
P-PIM: A Parallel Processing-in-DRAM Framework
Enabling RowHammer Protection

Ranyang Zhou†, Sepehr Tabrizchi‡, Mehrdad Morsali†, Arman Roohi‡ and Shaahin Angizi†
†Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA

‡School of Computing, University of Nebraska–Lincoln, Lincoln NE, USA
rz26@njit.edu, aroohi@unl.edu, shaahin.angizi@njit.edu

Abstract—In this work, we propose a Parallel Processing-In-
DRAM architecture named P-PIM leveraging the high density of
DRAM to enable fast and flexible computation. P-PIM enables
bulk bit-wise in-DRAM logic between operands in the same bit-
line by elevating the analog operation of the memory sub-array
based on a novel dual-row activation mechanism. With this, P-
PIM can opportunistically perform a complete and inexpensive in-
DRAM RowHammer (RH) self-tracking and mitigation technique
to protect the memory unit against such a challenging security
vulnerability. Our results show that P-PIM achieves ∼72% higher
energy efficiency than the fastest charge-sharing-based designs. As
for the RH protection, with a worst-case slowdown of ∼0.8%, P-
PIM archives up to 71% energy-saving over the SRAM/CAM-
based frameworks and about 90% saving over DRAM-based
frameworks.

Index Terms—Processing-in-DRAM, rowhammer, memory sub-
array

I. INTRODUCTION

The security of the main memory is crucial as it is associated
with the regular operation of the computing systems. While
the continuous shrinkage in the size of the DRAM bit-cell has
increased the chip density to achieve a larger capacity [1], it is
experimentally demonstrated that even the most recent DRAM
chips suffer from a design flaw [2]. The vulnerability imposed
by this flaw is called RowHammer (RH). As initially analyzed
by Kim et al. [3] in 2014, such a vulnerability is exploited
when an attacker repeatedly taps a specific row in the memory
causing the adjacent rows to be inverted, thereby corrupting the
data in the memory. This phenomenon is a result of electrical
coupling between multiple rows. Thus, as the chip process
node scales down, the adjacent cells’ distance keeps reducing,
resulting in a broader range of RH attacks [4]. A proof of
concept shows that greater than two lines can be simply affected
[1]. In the worst case, malicious code could escape the sandbox
environment or even take over the whole system [5].

According to the experimental data [1], [3], the minimum
time that one hammer can flip the row in modern DRAM
should be larger than the refresh interval. If the row flips
before the refreshing, the program will use incorrect data to
perform the operations. In this case, the system will spend
more time retrieving the data than protecting it. However, the
cost of protecting rows from the RH attack is huge, both in
terms of latency and power consumption [1], [5], [6]. The
simplest solution to mitigate the RH attack is increasing the
refresh rate [7]. However, this approach imposes a huge extra
power consumption. Currently, the state-of-the-art solutions can

This work is supported in part by the National Science Foundation under
Grant No. 2228028, 2216772, and 2216773.

be categorized into two groups: i) Probabilistic row activation
[3] in which memory control randomly refreshes the high
frequently activated rows or adjacent rows (victim rows) and ii)
Counter-based detection [6]–[8] in which the target row refresh
mechanism could be an effective and efficient solution for the
RH mitigation. This mechanism scans all DRAM data rows
and can determine the rows with abnormally higher activation
than others. So, the system can retrieve the target rows instead
of the whole DRAM.

We believe such a challenging vulnerability of the main
memory can be plugged in by leveraging a new processing-in-
DRAM architecture locally without engaging external memory
units. Such in-DRAM computing platfroms have been widely
used to overcome the von-Neumann architecture’s memory wall
bottleneck over the past few years [9]–[11] by incorporating
logic units within memory to process data internally without
high-frequency access and long-distance transmission. This
stems from larger capacities and off-chip data transfer for
DRAM compared to other memory technologies. The main
contributions of this work are as follows. (1) We develop P-
PIM as a parallel processing-in-DRAM architecture based on
a set of novel microarchitectural and circuit-level schemes; (2)
We develop ISA and the parallelism required to compute any
user-defined in-DRAM operation; and (3) We show P-PIM’s
applicability in protecting against the RH vulnerability with an
error-tolerant and inexpensive method that reduces area over-
head and latency imposed in the state-of-the-art mechanisms.

II. BACKGROUND

A. DRAM Background

DRAM organization. The DRAM chip is a hierarchical
structure consisting of several memory banks. Each bank com-
prises 2D sub-arrays of memory bit-cells that are virtually
ordered in memory matrices (mats), which have billions of
DRAM cells on modern chips [1]. As shown in Fig. 1(a), each
DRAM bit-cell consists of a capacitor and an access transistor.
The principle of storing data in DRAM is to use the amount
of stored charge in the capacitor to represent binary “1” or “0”
[10].

DRAM refreshing. Due to the leakage current phenomenon
in the transistor, the amount of charge stored on the capacitor
may not be enough to correctly discriminate the data, resulting
in data corruption. To secure the data in DRAM, the system
recharges the DRAM periodically.

In-DRAM computing. RowClone [12] presents a very fast
in-memory copy operation (<100ns) by issuing two back-to-
back ACTIVATE commands (without PRECHARGE com-

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

WLd

B
L

access
transistor

B
L

WL1

WL2 B
L

B
L

Enx
EnM

Enc3-2

capacitor

R
ow

 D
ec

o
d

er

BL

enable

DRAM cell

SA

B
L

Enx

Latch

gate

WL1

WL2

B
L

B
L

Enx

rWL1

rB
L

Enx

wWL1

w
B

L

rWL2

rWL3

WL3

WL1

WL2 B
L

WL3Dk

Di

Dj

Dr

Di

Dj

Dr

Di

Dj

Dr

WL1

WL2

WL3

WL4

WL5

B
L

B
L

WL1

WL2

WL3

WL4

WL5
B

L

Sense Amplifier

DRAM Rows

SA

Fig. 1. (a) DRAM sub-array organization, (b) Ambit’s TRA [10], (c) DRISA’s
3T1C [9], (d) DRISA’s 1T1C [9], (e) GraphiDe’s QRA [11], (f) QRA [14], (g)
ReDRAM’s DRA [15].

mand in between) to the source and destination rows. Ambit
[10] proposes a framework based on this technique, to realize
the bulk bit-wise in-memory logic operations by (i) activating
three DRAM rows, (ii) charge sharing among DRAM cells,
and then (iii) leveraging the typical DRAM’s sense amplifiers
to generate output as shown in Fig. 1(b). Inspired by Ambit’s
Triple Row Activation (TRA) mechanism [10], prior works
have proposed in-memory designs with multi-row activation
that support more complex logic operations [9], [11], [13]–
[17] through charge sharing between input operands stored in
capacitors. Such designs support large operands’ bit-width up to
physical memory row size and high throughput for most logic
operations (Fig. 1(c-g)). However, they show low reliability
due to multi-row activation. Alternatively, pLUTo [18] and
pPIM [19] support simultaneous querying for the LUT-based
computation to perform complex arithmetic operations beyond
the scope of prior proposals. However, they only support low-
bit-width (up to 4-bit [18]) arithmetic operations with little area
overhead.

B. RowHammer Mitigation

Both hardware and software level mitigation mechanisms
have been actively explored and followed to eliminate RH
vulnerability on next-generation DDRx systems. State-of-the-
art works [1], [20], [21] proposed alternative measures to solve
the problem. The memory controller and system manufac-
turers also include defenses such as increased refresh rates
and hardware RHP [22]. However, the existing RH mitigation
proposals have faced a huge overhead both from latency and
energy consumption perspectives. In this work, we mainly
focus on three objectives: i) Reducing area overhead. Most of
the counter-based detection methods require add-on hardware
to detect rows’ activation. In the worst scenario, each row
is equipped with a counter, and the best scenario is to use
one counter for a group consisting of multiple memory rows
[6]. Moreover, the system still needs a fast-read memory such
as SRAM or CAM for storing the Activation Count Table
(ACT). In the proposed DRAM-only mechanism, no counters
and fast-read memory are required. ii) Reducing latency. When

the system determines the target row under attack, it will
retrieve the row. In the counter-based frameworks, the system
will refresh the victim rows [20], but the P-PIM architecture
intrinsically and locally supports bit-wise operations to refresh
the row with a low energy cost. iii) Error tolerance. Refreshing
the rows can only clear the number of the activation instead of
retrieving the data. Therefore, if the target row has been flipped
before refreshing, the following operations depending on the
data will all write back fault results. In our design, we try to
eliminate errors to make sure every data is usable.

III. P-PIM ARCHITECTURE

Herein, the P-PIM is developed as a parallel charge-sharing-
based in-DRAM accelerator on top of the existing DRAM
hierarchy to execute bulk bit-wise in-memory operations. As
shown in Fig. 2, each memory matrix consists of multiple n-
row computational sub-arrays, each divided into two parts, i.e.,
n-17 Data rows controlled by a typical Row Decoder (RD),
and 17 Compute rows dedicated to executing bulk bit-wise
logic operations connected to a Modified Row Decoder (MRD).
P-PIM’s computational sub-arrays are designed to accelerate
complex X(N)OR logic operation via a novel sense amplifier
design. Supported by the P-PIM’s ISA, this will enable the RH
protection as explained in Section III.B.

A. Bit-wise Operation Mode with Dual-row Activation

Offering an area-efficient and high-throughput in-DRAM
X(N)OR2 operation has been challenging due to the inherent
complexity of X(N)OR-based logic implementations as dis-
cussed in many recent platforms ([9]–[11], [15]). Nevertheless,
these platforms can utilize maximum memory-level parallelism
and internal memory bandwidth to implement NOT, (N)OR,
(N)AND, and MAJ/MIN functions. The P-PIM architecture
not only supports memory and the TRA mechanism [10],
[16], but also operates based on a novel Dual-row Activation
(DRA) mechanism to implement bit-wise X(N)OR2 operation.
A reconfigurable sense amplifier on top of the conventional
DRAM sensing circuitry is developed. As depicted in Fig. 3(a),
a regular inverter-based DRAM sense amplifier is equipped
with add-on circuits, including two inverters, a pair of PMOS
and NMOS transistors, and a 2:1 MUX. Four enable signals
(Cm, Cnand, Cnor and Cmux) are responsible for controlling
the sense amplifier. Leveraging the charge-sharing feature of the

GRB

GBL

c_addr
r_addr

Ctrl
Compute.

Sub.

Driver

Ctrl

GRD

Compute.
Sub.

Driver

Ctrl

Compute.
Sub.

Driver

Ctrl

GWL

Compute.
Sub.

Driver

Ctrl

Compute.
Sub.

Driver

Ctrl

Compute.
Sub.

Driver

Ctrl

Compute.
Sub.

Driver

Ctrl

Compute.
Sub.

Driver

Ctrl

RD
Ct

rl
MR

D x1

x17
Compute.

(n-17 rows)
Data

(17 rows)

Fig. 2. Overview of P-PIM architecture enabling bit-wise operations.

!

!

Rst

WLb1

WLb2

BL

BL

Di

Dj

reconfigurable

+- CnandCnor

XO
R2

co
nt

ro
lle

r u
ni

t

Cnor
Cnand

Cmux Cmux

C
Vdd

Cm CmCm

2:1 MUX

0 0.2 0.4 0.6 0.8 1Vin
0

0.2
0.4
0.6
0.8
1

V ou
t

NOT

+

-

high-v
low-v

s
s

snormal-v

NAND2

NOR2

Fig. 3. (a) New sense amplifier design for P-PIM architecture, (b) VTC of the
skewed inverters, (c) Transient simulation results.

DRAM cell, the X(N)OR2 logic can be implemented between
two selected rows through static capacitive-NAND/NOR in
only one cycle. Two different types of skewed inverters with
shifted Voltage Transfer Characteristics (VTC) are utilized to
perform capacitive-NAND/NOR functions. As shown in Fig.
3(b), a high switching voltage (Vs) inverter with standard high-
Vth NMOS and low-Vth PMOS is responsible to carry out
NAND logic. A low Vs inverter with standard low-Vth NMOS
and high-Vth PMOS is responsible for carrying out the NOR
logic. Thus, this way, NAND2, and NOR2 logic will be readily
accessible. It is worth mentioning that, utilizing low/high-
threshold voltage transistors along with normal-threshold tran-
sistors has been accomplished in low-power applications, and
many circuits have enjoyed this technique in low-power design
[15], [23].

To understand the operation of the DRA mechanism, assume
that Di and Dj operands in Fig. 3(a) are copied from data
rows to x1 and x2 rows by RowClone method [12] and both
BL and BL are precharged to Vdd

2 . Utilizing an MRD which
activates two rows at the same time (WLb1, WLb2) in Fig.
3(a), NAND and NOR logic functions can be achieved through
charge sharing between BL and activated cells’ data at the
output of modified inverters. Then, applying these outputs to the
additional pair of NMOS-PMOS transistors will readily result
in XOR2 logic. A 2:1 MUX is responsible to select between
normal DRAM read managed by the dotted inverters and XOR2
operations managed by skewed inverters. Configuration of the
controlling bits in these two operations is tabulated in Table I.
Fig. 3(c) depicts the transient voltage simulation results of the
P-PIM considering all possible data combinations and how the
single-cycle XNOR function is generated on the BL.

TABLE I
CONTROL BITS STATUS IN SENSE AMPLIFICATION STATE.

Ops. Activation Cm Cnor Cnand Cmux

Read Single 1 0 0 0
XNOR2 Dual 1 1 1 1

MAJ Triple 1 0 0 0

B. RowHammer Attack Protection
The RH attack occurs if an aggressor row is frequently

accessed, inducing a capacitive coupling between adjacent WLs

Alter rows (16)

HF rows (64)

Data rows

R
esto

re

C
o

p
y

(A
A
P

) Group 0(4 rows)

Original Data

Copied Data
Test Data

Mismatch

Original Data
Alter Data

Copied Data
Test Data

000...111 000...111

XXX...XXX

XXX...XXX

XXX...XXX

000...111

XXX...XXX

XXX...XXX

000...000

000...000

000...111

000...111 111...000

111...000

000...111

000...000 000...111

000...111

000...111

111...000

Compute rows (17)

1 2 3 4

1

2

3 3

4

XNOR (AP)

4

4

Alter rows

Alter Data

4

Fig. 4. The P-PIM-based RH attack protection with detection and retrieval.

[5]. Protecting the DRAM chip against the RH attack is a
broad challenging task that can be translated into avoidance,
detection, and retrieval mechanisms. Based on this concept,
there are several mitigation approaches have been explored. In
the proactive-refreshing approach, the victim rows are refreshed
before the aggressor rows reach the RH threshold. To enable
this, one counter is dedicated to each row to keep track of row
activations [24]. However existing RH mitigation proposals face
expensive hardware burdens. To improve this, a counter table
can be inserted in the main memory [8], memory controller,
or in SRAM-cache [25] to alleviate the performance penalty
of counter data transfer. In the probabilistic approach, e.g.,
PARA [5], the avoidance is provided in a stateless manner by
activating random rows with a probability, however, no retrieval
mechanism is considered if a row is hammered. Herein, we
show that P-PIM can protect (i.e., self-track and retrieve) data
in any high-priority and frequently-accessed data rows defined
by users against RH attacks in a cost-effective manner.

As shown in Fig. 4, we propose to partition the data rows in
Fig. 2 and reserve 64 High-Frequent activated rows as HF and
16 empty rows as Alter. The HF and Alter rows are allocated
to consecutive addresses. The HF rows are then virtually
divided into groups of four. The proposed P-PIM-based RH
protection mechanism is enabled in two phases, i.e., i) detection
and ii) retrieval. According to the pertinent experimental data
[1], the average time that one hammer can flip the row is
∼4ms in DDR3. Therefore, a Detection Interval (DI) is set
to 1ms, and in each DI, the Alter rows are used for detection
and retrieval. During the detection phase, at the beginning of
the DI, P-PIM’s controller issues an ACTIVATE-ACTIVATE-
PRECHARGE (AAP) command to copy the Original Data
from HF rows to Alter rows (Fig. 4 1), called Alter Data.
Then at the end of DI, the Original Data and the Alter Data
are copied to two compute rows, indicated by Test Data and
Copied Data 2 . We opt for periodic detection to reduce energy
consumption and support self-correction. P-PIM then issues an
ACTIVATE-PRECHARGE (AP) command to perform XNOR
operation between Copied Data and Test Data 3 . If the in-
memory XNOR result is all “1”s, the Original Data is not
flipped. Then P-PIM copies Alter Data to overwrite Original
Data and repeat 1 with another row in the group. During the
retrieval phase, however, when the data is polluted (i.e., the
in-memory XNOR result has at least one “0”), the Alter Data

!

!

Algorithm 1 P-PIM’s RH Protection Algorithm
1: Procedure: Protection
2: if DI Start then
3: for group in HF rows do
4: select row[group]← BinaryTree(group)
5: Alter Data[group]← select row[group]
6: end for
7: else
8: if DI Detect then
9: for row in select row do

10: Copied Data← select row[row]
11: Test Data[group]← Alter Data[group]
12: if !XNOR(Copied Data, Test Data) then
13: DI Interrupt← 1
14: select row[group]← Alter Data
15: else
16: DI Interrupt← 0
17: end if
18: end for
19: end if
20: else
21: if DI Interrup then break;
22: end if
23: end Procedure

is used to retrieve the original data 4 . The downside is that
P-PIM is not able to locate the point at which the HF row was
flipped (attacked), so we propose to back up the program at the
beginning of the current DI and rerun it.

The P-PIM platform can protect the system against RH
attacks. To detect the target rows quickly, we exploit the
binary tree algorithm [6] (line-4 in Algorithm 1) to select the
Copied Data since the row under the RH attack could bring up
several victim rows. As shown in the P-PIM’s RH protection
algorithm, we consider three flags, i.e., DI Start, DI Detect,
and DI Interrupt to distinguish different steps in DI. DI Start is
dedicated to the beginning of DI, at which we create Alter Data
(line-5). When the detection phase in on (DI Detect in line-8),
P-PIM will perform a parallel single-cycle XNOR operation
(line-12) to detect an RH attack and accordingly retrieve data
if a row is attacked (line-14). DI Interrupt is used only when
the RH attack is detected and in this step, the program will roll
back to the beginning of the DI. Fig. 5(a) shows a sample RH
detection program used in P-PIM. We define the operations in
DI0 and DI1 as OP0 and OP1, respectively, and the write-back
operation of OP as WR. As can be seen, there is no error in
DI0 and the RH attack occurs in DI1. As a result, the DI2 will
repeat DI1 to assure the program is correct.

//DI 0 finished, DI 1 start copying
AAP(alter0, A0)
AAP(alter1, A1)

AAP(alter15, A15)

OP0OP0OP0 OP0 OP1 OP1OP1OP1

DI 0 DI 1

WR0 WR0WR0WR0 WR1 WR1WR1WR1

OP1 OP1OP1OP1

WR1 WR1WR1WR1

DI 2

//DI 1 start detecting
AAP(B0, A0)
AAP(B16, alter0)
AP(B17)
AAP(B1, A1)
AAP(B16,alter1)
AP(B18)
...

(a)

(b)

Fig. 5. (a) Timeline of a sample program with RH detection, (b) The µOp
sequences for DI Start and DI Detect of DI.

10
11

Copy μReg Addr. Src.OP

17

00 AAP
Opcode Mnemonic

OPControl

01 AP
benz
done

Row Copy
Type

ControlXNOR ops μReg Addr.OP

6

6

9

XNOR

2

 Fig. 6. P-PIM’s instructions, µOps, and their description.

C. ISA Extension

From a programmer’s standpoint, P-PIM is more of a third-
party accelerator rather than a memory unit. Therefore, for
general-purpose parallel execution, an ISA and virtual machine
will be needed. With this, any user-level program can be
translated at install time to the P-PIM’s hardware instruction
set. The P-PIM’s µprogram consists of multiple instructions.
As shown in Fig. 6. P-PIM is designed to process three 17-
bit instruction types after compiling the upper-level code: (1)
a copy instruction based on RowClone [12], (2) instruction
for bit-wise XNOR operation, and (3) instruction for program
control. Each P-PIM’s µprogram then comprises a series of
AAP and AP commands.

Row Clone. When OP is 00, P-PIM performs a row copy
operation, which activates the source row and the destination
row synchronously to share the charge.

Bit-wise XNOR operation. When OP is 01, the instruction
performs a parallel XNOR operation. The 6-bit register address
is the encoded address in the register addressed to the Compute
rows, respectively. As shown in Table II, the first 17 rows of the
register encode 16 Copied Data row T0-T15 and the Test Data
row G0, separately, and the last 16 rows encode Test Data row
with each row of 16 Copied Data row, separately. The query
result will overwrite all the rows pointed by the instruction, as
shown in Fig. 4.

Control. Opcodes 10 and 11 respectively represent simple
control operations for loops and termination in the control flow.
Also, it can jump to a specific position, which depends on the
result given by the XNOR operation. To minimize the error
ratio, we divide the program by the timescale equals 1ms. Fig.
5(b) gives an example of the µOp sequences for DI Start and
DI Detect. Assuming DI0 has finished without errors, the DI1
starts right after that. The left box shows that the DRAM makes
copies of all the original data. Then the program continues
until DI1 enters the detection phase. The right box shows that
to detect a row, the system will copy both original data and
alter data to compute rows, then perform the XNOR operation.
P-PIM will repeat this step until the error is detected.

TABLE II
COMPUTE ROWS’ ADDRESSES MAPPING TO CORRESPONDING WL(s).
µReg. WL(s) µReg. WL(s) µReg. WL(s)

B0∼B15 T0∼T15 addr B16 G0 addr B17∼B32 G0,T0∼T15 addr

IV. EVALUATION

A. Framework & Results

Framework. We demonstrate the advantages of P-PIM
through a cross-layer evaluation framework as shown in Fig.
7. At the circuit-level, we first developed P-PIM’s sub-arrays
with new peripherals in Cadence Spectre with a 45nm NCSU
PDK library [26] to verify the functionality and achieve the
performance parameters. The memory controller and registers

!

!

Application/

Benchmark

P-PIM Function

Synthesizer

Logic

Netlist

Application

ISA
GEM5

Simulator

Performance Memory Stats

(Read,Write,μOps)

A
rc

hi
te

ct
ur

e

Energy, Latency

Performance Param.

(Latency, Energy)

Design & Verification

of Protect-PIM

(Cadence Spectre)

C
irc

ui
t

In-house Optimizer CACTI
Design Compiler

Fig. 7. Cross-layer evaluation framework for P-PIM architecture.

are designed and synthesized by Design Compiler with a
45nm industry library. At the architecture-level, we extensively
modified CACTI [27] with the input from the circuit-level
assessments. We then implemented P-PIM’s ISA in gem5 [28]
and exported the memory statistics and performance into an in-
house optimizer, also taking the CACTI output as the input. At
the application-level, we picked Advanced Encryption Standard
(AES) workload and then gave it to the P-PIM’s function
synthesizer to convert it to a logic net-list and then to µOps by
gem5.

Performance results. A comparison of the P-PIM’s sub-
array latency and state-of-the-art processing-in-DRAM designs
(Ambit [10], SIMDRAM [16], DRISA-3T1C [9], GraphiDe
[11], LAcc [13], and pPIM [19]) running basic logic operations
(NOT, NAND, MAJ, X(N)OR) is reported in Fig. 8(a). Consid-
ering an ideal data layout [18], we constrained the designs by an
8GB memory capacity to get the best achievable performance in
a narrow range of areas. As shown, thanks to the reconfigurable
sense amplifier supporting both DRA and TRA mechanisms, P-
PIM provides relatively fast and comparable performance for a
variety of operations of interest. P-PIM offers the fastest XNOR
operation (∼270ns) as compared with other designs.

According to Fig. 8(b), P-PIM, Ambit [10], and GraphiDe
[11] designs offer the least power consumption (∼5W) com-
pared to other designs due to their low power consumption
sensing mechanism. We can also see the high power con-
sumption of one of the LUT-based platforms called pPim [19]
compared to our design. Fig. 9 analyzes and shows the energy-
efficiency and performance per area parameters for various
processing-in-DRAM architectures normalized to the P-PIM

P-PIM
Ambit

SIMDRAM
DRISA

ReDRAM

GraphiDe
LAcc

0

200

400

600

800

S
u
b
-a

rr
a
y

L
a
te

n
cy

 (
n
s)

not nand maj x(n)or

P-
PI

M
Am

bit

SI
MDRAM

DRIS
A

ReD
RAM

Gra
ph

iD
e

LA
cc

pP
IM

0

5

10

15

P
o

w
e

r
(W

)

N/A N/A
N/A

(b)(a)
Fig. 8. (a) Sub-array latency in performing four basic bit-wise logic operations,
and (b) Power consumption when the DRAM capacity is constrained by 8GB.
N/A: Data is Not Achievable

P-PIM
Ambit

SIMDRAM
DRISA

ReDRAM

GraphiDe
LAcc

0
0.25
0.5

0.75
1

1.25
1.5

Energy Efficiency
Performance per Area

Fig. 9. Normalized energy efficiency and performance per area for various
processing-in-DRAM architectures.

design. We observe that P-PIM achieves ∼72% higher energy-
efficiency than that of the fastest charge-sharing-based design,
i.e., ReDRAM [15]. However, GraphiDe [11] and LAcc [13]
demonstrate higher performance per area compared to P-PIM.

B. Case study: in-DRAM Data Encryptor

The P-PIM architecture can provide encryption in high-
assurance computing systems when the processor is typically
trust-based. AES is an iterative symmetric-key cipher in which
the sender and receiver use the same key to encrypt and decrypt.
The AES algorithm is designed to work with 16-byte (128-bit)
data organized in a 4×4 state matrix while using 3 different key
lengths. SubBytes, ShiftRows, MixColumns, and AddRound-
Key are enumerated as the transformations performed on input
data for 128-bit key lengths. For ease of work with input data,
each byte is divided into 8 bits resulting in 8 P-PIM sub-arrays
filled with 4×4 bit-matrices. To accelerate each transformation
inside the memory, P-PIM performs bulk bit-wise operations
after mapping. The X(N)OR2 and (N)AND2 operations in
SubBytes, MixColumns, and AddRoundKey stages contribute
to more than 90% of the overall operations. In this study,
we examine 128-bit AES implementations in terms of energy
consumption and process cycles required on a General-Purpose
Processor (GPP), ASIC, Ambit [10], DRISA-3T1C [9], Re-
DRAM [15], and P-PIM. For the GPP, AES C code is compiled,
then cycle-accurate gem5 [28] is used to take AES binary
and the McPAT [29] is used to estimate power dissipation.
The Synopsys Design Compiler is used to implement the
ASIC design (at 1.133GHz). Fig. 10(a) reports the number
of cycles required for AES. ReDRAM and P-PIM require the
least number of cycles (<560 cycles) compared with other
processing-in-DRAM platforms and GPP. However, ASIC (with
336 cycles) shows better performance. Fig. 10(b) compares
the energy-efficiency of the P-PIM with other platforms. As
compared to GPP and ASIC designs, P-PIM shows 145×
and ∼2.1× energy reduction, respectively. Moreover, P-PIM
is found to reduce energy consumption by 58%, 45%, and
43%, respectively, relative to Ambit [10], DRISA-3T1C [9],
and ReDRAM [15].

C. Row Hammer Mitigation

While there are several well-designed RH mitigation mech-
anisms in the literature, we only compare P-PIM with five
designs as listed in Table III. The frameworks either directly
leverage CMOS counters to detect the RH attack or employ fast

!

!

GPP
ASIC

Ambit

DRISA

ReDRAM
P-PIM

10-1

100

101

102

103

En
er

gy
 C

on
su

mp
tio

n (
nJ

) SubBytes
ShiftRows
MixColumns
AddRoundKey

GPP
ASIC

Ambit

DRISA

ReDRAM
P-PIM

0

500

1000

1500

2000

2500

3000

Cy
cle

s (
#)

SubBytes
ShiftRows
MixColumns
AddRoundKey

(a) (b)

Fig. 10. Breakdown of (a) Number of cycles and (b) Energy consumption
required for various AES implementations.

memories such as CAM and SRAM to store ACT. Our assess-
ment shows that P-PIM is particularly suitable for DRAM self-
detection of RH attacks. As discussed in Section III, scanning
the whole DRAM in a single DI is unnecessary. Moreover, P-
PIM can support fast row transfer and bit-wise operations. For
this experiment, we followed the previous works’ comparison
strategy and took into account a 32GB DRAM capacity, and
then normalized the slowdown and overhead for each bank.
Here, we listed our key observations. i) Size per bank represents
the capacity occupied for detecting RH. We can find that even
the best frameworks such as Hydra [24] requires ∼1.76KB
per bank from the SRAM. P-PIM achieves more than ∼92.8%
space saving in memory capacity utilizing DRAM itself. ii)
For a fair comparison of the latency, we expand our view on
memories involved in the operation. Graphene [30], Hydra [24],
and TWiCE [25] lead to latency in CAM and SRAM, while
DRAM-based designs typically impose latency in DRAM. The
baseline is a system that only supports the memory refresh
with no further actions. P-PIM leverages row copy to restore
the data, while other DRAM-based frameworks use refreshing.
During the P-PIM detection phase, about 75% of operations are
AAP, which cost much less than AP operations. As a result,
in the best case, the slowdown of P-PIM increases up to 0.8%
when all the rows are detected, which is about 10% overhead
of other fast-memory-based frameworks [24], [25]. In the worst
case, when the first selected row is flipped, the slowdown of P-
PIM is 0.4%. The advantage is no SRAM or CAM resources are
occupied for the detection. iii) Compared with the DRAM-only
structure, the extra energy used for RH detection is represented
as energy overhead. Our design achieves up to 71% energy-
saving over the fast-memory-based frameworks and about 90%
energy-saving over DRAM frameworks.

TABLE III
COMPARISON WITH PRIOR ROWHAMMAR MITIGATION FRAMEWORKS.

Framework Memory involved Size per bank (KB) Slowdown Energy overhead
graphene [30] CAM-DRAM 2.45 0 0.34%

Hydra [24] SRAM-DRAM 1.76 0.7% 0.2%
TWiCE [25] SRAM/CAM-DRAM 21.68 0.7% 0.7%

Counter per Row DRAM 4 0 21.92%
Counter Tree [6] DRAM 0.25 0 1.37%-3.74%

P-PIM DRAM 0.125 0.4%-0.8% 0.39%

V. CONCLUSION

In this work, a new processing-in-DRAM architecture named
P-PIM was proposed with dual-row and triple-row activation
support. P-PIM performs a complete in-DRAM RowHammer
self-tracking and mitigation technique. Our evaluation showed
that P-PIM achieves ∼72% higher energy efficiency than the
fastest charge-sharing-based designs. As for the RowHammer
protection, with a worst-case slowdown of ∼0.8%, it offers up
to 71% energy-saving over the SRAM/CAM frameworks and
about 90% saving over DRAM frameworks.

REFERENCES

[1] H. Hassan et al., “Uncovering in-dram rowhammer protection mecha-
nisms: A new methodology, custom rowhammer patterns, and implica-
tions,” in MICRO-54, 2021, pp. 1198–1213.

[2] A. J. Walker et al., “On dram rowhammer and the physics of insecurity,”
TED, vol. 68, 2021.

[3] Y. Kim et al., “Flipping bits in memory without accessing them: An ex-
perimental study of dram disturbance errors,” ACM SIGARCH Computer
Architecture News, vol. 42, pp. 361–372, 2014.

[4] F. Yao et al., “Deephammer: Depleting the intelligence of deep neural
networks through targeted chain of bit flips,” in USENIX Security, 2020,
pp. 1463–1480.

[5] O. Mutlu and J. S. Kim, “Rowhammer: A retrospective,” IEEE TCAD,
vol. 39, pp. 1555–1571, 2019.

[6] S. M. Seyedzadeh et al., “Counter-based tree structure for row hammering
mitigation in dram,” CAL, vol. 16, 2016.

[7] Yağlikçi et al., “Blockhammer: Preventing rowhammer at low cost by
blacklisting rapidly-accessed dram rows,” in HPCA. IEEE, 2021, pp.
345–358.

[8] T. Bennett et al., “Panopticon: A complete in-dram rowhammer mitiga-
tion,” in DRAMSec, 2021.

[9] S. Li et al., “Drisa: A dram-based reconfigurable in-situ accelerator,” in
MICRO. IEEE, 2017, pp. 288–301.

[10] V. Seshadri et al., “Ambit: In-memory accelerator for bulk bitwise
operations using commodity dram technology,” in Micro. ACM, 2017,
pp. 273–287.

[11] S. Angizi and D. Fan, “Graphide: A graph processing accelerator lever-
aging in-dram-computing,” in GLSVLSI, 2019, pp. 45–50.

[12] V. Seshadri et al., “Rowclone: Fast and energy-efficient in-dram bulk data
copy and initialization,” in Micro, 2013, pp. 185–197.

[13] Q. Deng et al., “Lacc: Exploiting lookup table-based fast and accurate
vector multiplication in dram-based cnn accelerator,” in DAC, 2019.

[14] M. F. Ali et al., “In-memory low-cost bit-serial addition using commodity
dram technology,” TCAS I, vol. 67, 2019.

[15] S. Angizi and D. Fan, “Redram: A reconfigurable processing-in-dram
platform for accelerating bulk bit-wise operations,” in ICCAD. IEEE,
2019, pp. 1–8.

[16] N. Hajinazar et al., “Simdram: a framework for bit-serial simd processing
using dram,” in asplos, 2021, pp. 329–345.

[17] R. Zhou et al., “Flexidram: A flexible in-dram framework to enable
parallel general-purpose computation,” in ISLPED, 2022, pp. 1–6.

[18] J. D. Ferreira et al., “pluto: In-dram lookup tables to enable massively
parallel general-purpose computation,” arXiv preprint arXiv:2104.07699,
2021.

[19] P. R. Sutradhar et al., “ppim: A programmable processor-in-memory
architecture with precision-scaling for deep learning,” IEEE CAL, vol. 19,
2020.

[20] P. Frigo et al., “Trrespass: Exploiting the many sides of target row
refresh,” in SP. IEEE, 2020, pp. 747–762.

[21] P. Jattke et al., “Blacksmith: Scalable rowhammering in the frequency
domain,” in SP, vol. 1, 2022.

[22] J. S. Kim et al., “Revisiting rowhammer: An experimental analysis of
modern dram devices and mitigation techniques,” in ISCA. IEEE, 2020,
pp. 638–651.

[23] M. W. Allam et al., “High-speed dynamic logic styles for scaled-down
cmos and mtcmos technologies,” in ISLPED. ACM, 2000, pp. 155–160.

[24] M. Qureshi et al., “Hydra: enabling low-overhead mitigation of row-
hammer at ultra-low thresholds via hybrid tracking,” in ISCA, 2022, pp.
699–710.

[25] E. Lee et al., “Twice: Preventing row-hammering by exploiting time
window counters,” in ISCA, 2019, pp. 385–396.

[26] (2011) Ncsu eda freepdk45. [Online]. Available:
http://www.eda.ncsu.edu/wiki/FreePDK45:Contents

[27] S. Thoziyoor et al., “Cacti 5.1,” Technical Report HPL-2008-20, HP Labs,
Tech. Rep., 2008.

[28] N. Binkert et al., “The gem5 simulator,” ACM SIGARCH computer
architecture news, vol. 39, pp. 1–7, 2011.

[29] S. Li et al., “Mcpat: an integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in MICRO. ACM,
2009, pp. 469–480.

[30] Y. Park et al., “Graphene: Strong yet lightweight row hammer protection,”
in MICRO. IEEE, 2020, pp. 1–13.

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

