the n-th repetition message, by
using the following function:

trep(e, n) =
n−1∑
i=0

d(e, i) . (4)

Using properties of geometric series, we can transform this sum
into a single expression:

trep(e, n) = (2n − 1) · eRepDel . (5)

A. Computing the actual length of the repetition phase

As seen above, the time window when either the client
or service starts sending messages is the repetition phase.
Depending on their respective configuration, we might end up
with a service that enters the repetition phase before the client
or the other way around. For the purpose of timing analysis,
we need to compute the index of the first find or offer message
that can reach its destination. To do that, we need to find the
timespan in the repetition phase, during which the source node
(either client or service) sends messages, but the destination
node is not ready to receive them. We can call this timespan
the failure window. However, we need to differentiate between
two cases: zs if the client enters the repetition phase before the
service, and zc if the service enters the repetition phase before
the client. We can compute them as follows:

zs =

{
sinit − cinit if sinit > cinit

0 otherwise
, (6)

zc =

{
cBootDel − sinit if sinit < cBootDel

0 otherwise
. (7)

We use cBootDel instead of cinit to compute zc because the
client accepts offer messages even during the initial wait phase.

!

!

Figure 4: Example showing the failure window (red hatched band in
the middle), and repetition phase messages that either fail (red dashed
line) or succeed (blue arrow) to reach the service.

Once we have computed the size of the failure window,
we need to find the index of the first message that can reach
its destination within the repetition phase. Again, we need to
differentiate between xs for find messages and xc for offer
messages. We can compute these two values as follows:

xs =

⌈
log2

(
zs − tc
cRepDel

+ 1

)⌉
if zs > tc ,

0 otherwise
(8)

xc =

⌈
log2

(
zc − tc
sRepDel

+ 1

)⌉
if zc > tc ,

0 otherwise
(9)

where tc represents the communication delay between the
client/service pair, and RepDel represents the repetition base
delay used during the repetition phase.

Let us analyze these two equations with the help of Fig. 4.
In this example, tc=1, cRepDel=1, cRepMax=3, and zs=3. Now,
from Eq. (5), we know how to compute the length of the
repetition phase given that we are sending the n-th message.
Conversely, here we want to compute the index of the first
message that successfully reaches the destination, after the fail-
ure window. As already mentioned, every message sent inside
the failure window is not received by the destination node.
However, we need to take into account the communication
delay tc . Because, as shown in Fig. 4, the message is still
delivered if the instant when the message is sent is inside the
failure window, but the instant when it is received is not, i.e.,
after tc . That is why the actual size we need to consider in
our equations is zs − tc . We can derive Eq. (8) starting from
Eq. (5), as follows:

trep(c, xs) = zs − tc ,
(2xs − 1) · cRepDel = zs − tc ,

2xs =
zs − tc
cRepDel

+ 1 ,

xs = log2

(
zs − tc
cRepDel

+ 1

)
.

Computed in this manner, xs would return a real number, and
not the index we would expect. For instance, if we plug in
the values from the scenario shown in Fig. 4, the expression
would evaluate to 1.58. Applying the ceil function, like we do
in Eqs. (8) and (9), allows us to compute the actual index of
the successfully received message, which in the example is 2.
We can derive Eq. (9) in a similar manner.

To avoid overestimating the value of x, we can define the
following two support variables:

x̂s =min(cRepMax , xs) , (10)
x̂c =min(sRepMax , xc) . (11)

Figure 5: Example showing main phase messages that either fail (red
dashed line) or succeed (blue arrow) to reach the client.

B. Computing the length of the main phase

Services periodically send offer messages during the main
phase, with a fixed period of sCycDel . There might be a scenario
where the client misses all the messages from the service
repetition phase and can receive only those from the main
phase, as shown in Fig. 5. As such, we need to compute the
number of messages sent during this phase, and given that
number, we need to compute its length in time.

Let us start by computing y, as the index of the first periodic
message to be successfully delivered during the main phase:

y =

⌈
zc − (2sRepMax − 1) · sRepDel − tc

sCycDel

⌉
. (12)

The zc tells us the size of the entire failure window, which spans
over all phases, including the main phase; however, here, we
are only interested in this last one. From that whole window,
we need to remove the length of the repetition phase, and the
communication delay tc . What is left is the length of the failure
window during the main phase. If we divide that length by the
period with which we send periodic messages, we can compute
the index of the first periodic message that is successfully
received by the client. To avoid wrong estimates, we can define:

ŷ =

{
y if (y ≥ 0) ∧ (x̂c ≥ sRepMax)

0 otherwise
. (13)

Now, we can define a function that computes the timespan from
the start of the main phase up to when the n-th message is sent:

tmain(n) = n · sCycDel . (14)

C. Computing the discovery time

There are three main scenarios we need to consider:
(a) Service sends offer messages and client is silent;
(b) Service is silent and client sends find messages;
(c) Both service and client send messages.

We compute the discovery time for scenario (a) as follows:
taw = sinit + trep(s, x̂c) + tmain(ŷ) + tc , (15)

which comprises the initial delay, the timespan before the first
offer messages is successfully received (i.e., trep(s, x̂c)), the
same timespan for the messages during the main phase (i.e.,
tmain(ŷ)), and the communication delay tc .

We compute the discovery time for scenario (b) as follows:
tbw = cinit + trep(c, x̂s) + tc + sAnsDel + tc , (16)

which comprises the initial delay, the timespan before the first
find messages is successfully received (i.e., trep(s, x̂s)), the
communication delay tc for the find message, the amount of
time the service will wait before answering (i.e., sAnsDel), and
the communication delay for the answer tc .

We compute the discovery time for scenario (c) as follows:
tcw = min(taw, t

b
w) . (17)

!

Figure 6: The service sends offer messages and the client is silent.

IV. ILLUSTRATIVE EXAMPLES

This section validates the SOME/IP discovery phase timing
analysis proposed in this paper in the three scenarios listed in
Section III-C, both numerically and intuitively (or visually) for
easy understanding. These examples help uncover the weak-
nesses in prior studies. Each example (1) provides the configu-
ration required to reproduce the experiments, and (2) compares
our results with those computed using the approach in [9], that
is referred to as [SSG+15] in Figs. 6 and 7.

For simplicity and without loss of generality, we consider
milliseconds as the unit of measure throughout the section.
All scenarios consider a communication delay tc=1ms, both
client and service have a repetition delay RepDel=1ms, and a
maximum number of repetition messages RepMax=3. Services
have a cyclic delay CycDel=1ms, and answer requests with a
delay AnsDel=1ms, the horizontal blue band in the figures. For
each scenario, we have two cases: (1) when the client enters
the repetition phase before the service, and (2) vice versa.

A. The service sends offer messages and the client is silent

In scenario (a), only the service sends offer messages. In
the first case, shown in Fig. 6a, the message that reaches its
destination is the one sent at the end of the initial wait phase
(i.e., x̂c=0). We compute the discovery latency as follows:

taw = sinit + trep(s, x̂c) + tmain(ŷ) + tc ,
= 6 + trep(s, 0) + tmain(0) + 1 = 6 + 0 + 0 + 1 = 777 .

The service sends its first offer message at the end of the initial
wait phase at 6ms, which is received at 7ms, after 1ms of
delay, ending the discovery phase. The methods proposed in [9],
on the other hand, return a latency of 5ms. In the second case,
shown in Fig. 6b, the message that reaches its destination is the
one sent in the main phase with index 1 (i.e., x̂c=3 and ŷ=1).
We compute the discovery time as follows:

taw = sinit + trep(s, x̂c) + tmain(ŷ) + tc ,
= 5 + trep(s, 2) + tmain(0) + 1 ,

= 5 + ((23 − 1) · sRepDel) + 1 · sCycDel + 1

= 5 + 7 + 1 + 1 = 141414 .
The first message reaching an active client is the one sent in
the main phase at 13ms, which arrives at 14ms ending the
discovery phase. But the approach in [9], returns a discovery

Figure 7: The service is silent and the client sends find messages.

latency of 7ms. In both cases, it underestimates the discovery
latency because it (1) does not add sinit to the discovery time,
and (2) zc assumes negative values.

B. The service is silent and the client sends find messages

In scenario (b), only the client sends find messages. In
the first case, shown in Fig. 7a, the message that reaches its
destination is the one sent in the repetition phase with index 1
(i.e., x̂s = 1). We compute the discovery time as follows:

tbw = cinit + trep(c, x̂s) + tc + sAnsDel + tc ,
= 5 + trep(c, 1) + 1 + 1 + 1 ,

= 5 + ((21 − 1) · cRepDel) + 3 = 5 + 1 + 3 = 999

The first message to reach the service is sent at 6ms and
received at 7ms after a 1ms delay. Then, the service processes
the request for 1ms and sends the response at 8ms, which is
received at 9ms after a 1ms delay, ending the discovery phase.
But the approach in [9], returns a discovery latency of 7ms.

In the second case, shown in Fig. 7b, the message that
reaches its destination is the one sent at the end of the initial
wait phase (x̂s = 0). We compute the latency as follows:

tbw = cinit + trep(c, x̂s) + tc + sAnsDel + tc ,
= 10 + trep(c, 0) + 1 + 1 + 1 = 10 + 0 + 3 = 131313

The first message sent by the client at 10ms is received at 11ms
after a 1ms delay. The service waits for 1ms before sending
the response at 12ms, which reaches the client at 13ms,
ending the discovery phase. The approach in [9], returns a
discovery latency of 5ms. The underestimations we see here are
caused by the fact that it subtracts cBootDel from the computed
discovery time. If we add cBootDel to its results, we obtain the
correct ones. This also explains why the experiments shown
in [9] are correct when cBootDel is set to 0 in all scenarios.

C. Both service and client are sending messages

In scenario (c), both the service and the client are sending
messages. In the first case, shown in Fig. 8a, the client
can successfully send its message during the repetition phase
(x̂s=1), while the service with the one sent at the end of the

!

Figure 8: Both service and client are sending messages.

initial wait phase (x̂c=0). The discovery time for service and
client is computed as follows:

taw = sinit + trep(s, x̂c) + tmain(ŷ) + tc ,
= 6 + trep(s, 0) + tmain(0) + 1 = 6 + 0 + 0 + 1 = 777 ,

tbw = cinit + trep(c, x̂s) + tc + sAnsDel + tc ,
= 4 + trep(c, 1) + 1 + 1 + 1 ,

= 4 + ((21 − 1) · cRepDel) + 3 = 4 + 1 + 3 = 888 ,
which leads to evaluate the overall discovery time as follows:

tcw = min(taw, t
b
w) = min(7, 8) = 777

The service sends its offer message at 6ms, which is received
at 7ms, ending the discovery phase. The client-side discovery
activity starts earlier at 5ms. However, after factoring in
1ms of delay, plus 1ms of answer delay, and again 1ms of
communication delay, it completes the discovery procedure at
8ms. Thus, the discovery latency is 7ms, which is in line with
our estimate above but not with the 5ms computed in [9].

In the second case, shown in Fig. 8b, the client successfully
sends its first message at the end of its initial wait phase (x̂s =
0), while the service with the one sent with index two during
the repetition phase (x̂c = 2). The discovery time for service
and client is computed as follows:
taw = sinit + trep(s, x̂c) + tmain(ŷ) + tc ,

= 4 + trep(s, 2) + tmain(0) + 1 ,

= 4 + ((22 − 1) · sRepDel) + 0 + 1 = 4 + 3 + 0 + 1 = 888

tbw = cinit + trep(c, x̂s) + tc + sAnsDel + tc ,
= 11 + trep(c, 0) + 1 + 1 + 1 = 11 + 0 + 3 = 141414

which leads to evaluate the overall discovery time as follows:
tcw = min(taw, t

b
w) = min(8, 14) = 888

Similar to the first case, the fastest to complete the discovery
phase is the service by sending its offer message at 7ms,
received at 8ms. As per the protocol, the client should not even
start the discovery procedure at 11ms because it already knows
of the existence of the service at 8ms. Thus, the discovery
time is 8ms, which corresponds to the value obtained by our
model too. However, the estimate obtained in [9] in 1ms. The
discrepancy we see here with [9] is due to a combination of
the ones affecting the previous scenarios: (1) it uses cBootDel

instead of cinit, (2) it subtracts zc, and (3) it does not add sinit
to the discovery time. All the proposed analyses shown here

are available in a repository as Python code1. The repository
also contains the code for reproducing the proposed scenarios
and parametric sweeps that we used to check the approach’s
correctness in various configurations.

V. CONCLUDING REMARKS

We proposed a formal timing analysis of the discov-
ery phase of SOME/IP, which is a well-known automotive
service-oriented protocol developed for AUTOSAR applica-
tions. SOME/IP allows high customization of clients and ser-
vices behaviors during the discovery phase through a series of
parameters. However, such high customization also necessitates
a formal timing model for the protocol to be considered
and adapted to different scenarios. We validated our analysis
on a series of SOME/IP scenarios and compared our results
with prior approaches. In the process, we also explained how
previous approaches underestimated the discovery latencies in
various scenarios.

REFERENCES

[1] M. Rumez, D. Grimm, R. Kriesten, and E. Sax, “An overview of
automotive service-oriented architectures and implications for security
countermeasures,” IEEE access, vol. 8, pp. 221 852–221 870, 2020.

[2] T. Scharnhorst, “Autosar adaptive platform – progress on the software
framework for intelligent safe and secure mobility,” Keynote at Automo-
tive E/E Architecture Technology China Conference (AEATC), 2018.

[3] P. M. Yomsi, D. Bertrand, N. Navet, and R. I. Davis, “Controller area
network (CAN): Response time analysis with offsets,” in 9th IEEE
International Workshop on Factory Communication Systems, 2012.

[4] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, “Controller area
network (CAN) schedulability analysis: Refuted, revisited and revised,”
Real-Time Systems, vol. 35, no. 3, pp. 239–272, 2007.

[5] S. Thangamuthu et al., “Analysis of Ethernet-switch traffic shapers for in-
vehicle networking applications,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2015.

[6] D. Thiele, R. Ernst, and J. Diemer, “Formal worst-case timing analysis
of Ethernet TSN’s time-aware and peristaltic shapers,” in IEEE Vehicular
Networking Conference (VNC), 2015.

[7] J. Diemer, D. Thiele, and R. Ernst, “Formal worst-case timing analysis of
Ethernet topologies with strict-priority and AVB switching,” in 7th IEEE
International Symposium on Industrial Embedded Systems (SIES’12).
IEEE, 2012, pp. 1–10.

[8] E. Guttman, “Service location protocol: Automatic discovery of IP
network services,” IEEE Internet computing, vol. 3, no. 4, pp. 71–80,
1999.

[9] J. R. Seyler, T. Streichert, M. Glaß, N. Navet, and J. Teich, “Formal
analysis of the startup delay of SOME/IP service discovery,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2015.

[10] J. R. Seyler, N. Navet, and L. Fejoz, “Insights on the configuration and
performances of SOME/IP service discovery,” SAE International Journal
of Passenger Cars-Electronic and Electrical Systems, vol. 8, no. 1, pp.
124–129, 2015.

[11] B. Saydam, “The improvement of SOME/IP service discovery via asso-
ciation rule mining,” in 2022 9th International Conference on Electrical
and Electronics Engineering (ICEEE). IEEE, 2022, pp. 285–289.

[12] C. Richardson and F. Smith. Designing and Deploying
Microservices. [Online]. Available: https://www.nginx.com/resources/
library/designing-deploying-microservices/

[13] AUTOSAR. Specification of Service Discovery. [Online]. Avail-
able: https://www.autosar.org/fileadmin/user_upload/standards/classic/
21-11/AUTOSAR_SWS_ServiceDiscovery.pdf

[14] AUTOSAR SOME/IP Service Discovery Protocol Specification. [Online].
Available: \\https://www.autosar.org/fileadmin/user_upload/standards/
foundation/21-11/AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol.
pdf

1https://github.com/Galfurian/someip_timing_analysis

!

	Select a link below
	Return to Previous View
	Return to Main Menu

