2023 Design, Automation & Test in Europe Conference (DATE 2023)

MemPool Meets Systolic:
Flexible Systolic Computation in a
Large Shared-Memory Processor Cluster

Samuel Riedel* Gua Hao Khov* Sergio Mazzola*

Matheus Cavalcante* Renzo Andrif Luca Benini**

*IIS, ETH Ziirich *DEI, University of Bologna
* {sriedel, khovg,smazzola,matheusd,lbenini } @ethz.ch Tinfo@ renzo.ch

Abstract—Systolic arrays and shared-memory manycore clusters
are two widely used architectural templates that offer vastly
different trade-offs. Systolic arrays achieve exceptional perfor-
mance for workloads with regular dataflow at the cost of a rigid
architecture and programming model. Shared-memory manycore
systems are more flexible and easy to program, but data must
be moved explicitly to/from cores. This work combines the
best of both worlds by adding a systolic overlay to a general-
purpose shared-memory manycore cluster allowing for efficient
systolic execution while maintaining flexibility. We propose and
implement two instruction set architecture extensions enabling
native and automatic communication between cores through shared
memory. Our hybrid approach allows configuring different systolic
topologies at execution time and running hybrid systolic-shared-
memory computations. The hybrid architecture’s convolution
kernel outperforms the optimized shared-memory one by 18%.

Index Terms—manycore, RISC-V, systolic array

I. INTRODUCTION

Systolic array architectures are widely used to tackle highly
parallel, compute-intensive workloads. They are based on an
array of specialized processing elements (PEs) communicat-
ing through a neighborhood-based interconnect forming an
application-specific topology [1]. While they excel in their
target domain, their rigid PE interconnection network limits
their utilization in other use cases. In contrast, shared-memory
manycore systems allow for flexible communication between all
PEs via the memory, making them suitable for a wide range of
workloads. However, explicit communication via memory lowers
efficiency and PE utilization due to latency and contention.

In this work, we combine the best of both worlds by bringing
the advantages of the systolic execution model to shared-memory
architectures. We extend a shared-memory architecture with two
lightweight hardware extensions to enable efficient core-to-core
communication through memory-mapped queues. Namely, the
Xqueue extension enables single-instruction access to any shared-
memory queue, while the queue-linked register (QLR) extension
eliminates communication overhead by managing queue accesses
in parallel to the core’s computation. Specifically, we extend the
open-source, RISC-V-based MemPool architecture, which is a
32-bit general-purpose manycore system with 256 PEs sharing
low-latency access to a large L1 memory [2].

The contributions of this paper are: 1) A new hybrid
systolic-shared-memory architecture concurrently supporting
both systolic topologies and shared-memory operation; 2) Two

lightweight hardware extensions enabling fast and automatic
communication between cores via memory-mapped queues.
The extensions have an 8.6% area cost and accelerate systolic
implementations by up to 23 x. Hybrid shared-memory-systolic
kernels outperform shared-memory kernels by up to 18%.

II. HYBRID ARCHITECTURE

In systolic architectures, neighboring PEs are interconnected
and directly transfer data to any linked PE on some given topol-
ogy [3]. The left of Fig. 1 shows an example architecture with
a 2D mesh. In contrast, PEs of a shared-memory architecture,
i.e., the cores, all communicate through shared memory, which
they can all access as shown on the right of Fig. 1.

Due to their flexibility, shared-memory systems can be seen
as a generic systolic array composed of a collection of PEs, i.e.,
the cores. By mapping the communication queues of systolic
arrays into shared memory, each PE can communicate with
every other PE through MemPool’s all-to-all interconnect. For
example, MemPool’s 256 cores can be viewed as a 16x 16 array
of PEs where each PE is connected to its neighbors through a
memory-mapped queue as illustrated in Fig. 1.

This mapping allows exploring systolic topologies and algo-
rithms on shared-memory systems through software emulation
by implementing them with memory-mapped software queues.
The left of Figure 2 shows the Baseline software implementation,
a simple example of a systolic algorithm in a shared-memory
system. While the software queues allow for great flexibility, the
cores must execute tens of instructions for each queue operation,
including multiple memory transactions for queue bookkeeping,
which is a significant overhead compared to traditional systolic
execution, where data flows through PEs automatically.

hybrid architecture

Systolic array » Shared-memory cluster

— — — — memory-mapped

queue

(fully connected

11]- interconnect

Interconnect

programmable é T T T
- cores

Fig. 1. A 2D mesh systolic array (left) and a shared-memory architecture (right)
with a mapping from systolic to shared-memory to build a hybrid architecture.

978-3-9819263-7-8/DATE23/© 2023 EDAA

Replace the function

// Baseline calls with a

// +Xqueue pop/push

Eliminate explicit

communication // +Queue-linked register

c =0; single instruction € = 07 instructions c =0;

for (i=0; i<N; ++i) { for (i=0; i<N; ++i) { setup_glr(a, ga_in, ga_out);
a = queue_pop(ga_in); a = _ builtin pop(ga_in); setup glr(b, gb_in, gb_out);
b = queue_pop(gb_in); b = _ builtin pop(gb_in); for (i=0; i<N; ++i) {
c += a * b; c += a * b; c += a * b;
queue_push(a, ga_out); __builtin push(a, ga_out); }
queue_push (b, gb_out); __builtin push(b, gb_out);

} }

Fig. 2. Simplified code executed on the hybrid architecture’s PEs to implement a matrix multiplication with each hardware optimization. The Baseline (left)
interfaces with the queues through function calls. The Xqueue extension (middle) replaces those function calls with single instructions. Finally, the additional
queue-linked register (QLR) extension (right) eliminates the communication instructions entirely. Instead, it requires a small overhead to set up the QLRs.

To overcome the overhead of software-based queue bookkeep-
ing, we propose the Xqueue hardware extension. It enhances
the RISC-V instruction set architecture with two instructions,
a push and a pop, for efficient access to memory-mapped
queues. Instead of explicitly managing the queues in software,
the hardware takes care of head and tail pointer updates, queue
boundary checks, and queue access, all in a single instruction.
In the middle code snippet in Fig. 2, the function calls are
replaced by their hardware intrinsics of the Xqueue instructions.
The Xqueue extension significantly reduces the number of
instructions required to manage inter-core communication.
However, the extension requires the number and size of queues
to be fixed as hardware parameters. Nevertheless, which PEs
connect via which queue remains fully runtime configurable.

Even more aggressively tuned, the queue-linked register
(OLR) extension brings two additional major communication
advantages of systolic computation to shared-memory systems:
Communication happens implicitly in parallel to computation,
and operands flow directly to the compute-unit. The QLR
extension consists of a small configurable unit in each core
that automatically pops or pushes from memory-mapped queues.
Interfacing with the core’s register file, it directly reads/writes
from/to pre-defined registers to/from the queue, depending on
its configuration. QLRs completely eliminate instructions spent
on communication and allow creating a queue network that,
once configured, runs entirely autonomously and remains in
sync with the associated systolic computations. The rightmost
snippet in Fig. 2 illustrates the concept.

III. RESULTS

We implement the systolic MemPool architecture with four
queues per core in GlobalFoundries 22nm FD-SOI technology.
The extensions come with a hardware overhead of only 8.6%
and do not impact MemPool’s operating frequency.

Different implementations of matmul and 2dconv kernels,
evaluated in cycle-accurate register-transfer level simulation,
serve as benchmarks. Both kernels are well-suited for systolic
execution due to their regular data flow. The matmul implemen-
tation is based on a 2D mesh systolic architecture, while the
2dconv implements a 1D chain topology.

We quantify the benefits of our extensions by running systolic
kernels with different extensions enabled. Compared to the
baseline systolic software kernel, the Xqueue extension improves
performance by 3 x for matmul and 13 x for 2dconv by removing

the overhead of managing the queues in software. Combined
with the QLR extension, they achieve speedups of 5x and 23 x
for matmul and 2dconv, respectively.

The hybrid architecture allows fusing systolic and shared-
memory schemes when implementing kernels. We take ad-
vantage of those capabilities by implementing hybrid systolic-
shared-memory versions of both kernels. The matmul kernel
optimizes data reuse by having one matrix move through the
PEs in a systolic fashion while the other matrix is loaded
in a classical shared-memory regime. Furthermore, we explore
different mappings of MemPool’s cores to a 2D mesh. Similarly,
the 2dconv kernel’s data reuse is optimized by simultaneously
moving multiple input rows through the systolic topology.
These kernels outperform the kernels tuned for the shared-
memory architecture, which use a tiled approach to maximize
data reuse, by 15% and achieve a multiply—accumulate (MAC)
unit utilization of 64% for the matmul. Similarly, the hybrid
implementation of the 2dconv outperforms the shared-memory
implementation by 18% with a utilization of 77%.

IV. CONCLUSION

We present a flexible and novel hybrid architecture that
combines systolic computation and shared-memory systems
by using two lightweight hardware extensions with only 8.6%
area overhead. The resulting architecture can implement any
systolic topology and still operate in a shared-memory mode,
thus enabling hybrid implementations that simultaneously use
systolic dataflow and shared-memory concepts. The proposed
hybrid architecture outperforms the specialized shared-memory
implementations by up to 18% and achieves a MAC unit
utilization of up to 77%.

ACKNOWLEDGMENT

This work was supported by the ETH Future Computing
Laboratory (EFCL), financed by a donation from Huawei
Technologies.

REFERENCES

[1] A. Podobas, K. Sano, and S. Matsuoka, “A survey on coarse-grained
reconfigurable architectures from a performance perspective,” IEEE Access,
vol. 8, pp. 146 719-146 743, 2020.

[2] M. Cavalcante, S. Riedel, A. Pullini, and L. Benini, “MemPool: A shared-
L1 memory many-core cluster with a low-latency interconnect,” in 2021
Design, Automation, and Test in Europe Conf. and Exhib., Grenoble, France,
Mar. 2021, pp. 701-706.

[3] H. T. Kung, “Why systolic architectures?” Computer, vol. 15, no. 1, pp.
37-46, 1982.

	Select a link below
	Return to Previous View
	Return to Main Menu

