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Abstract—The modern System-on-Chips (SoCs), with numer-
ous complex and heterogeneous intellectual properties (IPs), and
the inclusion of highly-sensitive assets, become the target of
malicious attacks. However, security verification of these SoCs re-
mains behind compared to the advances in functional verification,
mostly because it is difficult to formally define the accurate threat
model(s). Few recent studies have investigated the possibility of
engaging fuzz testing for hardware-oriented vulnerability detec-
tion. However, they suffer from several limitations, i.e., lack of
cross-layer co-verification, the need for expert knowledge, and the
inability to capture detailed hardware interactions. In this paper,
we propose SoCFuzzer, an automated SoC verification assisted
by fuzz testing for detecting SoC security vulnerabilities. Unlike
the previous HW-oriented fuzz testing studies, which mostly rely
on traditional (code) coverage-based metrics, in SoCFuzzer, we
develop (i) generic evaluation metrics for fuzzing the hardware
domain, and (ii) security-oriented cost function. This relieves
designers of making correlations between coverage metrics, test
data, and possible vulnerabilities. The SoCFuzzer cost functions
are defined high level, allowing us to follow the gray-box model,
which requires less detailed and interactive information from
the design-under-test. Our experiments on an open-source RISC-
V based SoC show the efficiency of these metrics and cost
functions on fuzzing for generating cornerstone inputs to trigger
the vulnerability conditions with faster convergence.

Index Terms—SoC Security Verification, Evolutionary Testing,
Fuzzing, Cost Function

I. INTRODUCTION

Modern System-on-Chips (SoCs) are coming to market
every year under tight time-to-market constraints, shrinking the
window for full-scale verification. Several IPs from across the
globe are integrated into a single SoC and must work together
effectively to meet the requirements. With this huge increase
in communication and synchronization, the need for security
verification is also becoming paramount. Moreover, some of
these third-party IPs (3PIPs) are not trusted and may contain
malicious functionality. So, integrating them to the SoC may
introduce newer vulnerabilities even to the trusted IPs [1].

During inter-IP interactions, assets such as encryption keys,
device configurations, protected memory regions, and many
more can be compromised. Any threat to confidentiality,
integrity, or availability should be addressed in every design
abstraction. Many studies have focused on security verifica-
tion of large SoCs, incorporating methods such as pseudo-
randomized testing, formal methods, and concolic execution
[2], [3]. However, as SoCs are getting larger, these methods
become less effective. They usually require full (white-box)
access to the design and logical proof of security properties

requires expert knowledge. Also, they suffer from scalability
issues, making them less effective for larger designs.

One approach that has recently attracted attention and can
be applied both at post-silicon and pre-silicon stages is fuzz
testing [4]–[10]. Originally, fuzz testing was used extensively
by software (SW) designers for identifying SW vulnerabilities
and weaknesses by pushing the SW to unexpected inputs. From
generation-based fuzzing for SW (a.k.a. black-box fuzzing)
[11], [12] to coverage-guided mutation-based fuzzing (a.k.a.
gray-box fuzzing) [13], [14], they engage dictionary-based
sequence update (feedback-based mutation) for generating
the test patterns. For instance, SiliFuzz [15] is the latest
fuzz testing by Google on CPU defects that shows the high
effectiveness of fuzzer for corner case bugs. All HW-oriented
fuzz testing frameworks [4]–[9] have tried to simply re-use
these SW fuzzing engines (e.g., AFL [14]) for exploiting
vulnerabilities at HW-level. However, this re-usage suffers
from important shortcomings: (1) It focuses on increasing the
coverage (SW-based) metrics, which is not directly correlated
to a significant portion of IP and SoC-based vulnerabilities;
(2) Usually, they focus on specific categories of potentia bugs,
such as side-channel or speculative execution bugs; and (3)
They are not following any specific security property formula-
tion to purposefully update the testing procedure (no security-
driven mutation and feedback). These shortcomings affect the
automation of vulnerability detection in the HW domain, and
the need for expert contribution becomes inevitable.

To address these shortcomings, in this paper, we introduce
SoCFuzzer that extends the popular fuzzing engine, AFL [14]
for HW-oriented SoC security verification. In SoCFuzzer, we
modify AFL so that it can be guided by a generic cost function
that directs the fuzzing mutation towards unexplored corners
of the design (w.r.t. security properties). Evaluation of the
cost function requires partial feedback from the design that
is done using an emulation-based integrated logic analyzer.
SoCFuzzer is examined via real HW vulnerabilities from
different Hackathons on a large enough RISC-V SoC. Our
main contributions to this work are as follows:
(1) Building a fuzzing engine for SoC vulnerability detection.
(2) Metric formalization for evaluating fuzzing performance.
(3) Developing a generic cost function with feedback based on
the vulnerability characteristic and SoC design specification for
guiding fuzzing mutation engine.
(4) Evaluating vulnerability detection capability on a real SoC.
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II. BACKGROUND AND PRIOR ART

The term security asset refers to any design article, e.g.,
ports, memory, or signals, that are of value from a security
standpoint. Security assets are not only limited to the primary
ones identified by the designers. Communication protocols and
configuration bits are also subliminal assets that are harder
to pinpoint and could compromise the system’s security. The
assets may be leaked/altered either mistakenly due to a design
bug or deliberately by inserted malicious logic (e.g., HW
Trojan) [16]. Identifying the source of the leakage/alternation
is the crucial role of security verification, which can be done
by defining and evaluating security policies.

Different mechanisms have been used to realize these poli-
cies for verifying system security, such as formal methods [2],
[17], information flow tracking (IFT) [18], [19], and symbolic
or concolic testing (simulation) [3], [20]. In formal verifica-
tion, the security policies are translated to assertions (e.g.,
SystemVerilog assertions), and the assertions will be evaluated
by the formal tool (e.g., Cadence JasperGold). However, the
definition of these assertions requires expert knowledge and
mostly works as a white-box testing [2], [17]. In IFT-based
verification, label-based propagation (tainting [21]) is used for
building the policies, and the propagation of these labels de-
termines the occurrence of vulnerabilities. Due to tainting, IFT
suffers from excessive and unwanted propagation, resulting in
poor accuracy and limited scalability. Additionally, for taint
propagation, it follows white-box testing assumptions [18],
[19]. Similarly, in symbolic and concolic (symbolic + concrete)
testing, test cases are generated to effectively cover targeted
timing paths. However, since it relies on the propagation of
symbolic patterns, it suffers from scalability issues [3], [20].

Fuzzing or fuzz testing can outperform the above-mentioned
mechanisms as (i) it supports both black-box and gray-box
testing and (ii) it controls the propagation workload by defin-
ing feedback. Fuzzing originally (in SW) is the process of
generating unexpected (related to corner cases) test patterns
to trigger bugs and vulnerabilities. As summarized in Fig. 1,
it accomplishes the testing based on some initial seed, the
mutation engine, and feedback. With high efficacy in SW, few
recent studies investigated applying SW fuzzing to HW (RTL)
[4]–[9]. The SW fuzzing can be applied to the HW in two
variants: (1) Fuzzing the HW as SW: In this variant, the HW
is first translated to its SW representation, and then any SW
fuzzer can be invoked [5], [8]. (2) Directly fuzzing the HW:
In this variant, the fuzzer (in the form of a HW simulator) will
be applied directly to the HW [4], [6], [7], [9].

These approaches are promising but have several important
shortcomings: (i) Even for direct fuzzers on HW, there exists a
total dependence on SW-based metrics for deciding on security
policies. Almost all HW-oriented fuzz testing studies rely on
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coverage (code-based) metrics, and there exist no clear map-
ping between (SW) fuzzer assertions and HW-oriented bugs.
(ii) There exists no clear relation between HW vulnerabilities
and coverage metrics (illegal access to a security asset). (iii)
SW-related metrics lead the verification towards a specific
category of possible bugs (e.g., speculative execution or side-
channel-related). (iv) None of the fuzzers on HW establishes a
self-evolutionary cost-function formulation to provide a better
sense of proximity for the fuzzer so that the fuzzing process
tunes itself to bring the execution closer to vulnerabilities.

III. PROPOSED FRAMEWORK: SOCFUZZER

A. Overview

SoCFuzzer is a dynamic verification framework based on
cost function enabled fuzzing that detects vulnerabilities in
SoCs autonomously. A high-level overview of SoCFuzzer
framework is shown in Fig. 2. SoCFuzzer relies on FPGA-
based emulation enabled with real-time internal HW signal
monitoring. It accomplishes instrumentation on the SoC-under-
test based on the set of security policies (cost functions).
Instrumentation in SoCFuzzer consists of adding observation
points to the SoC making them accessible in real-time in the
emulation. The proposed fuzzer runs program(s) (with fuzzed
inputs) on the CPU of the SoC w.r.t. the vulnerability of inter-
est. Following the gray-box model, we assume the verification
engineer has limited knowledge about the behavior of the SoC
(no golden model). We developed metrics for evaluating the
performance of the fuzzing engine in real time. In SoCFuzzer,
the feedback is based on the value of the cost function (w.r.t.
the security policies), and the most-fitted mutation technique
will be selected based on the feedback allowing to have a faster
convergence for triggering the vulnerabilities.

B. SoCFuzzer Evaluation Metrics

The ultimate goal of fuzzing is to generate smarter-than-
random test inputs (based on the feedback), e.g., bit-flipping,
permutation, etc., to obtain better coverage with faster conver-
gence. Hence, in SoCFuzzer, to attain smart inputs w.r.t. the
security properties, we develop 4 distinct metrics:
1 Metric 1 - Randomness (M1): This metric estimates the

randomness in a particular set of fuzz-generated inputs. Con-
sidering that the complete randomness is not satisfactory for
fuzzing1, we expect the fuzzing tool to generate inputs far
away from the average hamming distance (HD) of 50% (ideal
HD in complete randomness) while generating unique inputs

1Fuzzing with no feedback generates complete random test inputs, which
provides lower coverage compared to feedback-enabled fuzzing.
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for each execution. The average HD must not be zero to avoid
the case where the fuzzing tool generates duplicated inputs.
Eq. 1 is the mathematical equation used in SoCFuzzer to
estimate the randomness of the inputs. The lower fr indicates
less randomness in the generated fuzzed inputs which are
not generated arbitrarily but rather crafted intelligently, thus
making them more satisfactory for fuzzing.

fr =
2

r(r − 1)

r−1∑
j=1

r∑
k=j+1

h(ij , ik)

li
, fr ̸= 0 (1)

In Eq. 1, r: total number of fuzzed inputs, ij : fuzzed input
value for jth run, ik: fuzzed input value for kth run, li: input
length (bits), and h(ij , ik): HD of jth and kth fuzzed inputs.
2 Metric 2 - Output Activity (M2): This metric evaluates the

impact of the inputs on the output to see whether the circuit
functions or sticks at a dead/idle state. If the program gets stuck
(stall in state transition) even with newly fuzzed patterns, this
will not instigate the program to trigger the vulnerability. For
instance, the ciphertext must be different for various plaintext
in an AES module. This metric also allows enabling/disabling
IPs in the SoC via fuzzer. For example, assume that a done
signal as the output of IP1 is used as the input for IP2.
For verification, the output from IP1 must be always valid
so that the fuzzer can target the verification of IP2. Eq. 2 is
the mathematical expression developed to measure the output
activity. In Eq. 2, σ is a constant parameter to be decided from
the specification2. The increment in fa indicates increasing
changes in the output (higher HD).

fa =
σ∑z

j=1 lz

z∑
k=1

(h(or−1,k, or,k)) (2)

In Eq. 2, σ ∈ {0, 1}, z: total number of output signals, lz:
length of zth output signal in bits, and h(or−1,k, or,k): HD of
output kth values between rth and (r − 1)th iteration.
3 Metric 3 - Input Coverage (M3): This measures the tra-

versed input space of the SoC-under-test. With more iterations,
SoCFuzzer generates more unique inputs to fuzz the program.
Therefore, the input space coverage increases over time. Eq.
3 shows how this metric is calculated in SoCFuzzer for more
efficient traversing input space for fuzzing. Since there might
be some bits that should have a fixed value for fuzzing, e.g.,
enable/reset signals, these bits are excluded in this metric.

fc =
ui

2N−d
(3)

In Eq. 3, ui: total unique inputs (traversed), d: number of fixed
bits (exclusion), N: total number of input bits of SoC.

The increasing value of fc indicates the fuzzer covers more
input space and hence getting closer to trigger of the vulnera-
bility (corner cases with high possibility of bugs). This metric
also states the overall coverage of the input space compared
to the brute-force verification (worst-case). When the fuzzing
tool tries many fuzzed inputs and is unable to detect any
vulnerability, we can make conclusions about the confidence
in absence of vulnerabilities in the SoC as: C0 = fc × 100%.

2σ becomes zero if the output does not change, otherwise one.

4 Metric 4 - Target Output Behavior (M4): This metric ob-
serves the output to distinguish the malicious (unexpected)
behavior. Observing a particular subset of SoC output signals,
the framework decides whether the fuzzer has reached any
vulnerability conditions. This metric gives the percentile of
how many output signals achieve the corresponding asset
value or behavior that collectively indicates the triggering of
a vulnerability, as calculated by Eq. 4. For example, reading
the AES key from the bus as ciphertext suggests information
leakage, where the AES key is the expected value. For some
cases, such as accessing protective memory segments, the
expected output behavior is the raise of an exception.

fo =
1

m

m∑
k=1

(or,k == ot,k) (4)

In Eq. 4, m: number of target output signals/behavior, ot,k:
expected value/behavior of kth target output signal, and or,k:
runtime observed value or behavior of kth target output signal.

C. SoCFuzzer Cost Function

The cost function is developed based on the proposed
fuzzing evaluation metrics described above. As these metrics
quantitatively measure the fuzzing performance at run-time,
improving these metrics in fuzzing indicates the faster con-
vergence of the cost function to hit the vulnerability (global
minima). Therefore, the cost function is developed based on
these normalized metrics. Among all metrics, decreasing of
fr is expected for efficient fuzzing as opposed to fa, fc, and
fo (whose increasing is expected). In other words, increasing
(1 − fr), fa, fc, and fo are the satisfactory sign of efficient
fuzzing. Averaging these and subtracting from 1 gives a
mathematical expression of the normalized cost function as
mentioned in Eq. 5, in which n ∈ {3, 4} is the number of
metrics considered in Fc

3.

Fc = 1−
(1− fr) + fa + fc + fo

n
=

n− 1

n
−

1

n
(fa+fc+fo−fr) (5)

fa, fc, and fo are calculated after each execution while
fuzzing. While fr is calculated when the feedback is generated.
All of these updated metric values are used in computing Fc.
The decreasing value of the cost function indicates that the
fuzzing tool is approaching the vulnerability triggering con-
dition gradually. Finally, when Fc reaches the global minima,
the vulnerability is (based on M4) triggered and it can be seen
in the final test patterns produced by the fuzzer.

D. SoCFuzzer Feedback

To understand and track the performance of SoCFuzzer and
develop the suited feedback, we define a parameter named cost
function improvement rate (CFIR) as Eq. 6, where Fci is the
cost function values for the rthi execution/iteration.

CFIR = −
δFc

δr
= −

Fc2 − Fc1

r2 − r1
(6)

The positive value of CFIR, i.e., decrement in Fc, is a
sign the fuzzer is performing better by developing more
smart and cornerstone inputs (approaching to global minima

3n = 3 when M2 is omitted due to σ is zero (see Eq. 2), otherwise n = 4.
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of Fc). The negative value of CFIR is a sign the fuzzer is
performing against the objective, thus SoCFuzzer switches the
mutation algorithm. By using this metric, the fuzzing frame-
work receives feedback from the cost function and triggers
the vulnerability in significantly faster (keeping CFIR always
high positive). CFIR can be calculated after each or a certain
number of iteration(s), which is defined as the frequency of
feedback generation (FREQfb). After each FREQfb execution,
the fuzzer may change the mutation strategy based on the
positive/negative value of CFIR.

IV. EXPERIMENTAL SETUP AND RESULTS

To evaluate the efficiency and performance of SoCFuzzer,
we implemented the whole framework based on open-source
RISC-V-based Ariane SoC [23]. Fig. 3 shows the details of
implementation and how different components are connected
in SoCFuzzer. To enable internal HW debugging, we integrated
the Xilinx Integrated Logic Analyzer (ILA) core, and the
emulation has been established on Genesys 2 Kintex-7 FPGA
Development Board [24]. We enabled real-time monitoring via
JTAG debug port, and the fuzzing engine, which is based
on AFL [14], has been prepared on a Linux kernel directly
mounted on the SoC (through SD card). The AFL has been
modified (AFL v2.57b) for multiple reasons: (i) calculating the
metrics M1 and M3; (ii) receiving metrics M2 and M4 from the
host machine through UART; (iii) calculating Fc and CFIR;
(iv) use feedback to change the mutation techniques of AFL
and generate HW-oriented mutated inputs. To fuzz the SoC and
detect the vulnerabilities, a set of high-level C code executables
has been written to drive particular components of the SoC.
These codes are compiled using the RISC-V compiler and
the executable binary (.elf ) is provided to the fuzzer on SoC
with the required initial seeds. SoCFuzzer runs these codes
via fuzzer, and by gathering the output activity through ILA,
it calculates the metrics and feedback for guiding the fuzzer.

A. Vulnerabilities in Ariane SoC

We targeted a set of vulnerabilities in the Ariane SoC,
and we restated the cost functions (w.r.t. the parameters) per
vulnerability. The investigated bugs are a set of reported bugs
in the MITRE CWE database [22]. For proof of concept, this
study focuses on 5 different vulnerabilities listed in Table I.
SV1 and SV2 are based on malicious Trojans introduced into
the AES core of the Ariane SoC. These vulnerabilities are
emerging due to the integration of 3PIP acquired from an
untrusted vendor into the SoC. As per SV1, the AES key
would be leaked, which is the security-critical asset of the

AES IP. As per SV2, a timing violation in the AES crypto
module may result in a denial of service for a time-critical
application of the SoC. SV3 indicates that the instruction de-
coder (dec) in RISC-V processor does not ignore the imm and
rs1 fields of FENCE.I instruction and thus violating the RISC-
V specification. An illegal rejection of execution of FENCE.I
may lead to cache coherence issues. Both SV4 and SV5 are
privilege-level escalation vulnerabilities. In accordance with
the RISC-V ISA, there are three privilege modes, machine (M),
supervisor (S) and user (U), for proper program execution with
authorized permissions. Illegal execution of instruction from
lower privileges (SV4) and unauthorized read/write operations
in the control and status register (SV5) may allow untrusted
execution of third-party programs and thus critically risk the
continuous operations of the SoC. The attacker may escalate
the privilege level by modifying the mstatus reg and thus
compromising the security assets.

B. Cost Function Development

The cost function for guiding the vulnerability detection
framework is presented in Eq. 5. The parameters associated
with the cost function of each vulnerability (based on the
specifications) are listed in Table II. For instance, for SV1,
a C program is written to drive the AES cryptography core in
the SoC with 128− bit AES key and plaintext. According to
the specification of AES IP, output as ciphertext (C) always
changes with any change in the plaintext (P). Therefore, the
fuzzer expects a change in the C even for a single bit of
variation in P, which defines σ to be 1 for M2. The effective
length of the input is 128 bits (N − d) as mentioned in M3

because there is no bit to be fixed in the AES inputs. In this
vulnerability verification, the output signal is the C (m = 1)
which is monitored for any key leakage. The cost function is
deduced to Eq. 7 with the above assigned parameters.

Fc,SV 1 =
n− 1

n
−

1

n
[

σ∑z
j=1 lz

z∑
k=1

(h(Cr−1,k, Cr,k)) +
ui

2N−d

+
1

m

m∑
k=1

(Cr,k == AESkey)−
2

r(r − 1)

r−1∑
j=1

r∑
k=j+1

h(Pj , Pk)

lP
]

(7)

As SV2 targets AES as well, a similar cost function will be
defined. In the case of SV3 and SV4, the input is 32-bits
of RISC-V instruction ((N-d) → 32) and the output behavior
is either successful execution or an exception if the mutated
instruction cannot be executed. As the CSR specifier is 12 bits
in the 32-bits of CSR RISC-V instruction [25], the effective
length is 12 for SV5. Unlike SV1 and SV2, the output is
not contiguous in SV3, SV4, and SV5. So, the σ equals 0
for these vulnerabilities. Thus the parameters are derived for
developing cost function for gray-box fuzzing based on the
high-level characteristics of the target module in the SoC, not
the in-depth source-code level information.

C. Results and Analysis

This section covers how the definition of the cost function,
CFIR, and FREQfb in SoCFuzzer affects the performance of
the fuzzer for identifying the vulnerabilities.
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TABLE I: List of Targeted Vulnerabilities based on CWE MITRE database [22] Inserted in Ariane SoC [23].

Index Vulnerability Location Triggering Condition Output Behaviour Reference

SV1 Leaking the AES secret key through the common bus in the SoC AES IP Specific plaintext AES Key leaks to PO CVE-2018-8922

SV2 A Trojan injects a delay in the AES IP in cipher conversion AES IP Specific plaintext Ciphertext not resulted in time AES-T500

SV3 Incorrect implementation of logic to detect the FENCE.I instruction CPU (dec) imm ̸= 0 & rs1 ̸= 0 Illegal instr exception raised CWE-440

SV4 Execute machine-level instructions from user mode CPU (dec) Execute ”mret” instruction No exception exhibited CWE-1242

SV5 Access to CSRs from lower privilege level Register file mstatus reg r/w from user space No exception exhibited CWE-1262

TABLE II: Parameters in Cost Function Development for Each Vulnerability.

Index σ
Input Output Effective

Data Length Signal Length Length (N-d)

SV1 1 Plaintext 128 bits Ciphertext 128 bits 128 bits

SV2 1 Plaintext 128 bits Control Register 32 bits 128 bits

SV3 0 Instruction 32 bits Exception Raised N/A 32 bits

SV4 0 Instruction 32 bits No Exception N/A 32 bits

SV5 0 CSR Ins. 32 bits No Exception N/A 12 bits
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In SoCFuzzer, the impact of feedback on fuzzer and its
mutation is heavily dependent on CFIR. In experiments, we ob-
serve that SoCFuzzer enabled with this feedback outperforms
the conventional fuzzing framework without this feedback. In
Fig. 4, we plot the run-time cost function in each execution
of the test program for various FREQfb while targeting SV3.
Starting from the initial high value of Fc, based on the
changes in Fc, the mutation is updated by SoCFuzzer per each
FREQfb number of iterations. In case Fc is increasing (fuzzing
efficiency is degrading), CFIR becomes negative enforcing
SoCFuzzer to change the mutation technique. As long as the Fc

is decreasing, no change is required for the mutation technique.
Although we witnessed more fluctuation of Fc at the early
iterations of fuzzing, it becomes more stable while it finds
the most appropriate mutation technique, leading to a fast
convergence to the global minima. For any FREQfb value,
SoCFuzzer with feedback converges to the global minima
significantly sooner than the system without the feedback. The
run-time cost function for other vulnerabilities for an optimum
FREQfb is shown in Fig. 5, which confirms the efficacy of
feedback on the performance of fuzzing per vulnerability.

As shown in Figs. 4 and 5, in SoCFuzzer, FREQfb affects
the convergence rate. Fig. 6 shows the impact of various values
of FREQfb on the performance of SoCFuzzer (number of
executions needed for exploiting the vulnerabilities). When
FREQfb is small (e.g., 2 or 3), it indicates that the mutation
technique must be updated rapidly (per 2-3 executions). This
results in not evaluating a sufficient number of samples, thus
taking a long time to reach the global minima. Contrarily, when
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FREQfb is large (e.g., 8 or 9), the fuzzer spends more (un-
necessary) time on the same (inefficient) mutation technique
before considering the new feedback. It also may slow down
the fuzzing to reach the global minima. So, FREQfb requires
to be selected meticulously to provide the highest efficiency
for SoCFuzzer. As shown in Fig. 6, we swept FREQfb for
vulnerabilities SV1 and SV2 and show the required executions
to trigger them. For these vulnerabilities, the best performance
is achieved when FREQfb belongs to the range of 5→7, in
which our SoCFuzzer can speed up the performance up to
2.83x (for SV1) and 6.1x (for SV2).

Also, the initial seed affects the fuzzing in triggering the
vulnerability in terms of convergence rate [26]. When the HD
between a seed and the fuzzed input for which ultimately the
vulnerability got triggered is higher (i.e., highly dissimilar),
we define the seed as poor quality. In some cases, detecting a
vulnerability may take a significant time with a poor quality
of seed. However, SoCFuzzer with cost function enabled
feedback can converge to the global minima significantly
faster even with poor quality seeds. Fig. 7 shows the required
executions for triggering SV3 and SV4 for various quality
seeds. In this case, we selected the seeds randomly which have
a wide range of HD compared to the vulnerability triggering
inputs. As shown in Fig. 7, when we have no feedback and
the HD is high, more executions needed for exploiting the
vulnerability compared to that of SoCFuzzer with feedback.

A summary of the verification results is shown in Table
III with optimum FREQfb for all vulnerabilities. Due to the
randomness in the fuzzer, two identical runs may take different
numbers of executions to trigger the vulnerability. So, we ran
each experiment three times and presented the average results.
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Fig. 7: Performance of SoCFuzzer for Various Quality Seeds.

TABLE III: Summary Results of Vulnerability Detection by SoCFuzzer.

Index HD(seed, VTI) FREQfb
No. of Executions Speed up

Fuzzing w/o CF FB SoCFuzzer

SV1 62.5% 7 10968 2862 73.91%

SV2 62.5% 6 21319 2999 85.93%

SV3 25% 6 361 180 50.14%

SV4 43.75% 5 415 162 60.96%

SV5 66.67% 6 968 275 71.59%

HD(seed, VTI): HD of Seed and Vulnerability Triggering Input
CF FB: Cost Function enabled Feedback FREQfb: Optimum FREQfb

Our proposed framework was able to detect all vulnerabilities
in a reasonable time for a variety quality of seeds (higher qual-
ity for SV3 and SV4 and poor quality for SV1, SV2, and SV5).
SoCFuzzer enabled with our proposed cost function enabled
feedback saved at least 50% of verification time compared
to the system without our proposed feedback (conventional
fuzzing on HW with no cost function).

D. Comparison with Prior Art

The power of SoCFuzzer lies in its independence from
golden models, use of an analog cost function, enabling cost
function based feedback, and its generic metrics that are easy
to incorporate and easy to evaluate. None of the state-of-the-art
fuzzing engines on HW supports these features cumulatively.
Table IV provides the key differences between our proposed
SoCFuzzer vs. the state-of-the-art fuzzing techniques on HW.
Our emulation-based framework enabled with cost function
feedback improves the efficiency and performance of fuzzing
allowing us to apply such a testing mechanism even on large
and complex SoCs (with almost no scalability issues).

V. CONCLUSION

This study introduced SoCFuzzer, a fuzzing framework for
SoC security verification in an autonomous fashion. SoCFuzzer
integrates our proposed cost function enabled feedback system
leveraging a real-time debugging platform. The feedback is
developed based on HW-oriented generic evaluation metrics
and cost function for the gray-box fuzzing model and guides
the mutation engine of the fuzzer for faster convergence to the
vulnerability triggering point. The experimental results proved
the capability and efficiency of SoCFuzzer in terms of both
vulnerability detection and verification time.
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