
PEDAL: A Power Efficient GCN Accelerator with
Multiple DAtafLows

Yuhan Chen, Alireza Khadem, Xin He, Nishil Talati, Tanvir Ahmed Khan, and Trevor Mudge
Computer Science and Engineering, University of Michigan, Ann Arbor, MI, USA

{chenyh, arkhadem, xinhe, talatin, takh, tnm}@umich.edu

Abstract—Graphs are ubiquitous in many application domains
due to their ability to describe structural relations. Graph
Convolutional Networks (GCNs) have emerged in recent years
and are rapidly being adopted due to their capability to perform
Machine Learning (ML) tasks on graph-structured data. GCN
exhibits irregular memory accesses due to the lack of locality
when accessing graph-structured data. This makes it hard for
general-purpose architectures like CPUs and GPUs to fully utilize
their computing resources. In this paper, we propose PEDAL, a
power-efficient accelerator for GCN inference supporting multiple
dataflows. PEDAL chooses the best-fit dataflow and phase ordering
based on input graph characteristics and GCN algorithm, achieving
both efficiency and flexibility. To achieve both high power efficiency
and performance, PEDAL features a light-weight processing
element design. PEDAL achieves 144.5×, 9.4×, and 2.6× speedup
compared to CPU, GPU, and HyGCN, respectively, and 8856×,
1606×, 8.4×, and 1.8× better power efficiency compared to CPU,
GPU, HyGCN, and EnGN, respectively.

Index Terms—Accelerator, power-efficient, multiple dataflows

I. INTRODUCTION

With the rapid development of deep learning in the last decade,
neural networks are now widely adopted in many applications
such as image recognition [16], object detection [20], and
machine translation [2]. However, traditional neural networks are
limited to handling Euclidean data [10] such as one-dimensional
(1D) text streams and two-dimensional (2D) images, and do not
generalize well on non-Euclidean data such as graphs [21] and
manifolds [4]. Graph Neural Networks (GNNs) take a further
step to explore graph-structured data. Compared to Euclidean
data, graphs have better expressiveness, so GNNs can learn from
the latent information of nodes and the connections between
nodes. This extends the application scope of deep learning to a
wider range of applications [22, 25] such as natural science [3].

Among different types of GNNs, Graph Convolutional
Networks (GCN) is one of the most prominent algorithm [15].
Motivated by Convolutional Neural Networks (CNNs), GCNs
generalize convolution to graph-structured data. GCN solves
CNN’s limitation of only applicable to regular Euclidean
data [25]. GCN is composed of two phases - aggregation and
combination. Aggregation collects information from neighboring
nodes and/or edges. It works on the input graph and often suffers
from irregular memory accesses. Combination uses multi-layer
perceptron (MLP) to further process the aggregated results by
multiplying them with the trained weight matrices, which have
regular memory accesses. GCN has many variations [6, 11, 26],
and has developed into a big algorithm family.

Due to the inherent irregular memory accesses in GCNs,
CPUs and GPUs are not able to make good use of their massive

computing resources. Thus, several works are proposed to
enhance resource utilization. HyGCN [23] uses dedicated pro-
cessing engines for the aggregation and combination phases to
alleviate the memory irregularity in the aggregation phase while
exploiting the regularity in the combination phase. EnGN [17]
applies edge reorganization to compress the sparse adjacency
matrix and uses degree-aware vertex cache to store hot nodes.
AWB-GCN [8] observes that real-world graph datasets have
power-law distributions, and it optimizes Processing Elements’
(PE) utilization by performing workload balancing among PEs.
ReGNN [5] dynamically computes and reuses the aggregated
features of redundant neighbor sets to reduce memory accesses.
GCoD [24] and I-GCN [9] both try to improve graph regularity
by rearranging the adjacency matrix permutation.

Although prior works performed various optimizations to
enhance resource utilization, we observe that they use a fixed
dataflow and are not flexible enough to efficiently run different
GCNs. Firstly, real-world datasets span a wide range of sizes
and densities. They require different aggregation dataflows based
on the input dataset characteristics. Secondly, the order of
aggregation and combination phases can be altered when the
aggregation function is linear (see §II). While this results in
better performance, the order must be respected with non-linear
aggregation functions. Thus, it is important to support different
dataflows and orderings to achieve both efficiency and flexibility.

In this paper, we make the following contributions:

• We perform quantitative and qualitative analysis on three
widely used GCN algorithms: vanilla GCN, GS-mean, and
GS-max with 5 real-world datasets. We show that the GCN
algorithms and input dataset characteristics affect the choice
of phase ordering and dataflow for the best performance.

• We propose PEDAL, an accelerator for GCN inference.
PEDAL features three dataflows, and supports both order-
ings of the aggregation and combination phases, achieving
both efficiency and flexibility.

• We train a decision tree with 400 synthetic datasets to
automatically and accurately choose the best dataflow and
phase ordering for a GCN algorithm.

• We evaluate the performance of PEDAL using a cycle-
accurate simulator and measure its power and area using
RTL synthesis. We show PEDAL achieves 144.5×, 9.36×,
and 2.55× speedup compared to CPU, GPU, and HyGCN,
and also 8856×, 1606×, 8.4× and 1.78× better power
efficiency compared to CPU, GPU, HyGCN, and EnGN.

To the best of our knowledge, this is the first work that

2023 Design, Automation & Test in Europe Conference (DATE 2023) – Best Paper Award Candidate	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

Category Notation
& Acronyms Note

Dimension
N Number of nodes in the graph
F1 The feature dimension for the 1st layer
F2 The feature dimension for the 2nd layer

Matrix
A Adjacency matrix, dimension N x N
X Feature matrix, dimension N x F1, each

row is a Feature vector (transposed) for the
corresponding node.

W Weight matrix, dimension F1 x F2

Acronyms

AC Short for Aggregation+Combination order
CA short for Combination+Aggregation order

IP-AC Short for Inner-Product, AC order dataflow
IP-CA Short for Inner-Product, CA order dataflow

RW-AC Short for Row-Wise, AC order dataflow
RW-CA Short for Row-Wise, CA order dataflow

Others
N(v) Neighbors of node v
d(M) density of matrix M

NNZ(M) number of non-zeroes of matrix M

TABLE I: Notation and acronyms used in this paper

explores different dataflows and execution orders for the GCN
workload and exploits this knowledge to choose the best dataflow
according to the input graph and GCN algorithm.

II. BACKGROUND

GCN uses a convolutional layer to collect information for
training and inference. While CNN performs convolution on
Euclidean data, GCN takes a graph (non-Euclidean data) as the
input. Nodes (or edges) of the input graph have a vector of
features that contain information for training and inference. For
example, in a social network, each node represents a user and
with features like age, gender, etc [13].

Unlike the Euclidean data where neighbors are spatially close
in the memory (multi-dimensional matrices), neighbors of graph-
structured data are located apart. This results in irregular memory
accesses and imposes new challenges on the processors. This
section gives a brief background on GCN. Table I lists the
notations and acronyms used in this paper.
A. GCN Model
A GCN is composed of multiple layers. In each layer, feature
information from the neighbors is aggregated (aggregation
phase) and multiplied by a weight matrix (combination phase),
and becomes the feature information for the next layer. The
aggregation function can be sum, mean, max, min, Long Short
Term Memory (LSTM), or other more complicated functions.
The combination phase uses an MLP layer with a trainable
weight matrix to transform the aggregated features and reduce
the dimension of the output features.

Each layer in GCN propagates node or edge information to
its one-hop neighborhood. Thus, an N-layer network effectively
propagates features to its N-hop neighbors. Usually, a couple
of layers is enough as the information from closer neighbors is
more important than remote ones. Figure 1 shows an example
of a vanilla GCN layer. Other variances of GCN algorithms
have a similar model, but with different aggregation functions.
B. Rich Diversity in GCN Models
We observe that state-of-the-art GCN models and popular input
datasets come with a diverse set of aggregation functions and

1

5

4

6

3

2

7

1

5

4

6

3

2

7

Input Graph Aggregation

1

5

4

6

3

2

7

Combination

x

Weight

Fig. 1: An example of the Vanilla GCN layer with N=7 nodes, and
F1=4 and F2=2 features. White cells are zeros. A self-loop retains the
feature vector of the node for aggregation.

input feature densities. An efficient GCN processor must be
flexible enough to exploit different characteristics.

Table II shows the aggregation and combination functions
of the three GCN models used in this work. Note that we call
the original GCN proposed in [15] vanilla GCN. Vanilla GCN
takes the mean value of all neighboring nodes’ features and
multiplies the aggregated results with a weight matrix through
an MLP layer. GraphSAGE [11] introduced neighbor sampling
to vanilla GCN. GS-mean and GS-max are two variations of
GraphSAGE that use mean and max for aggregation functions,
respectively. In this work, we use a sampling number of 25 to
be consistent with the original GraphSAGE algorithm [11].

Algorithm Aggregation Combination

Vanilla GCN [15] B = mean(N(H l)) X = ReLU(BW)

GS-mean [11] B = mean(N(H l)) σ(Wl ·Concat(B,hl))

GS-max [11] B = max j∈N(hl)σ(W 1
l ·hl

j) σ(W 2
l ·Concat(B,hl))

TABLE II: Aggregation and combination operations of GCN models [1].

We observe a variety of input datasets with different input
sizes and feature matrix densities. Table III shows the informa-
tion of these datasets. Cora and CiteSeer have relatively small
input graphs with a sparse feature matrix. PubMed has medium
size input graph with a 10% dense feature matrix, and Reddit
and Ogbn-products have a large input graph with a dense matrix.

Dataset Name #Vertices #Edges F1 d(X) X size
Cora (CR) [15] 2708 10566 1433 1.27% 385KB

CiteSeer (CS) [15] 3327 9104 3703 0.85% 820KB
PubMed (PB) [15] 19717 88648 500 10% 7.5MB
Reddit (RD) [11] 232965 114.6M 602 100% 535MB

Ogbn-Prod (OP) [12] 2449029 123.7M 100 99% 925MB

TABLE III: Datasets information. All datasets contains a single graph,
and all graphs are unweighted, undirected, and symmetrical. Non-zeros
in the feature matrix are stored in 32-bit fixed point.

C. Phase Orderings
The original GCN model performs the aggregation phase
before the combination phase. This is similar to CNNs, where
convolution is performed before feeding the results to fully-
connected layers. However, prior works [8, 17] have observed
that reordering the phases - that is, performing combination
before aggregation - can sometimes greatly reduce the operation
count. This is because the combination reduces the feature
dimension, and by executing the combination phase first, the
matrix multiplication in the aggregation is performed on a
smaller dimension. In this work, we refer to the original order

!

!

of performing Aggregation phase before Combination phase as
the AC order, and the reverse order as the CA order.

Fig. 2: Operation count for vanilla GCN, GS-mean, and GS-max models
in AC and CA orders. CA order is not applicable to GS-max.

Figure 2 shows the total number of arithmetic operations
for AC order and CA order for vanilla GCN and GraphSAGE
with different datasets. On average, CA order achieves 93%
operation count reduction for GCN and GS-mean. CA order
does not apply to GS-max, which uses a non-linear function for
aggregation. Lower operation count makes CA order preferable,
however, it is only applicable when the alternation of the order
does not affect the correctness of the output.

To ensure the correctness, aggregation function must be linear,
meaning that Agg(a,b)× c == Agg(a× c,b× c), where ×c is
the combination operation. For example, addition and mean
functions are linear operations, because (a+b)×c == (a×c+
b× c), while max and min functions are not linear, because
max(a,b)× c! = max(a× c,b× c).
D. Aggregation Dataflow
The aggregation phase is essentially the multiplication of the
adjacency matrix and the feature matrix. We have three widely-
used matrix multiplication methods: inner-product (IP), outer-
product (OP), and row-wise (RW) as our candidates.

Inner-product performs element-wise operation with a row
and a column of two matrices on matching indices. It exploits
output data reuse because each output is written only once, but
suffers from bad input reuse due to repeated reading of the
second matrix for each row in the first matrix. Besides, for very
sparse matrices, the odds of having matching indices are very
low and can become a major overhead.

Outer-product performs pair-wise multiplication with a
column and a row of two matrices and generates a partial
matrix of the same size as the final result. Outer-product enjoys
input data reuse because both input matrices are read only once,
but it generates N partial result matrices and needs element-wise
merging of all the partial matrices to get the final result.

Row-wise takes a row from the first matrix, uses its indices
to retrieve the corresponding rows from the second matrix, and
reduces multiple rows to one using the aggregation function.
Row-wise has good output data reuse and avoids the index
matching overhead in the inner-product. The downside of row-
wise is bad input data reuse as the second matrix will be
repetitively read, and its access pattern depends on the first
matrix, causing irregular memory accesses.

Out of the three aggregation dataflows, outer-product is not
suitable as it requires merging partial results to get final results,
which impedes the pipelining of the aggregation and combination
phases. The choice between inner-product and row-wise is
explained in §III-C.

General-purpose architectures are ill-suited for efficiently
executing GCN workloads, and prior accelerators are unable
to adapt to a large design space of GCN workloads. Therefore,
it is crucial to design an accelerator architecture that can
support diverse GCN models, different phase orderings, and
aggregation dataflows in order to optimize performance and
power efficiency.

III. PROPOSED DESIGN

A. PEDAL Architecture
In this section, we present the architecture design of PEDAL.

Top-level. Figure 3(a) shows the top-level PEDAL architec-
ture. PEDAL has two types of Processing Elements (PEs) -
Aggregation Processing Elements (APEs) for aggregation and
MAC Processing Elements (MPEs) for combination. PEDAL
has 32 APEs and 16 MPEs, an 8 MB feature buffer, a scheduler,
and a backend HBM memory system. APEs and MPEs are
connected to the scheduler, which controls the task assignment
and intermediate result movement among APEs and MPEs. The
feature buffer is connected to all APEs. It has 32 banks and
can be used as a user-managed scratchpad or a user-transparent
cache. The scheduler has a 2 MB edge buffer and a 512 KB
partial result buffer. Each MPE has a 32 KB weight buffer. All
MPEs, the scheduler, and the feature buffer are connected to
the backend HBM memory system.

Task QueueFSM
Cntlr

Col
indices

Row
indices

>
>

+
Col
Data

Partial
result

Fe
at
ur
e

Bu
ffe

r

Sc
he

du
le
r

Scheduler

Task
Queue

FSM
Cntlr

MAC MAC MACMAC…

+ + + + + + + + + + + + + +

Weight Buffer

Scheduler HBM
APE

APE

APE

APE

…

MPE

MPE

MPE

MPE

…

Sc
he

du
le
r

HBM

Fe
at
ur
e
Bu

ffe
r/
Ca
ch
e

Partial Result Buffer Edge Buffer

busy assign to row# wait dispatched Cntdown

0 Y APE 8 49 ‐ N 1

1 N All MPE 18 #0 Y 16

HBM

AP
E/
M
PE

AP
E/
M
PE

AP
E/
M
PE

(c) APE

(a) Top‐level (b) MPE

(d) Scheduler

Index
matcher

…

Scheduler

ReLU
units

+ + + + + +
+

Fig. 3: PEDAL architecture. (a) is the top-level architecture, (c), (b),
and (d) are the details inside APE, MPE, and the scheduler module,
respectively. The blue lines in the figures are the data path, orange
lines are the control path.

APE. APEs are used to execute aggregation operations.
Figure 3(c) shows the architecture of an APE. It has a task
queue to receive tasks from the scheduler, a Finite-State Machine
(FSM) controller to execute the tasks, an index matcher that
matches row indices with column indices for the inner product,
and an accumulator and a comparator. In this work, the
computing units in APEs are simplified to only an adder and a
comparator for addition and max/min operations. This minimizes
the area and power consumption while still allowing APEs to
perform a handful of the most popular algorithms like GCN,
GS-mean, and GS-max. If desired, other computing units can
be added to APEs to enable other operations.

!

!

Index matcher. The index matcher finds the intersection of
two sorted arrays. It keeps two circular queues of 32 Column and
Row indexes. A naive implementation compares the top element
of queues and returns them if they are equal. Otherwise, it pops
the smaller one. In the worst case, this implementation needs
to pop all elements of the queues sequentially. To decrease this
overhead, we equip the index matcher with 2×8 comparators.
They compare the top elements with the 8 top indices of the
other queues. In one cycle, the index matcher pops as many
indexes from one queue as its top element becomes smaller
than or equal to the other. Compared to the naive design, we
increase the performance by 3.97× while we only add 6% area
overhead for 16 parallel comparators.

MPE. MPEs are used to execute the combination phase,
which is the matrix multiplication of the feature and the weight
matrices. Figure 3(b) shows the architecture of an MPE. It
contains a task queue that receives jobs from the scheduler
and an FSM Controller for controlling the execution; instead
of accessing a unified weight buffer for all MPEs, each MPE
has a private weight buffer. The columns of the weight matrix
are evenly distributed to MPEs, and each MPE will compute
with the assigned portion of the weight matrix. Each MPE has
64 Multiply-Accumulate (MAC) units, and a hierarchical adder
tree with 63 adders to reduce the MAC results. Finally, the
result is sent back to the partial result buffer in the scheduler.

Scheduler. Scheduler is responsible for assigning tasks to
APEs and MPEs and keeping track of the status of each task.
For example, tasks that are assigned to multiple APEs or
MPEs can retire only when all PEs finished the task. The
scheduler also monitors the dependencies between aggregation
and combination phases. It only dispatches tasks that have no
outstanding dependencies. Finally, the scheduler takes care of
the data movement between APEs and MPEs when the results
of one phase are needed in another phase. Figure 3(d) shows
the architecture of the scheduler. It has an edge buffer for the
adjacency matrix, a partial result buffer for the intermediate
results from APEs and MPEs, and a schedule table that keeps
track of the status of each task.
B. PEDAL Dataflows
Decoupling Aggregation and MAC PEs enables PEDAL to
support diverse dataflows. In this work, we feature two ways
of performing the aggregation phase: Inner-product (IP) and
Row-Wise (RW), as well as two different computation orders:
AC order and CA order as discussed in § II. In total, it gives
us four different dataflows, namely IP-AC, IP-CA, RW-AC,
and RW-CA. We describe the four dataflows in detail below:

IP-AC. In IP-AC, the feature matrix is assigned to APEs
column-wisely. Each APE is equipped with a portion of the
feature buffer of equal size (256KB). When the feature matrix
is too big to be loaded into the feature buffer, it will be split
into chunks of columns, and PEDAL loads the next chunk once
the previous one is done. We assign as many columns to fill
up the feature buffer of APEs, eliminating workload unbalance
from uneven distribution of non-zeros. The weight matrix is
dense, so we assign an equal number of columns to each MPE.

Each row of the adjacency matrix is an aggregation task, and

each row of the aggregated feature matrix is a combination
task. The scheduler is responsible for scheduling, dispatching,
tracking, and retiring tasks. Each aggregation task is broadcast
to all APEs, and each APE will perform aggregation on the
adjacency matrix row with the assigned feature matrix columns
using inner-product. Once an APE finishes a task, it will send
the task id along with the partial results to the scheduler. When
all APEs finish on a task, the scheduler retires the aggregation
task and dispatches the corresponding combination task to MPEs.
MPEs perform inner-product with the rows of the aggregated
feature matrix and columns of the weight matrix.

IP-CA. IP-CA reverses the order of aggregation and com-
bination to reduces the operation count. However, performing
in CA order leads to a crucial issue: the combination phase
generates the intermediate matrix row by row, while aggregation
in the inner-product requires all rows indicated by the adjacency
matrix at once, which will not be available at the time needed.
Thus, we forfeit the IP-CA dataflow as it impedes the pipelining
of aggregation and combination and hurts the performance.

RW-AC. RW-AC is an alternative way of performing GCN
algorithms in AC order. In this dataflow, the feature buffer is
used as a unified cache that is transparent to users. Similar to
IP-AC, each row of the adjacency matrix is an aggregation task,
but instead of broadcasting to all APEs, row-wise assigns each
task to one APE. The APE retrieves the rows from the feature
matrix based on the column indices of non-zeros in the adjacency
matrix row. Each APE works independently from the other APEs
and receives a new task upon finishing one, thus dynamically
achieving workload balancing. The combination phase is the
same as in IP-AC and is pipelined with the aggregation phase.

RW-CA. RW-CA performs the combination phase first to
shrink the feature dimension, and then performs aggregation in
row-wise manner. While IP-AC and RW-AC dataflow pull the
neighboring nodes’ features, RW-CA pushes the feature of a
node to all its neighbors. This is because the combination phase
generates the intermediate feature matrix row by row, and it is
not feasible to pull features from neighbors as they may not be
ready yet. In RW-CA, the combination is performed the same
way as in IP-AC and RW-AC. When a row of the intermediate
feature matrix is generated, it is broadcast to all APEs. Each
row of the adjacency matrix is an aggregation task, and it is
evenly split into slices and assigned to all APEs. Each APE is
responsible for aggregating the feature to the slice assigned, so
there is no memory contention across APEs. The feature buffer
is evenly assigned to each APE (256KB) and used as a cache.
C. Choosing the Right Dataflow

Fig. 4: Performance of IP-AC, RW-AC, and RW-CA.

Figure 4 shows the performance of each dataflow for vanilla

!

!

GCN, GS-mean, and GS-max with 5 real-world datasets. The
choice of dataflow (IP-AC, RW-AC, or RW-CA) significantly
affects the execution time. We need to pick the best dataflow
for each GCN algorithm and dataset pair. A simple approach is
to find the number of arithmetic operations and compare them
for different dataflows. However, this approach does not take
memory stalls into account. For example, while the operation
count of vanilla GCN and Reddit dataset is the same for IP-AC
and RW-AC dataflows, the high cache miss rate of RW-AC
dataflow results in a longer execution time compared to IP-AC.
The simple approach chooses the right dataflow in only 73%
of the evaluated GCN model and input dataset pairs. A better
approach is needed to make educated decisions based on the
dataset characteristics and the GCN model. We use N, NNZ(A),
NNZ(X), and F1 as dataset characteristics, which are the input
dataset metadata.

With the complexity of so many dataset parameters, GCN
variances, and execution orders, we need a decision tree to
choose the best dataflow. We created 400 synthetic datasets
where N ranges from 1K to 1M, NNZ(A) from 2K to 200M,
F1 from 100 to 3K, and NNZ(X) from 1K to 3B. We pick
these parameters because they reflect the sizes and densities
of the input graphs and input features. These ranges are large
enough to cover all the real-world datasets we evaluate in this
paper. Besides, the synthetic datasets are generated such that
non-zeros in adjacency matrices have power-law distribution,
and non-zeros in feature matrices have Gaussian distribution
based on our observation from the real-world datasets. We build
a decision tree using scikit-learn [19], which uses an optimized
version of CART (Classification and Regression Trees). We use
the synthetic datasets to train the decision tree and use it to
predict the best dataflow on real-world datasets.

IV. EVALUATION

Fig. 5: Speedup and power efficiency of PEDAL compared to CPU,
GPU, HyGCN and EnGN. Power efficiency is measured by power-delay
product. × markers mean missing data points due to GPU Out-Of-
Memory or prior accelerators not reporting for some datasets or not
supporting some GCN models.
A. Experimental Setup
Baseline. We evaluate the CPU performance on Intel Xeon
Gold 6230 CPU, and GPU performance on NVIDIA GPU with

Ampere architecture. We implement the baseline on the state-of-
the-art PyTorch Geometric [7] library. We also compare PEDAL
with two prior GNN accelerators: HyGCN [23] and EnGN [17]
using the reported performance numbers. Table IV shows the
configurations of PEDAL and baseline architectures.

PEDAL simulation. We build a cycle-accurate simulator in
python and C++ to measure the computation cycles of PEDAL.
Our simulator is event-based and controlled by a state machine
to enforce dependencies. The memory access trace is recorded
and fed to Ramulator [14] for memory access latency. Ramulator
includes both cache and HBM memory as a hierarchical memory
system. We implement our design in RTL and use Design
Compiler to synthesize with a commercial 12nm CMOS library
at 1GHz clock frequency. We use eDRAM for on-chip memory
of PEDAL, HyGCN, and EnGN, and analyze with CACTI [18].

GCN algorithms and datasets. We evaluate the vanilla GCN
algorithm and two variations of GraphSAGE: GS-mean and GS-
max in this work. The details of the algorithms can be found
in Table II. The datasets used in this work can be found in
Table III. We cover graph size from small to large, and with
the feature matrix from sparse to dense to have a thorough
comparison between PEDAL and prior works. We use the same
hidden dimension (128) as in HyGCN for layer 1.
B. Decision tree accuracy
We use 80% of the synthetic datasets to train the decision tree
and test on the remaining 20% and achieved 90% accuracy.
Then we apply the decision tree to the real-world datasets,
and it selects the best dataflow with 93.3% accuracy. The only
mistake happens on the vanilla GCN and OP dataset in which
the mispredicted dataflow (IP-AC) is only 9% slower than the
best dataflow (RW-AC). We calculate the ratio of execution
time between the decision tree selected dataflow and the best
dataflow on the synthetic test set. The average ratio is 1.047,
meaning that the decision tree selected dataflow has an execution
time expectation less than 5% higher than the best dataflow.
C. Speedup and power efficiency
Figure 5a shows the performance of PEDAL compared to CPU,
GPU, and prior accelerators. We select the best dataflow for
different GCN algorithm and dataset pairs.

On average, PEDAL outperforms CPU and GPU by 144.5×
and 9.36×. Compared to prior accelerators, despite having less
computing resources, PEDAL achieves 2.55× speedup over
HyGCN. Compared to EnGN, PEDAL also supports non-linear
aggregation functions (e.g., GS-max) while achieving similar
performance for linear aggregation functions.

Compared to prior works, where thousands of PEs are used
for better performance, PEDAL uses only 32 APEs and 16
MPEs to achieve similar or better performance in most of
cases. Figure 5b shows power efficiency of PEDAL. Power
efficiency is measured using the power-delay product. On
average, PEDAL achieves 8856×, 1606×, 8.4× and 1.78×
better power efficiency than CPU, GPU, HyGCN, and EnGN
respectively. PEDAL is conservative on adding an excessive
amount of PEs because a) too many APEs to access the feature
buffer will cause serialization issue, b) too many APEs will
cause cache thrashing to the capacity-limited feature buffer, c) an

!

!

Compute Unit On-chip Memory Off-chip Memory Area(mm2) Power(W)
CPU 80 cores @ 2.1GHz 96MB 256 GB/s DDR4 - (14nm) 125
GPU 10496 Shading Units @ 1.4GHz 16.25MB 936.2 GB/s 628 (8nm) 350
HyGCN 16 SIMD cores @ 1GHz, and 32x128 systolic array 22.1MB 256 GB/s HBM 7.8 (12nm) 6.7
EnGN 128x16 arrays @ 1GHz 1.6MB 256 GB/s HBM 3.54 (14nm) 3.87
PEDAL 32 APEs and 16 MPEs @ 1GHz 11MB 256 GB/s HBM 4.05 (12nm) 2.04

TABLE IV: Architecture configuration comparison of CPU, GPU, HyGCN, EnGN, AWB-GCN and PEDAL

appropriate ratio of APEs and MPEs is important to load balance
between aggregation and combination. By employing a lower
number of PEs, PEDAL achieves lower power consumption
while keeping a comparable performance, thus having better
power efficiency.
D. Power and area breakdown

Module Components Power Area

APE

Accumulator 0.2% 0.07%
Index Matcher 7.7% 1.80%

Controller 0.7% 0.20%
TaskQueue 1.04% 2.98%

MPE

Adder Tree 2.4% 6.42%
MAC 42.8% 11.41%

Controller 0.45% 0.31%
Weight Buffer 0.9% 12.91%
Task Queue 0.53% 1.48%

Feature Buffer Buffer 40% 49.93%

Scheduler

Partial Results 0.07% 0.40%
Edge Buffer 2.9% 11.83%
Controller 0.06% 0.07%

ReLU 0.15% 0.00%

TABLE V: Power and Area breakdown

PEDAL has an average power consumption of 2.04W, which
is 69.6% and 47.3% lower than HyGCN and EnGN, respectively
(Table IV). Compared to HyGCN with general-purpose SIMD
units, PEDAL customizes processing elements and requires less
computing power. Besides, the limited feature buffer size of
EnGN increases the miss rate drastically for large datasets,
for example, Reddit. This results in higher eDRAM power
consumption compared to PEDAL that uses 8MB of feature
buffer. The total area of PEDAL is 4.05 mm2, which is 48.1%
smaller than HyGCN, and 14.4% higher than EnGN, respectively.
Table V lists the power and area breakdown of each component.
E. Discussion
PEDAL supports multiple dataflows and phase orderings. Fig-
ure 2 shows that operation distributions varies in different
dataflows, making either APEs or MPEs the bottleneck; solely
adding more resources to the architecture can only help certain
dataflow but not all. Besides, PEDAL also needs to support
Row-Wise mode, where the feature buffer is used as a unified
cache. Adding too many APEs requires increasing the size of the
feature buffer to ensure access latency. Either of the solutions is
too expensive for the potential performance gain of this design.

V. CONCLUSION

In this work, we present PEDAL, a power-efficient accelerator
for GCN inference supporting multiple dataflows. In order
to accommodate different input graph sizes and densities, as
well as GCN variants with different aggregation functions,

PEDAL features multiple dataflows, namely IP-AC, RW-AC,
and RW-CA to support performing GCN inference in both phase
orderings efficiently. We evaluate the performance of PEDAL
using a cycle-accurate simulator and do RTL synthesis to get
power and area. PEDAL achieves 144.5×, 9.36×, and 2.55×
speedup compared to CPU, GPU, and HyGCN respectively,
and 8856×, 1606×, 8.4× and 1.78× better power efficiency
compared to CPU, GPU, HyGCN and EnGN respectively.

REFERENCES

[1] S. Abadal et al., “Computing graph neural networks: A survey from
algorithms to accelerators,” ACM Comput. Surv., vol. 54, no. 9, oct 2021.

[2] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” 2016.

[3] P. W. Battaglia et al., “Interaction networks for learning about objects,
relations and physics,” CoRR, vol. abs/1612.00222, 2016.

[4] R. Chakraborty et al., “Manifoldnet: A deep neural network for manifold-
valued data with applications,” IEEE TPAMI, pp. 1–1, 2020.

[5] C. Chen et al., “Regnn: A redundancy-eliminated graph neural networks
accelerator,” in 2022 HPCA, 2022, pp. 429–443.

[6] J. Chen et al., “FastGCN: Fast learning with graph convolutional networks
via importance sampling,” in ICLR, 2018.

[7] M. Fey and J. E. Lenssen, “Fast graph representation learning with pytorch
geometric,” CoRR, vol. abs/1903.02428, 2019.

[8] T. Geng et al., “Awb-gcn: A graph convolutional network accelerator with
runtime workload rebalancing,” in MICRO, 2020, pp. 922–936.

[9] ——, “I-gcn: A graph convolutional network accelerator with runtime
locality enhancement through islandization,” in MICRO, 2021.

[10] A. Graves et al., “Multi-dimensional recurrent neural networks,” in
Artificial Neural Networks - ICANN, 2007.

[11] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” 2018.

[12] W. Hu et al., “Open graph benchmark: Datasets for machine learning on
graphs,” 2020. [Online]. Available: https://arxiv.org/abs/2005.00687

[13] M. Kim and J. Leskovec, “Modeling social networks with node attributes
using the multiplicative attribute graph model,” 2011.

[14] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible dram
simulator,” IEEE Computer Architecture Letters, vol. 15, pp. 45–49, 2016.

[15] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2017.

[16] Y. Lecun et al., “Gradient-based learning applied to document recognition,”
Proceedings of the IEEE, 1998.

[17] S. Liang et al., “Engn: A high-throughput and energy-efficient accelerator
for large graph neural networks,” IEEE TC, 2021.

[18] N. Muralimanohar and R. Balasubramonian, “Cacti 6.0: A tool to
understand large caches.”

[19] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, 2011.

[20] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” 2016.

[21] F. Scarselli et al., “The graph neural network model,” IEEE Transactions
on Neural Networks, 2009.

[22] N. Talati et al., “A deep dive into understanding the random walk-based
temporal graph learning,” in IISWC, 2021.

[23] M. Yan et al., “Hygcn: A gcn accelerator with hybrid architecture,” in
HPCA, 2020.

[24] H. You et al., “Gcod: Graph convolutional network acceleration via
dedicated algorithm and accelerator co-design,” in HPCA, 2022.

[25] J. Zhou et al., “Graph neural networks: A review of methods and
applications,” AI Open, 2020.

[26] C. Zhuang and Q. Ma, “Dual graph convolutional networks for graph-based
semi-supervised classification,” in WWW, 2018.

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

