
CoFHEE: A Co-processor for
Fully Homomorphic Encryption Execution

Mohammed Nabeel1, Deepraj Soni2, Mohammed Ashraf1, Mizan Abraha Gebremichael3, Homer Gamil1,
Eduardo Chielle1, Ramesh Karri2, Mihai Sanduleanu3, and Michail Maniatakos1

1Center for Cyber Security, New York University Abu Dhabi
2Center for Cyber Security, New York University Tandon School of Engineering

3Khalifa University

Abstract—In this paper, we present the blueprint of a spe-
cialized co-processor for Fully Homomorphic Encryption, dubbed
CoFHEE. With a small design area of 12mm2, CoFHEE incor-
porates ASIC implementations of fundamental polynomial oper-
ations, such as polynomial addition and subtraction, Hadamard
product, and Number Theoretic Transform, which are underneath
all higher-level FHE primitives. CoFHEE has native support of
polynomial degrees of up to n = 214 with a coefficient size of
128 bits. We evaluate our chip with performance and power
experiments and compare it against state-of-the-art software
implementations and other ASIC designs. A more elaborate
description of the CoFHEE design can be found in [1].

Index Terms—Data privacy, Encrypted computation, Fully Ho-
momorphic Encryption, Co-processor, ASIC

I. INTRODUCTION

The migration of computation to the cloud has raised privacy
concerns as sensitive data becomes vulnerable to attacks since
they need to be decrypted for processing. Fully Homomorphic
Encryption (FHE) mitigates this issue as it enables meaningful
computations to be performed directly on encrypted data. Nev-
ertheless, FHE is orders of magnitude slower than unencrypted
computation, hindering its practicality and adoption. Therefore,
improving FHE performance is essential for its real world
deployment. Research has progressed in software [2], as well
as hardware solutions. In this work we focus on the later.

Given a limited design area of 12mm2 available to us given
budget constraints, we design an architecture that executes the
underlying polynomial computation, and it is the base of all
high-level FHE operations. This study details the process of de-
veloping the frontend and hardware architecture for CoFHEE,
the first ASIC co-processor for Fully Homomorphic Encryption
(FHE) to be silicon-validated. CoFHEE consists of special units
capable of performing several arithmetic operations, and an
AHB lite interconnect. CoFHEE supports polynomial degrees
of up to n = 214 with a maximum native coefficient size of
128 bits. The target process is 55nm CMOS Globalfoundries.

II. COFHEE DESIGN FLOW OVERVIEW

The chip area available for CoFHEE’s design is 12mm2 and
the available technology node is GF 55nm. Considering this
limitation in area, and common encryption parameters used
in FHE applications, we can achieve our goal of performing
ciphertext multiplication on chip for a maximum polynomial
degree n = 213 with 128-bit coefficient sizes (in case of

Fig. 1: CoFHEE Top Level Architecture

n = 214, extra communication is needed). A 128-bit coefficient
size is the largest coefficient we can fit in CoFHEE given design
area limitations. The aforementioned restrictions allowed us to
develop a system architecture with 1 Processing Element (PE),
3 dual-port and 5 single-port SRAMs. This selection of units
enables support of ciphertext multiplication fully on chip, with
an II (Initiation Interval) = 1, as the dual-port SRAMs provide
the ability to fetch and store 2 different operands in the same
cycle. The biggest portion of the provided area is occupied by
the dual and single-port SRAMs. In the remaining space, we
fit the Processing Elements (PE), Multiplier Data Mover and
Controller (MDMC), and an Advanced High-Performance Bus
(used for internal data flow), Direct Memory Access controller
(DMA), General Purpose Configuration registers (GPCFG),
and an ARM Cortex-M0 with its own memory. CoFHEE also
provides SPI and UART interfaces for external host communi-
cation. Lastly, the chip operates at a target frequency of 250
MHz (bounded by the memory latency), and has two voltage
supplies, namely 3.3 V (IO pads) and 1.2 V (logic core).

A. Execution & Operations

The operations of CoFHEE are summarized in Table II. The
operations can be divided into two types: Compute and memory
operations. Compute operations consist of NTT, inverse NTT,
and a set of pointwise operations, namely normal and modular
multiplication, modular squaring, modular multiplication by
a constant, and modular addition and subtraction. CoFHEE
provides an ISA to execute any of these operations when
relevant polynomials are loaded into the memory. Meanwhile,
memory operations replicate or transfer data from one memory
to another. Although compute operations run sequentially sim-
ilar to memory operations, both types can run simultaneously.

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA 

	



Design Technology n log q* Area Power Freq. Clock Efficiency Silicon
(bits) (mm2 — LUT/FF/BRAM/DSP) (W ) (Mhz) Cycles (Performance per mm2) Proven

CoFHEE ASIC - GF 55nm 214 128 12 2.3 · 10−2 250 24576 2.60 · 10−4 ●

F1 [3] ASIC - GF 14/12nm 214 32 151.4 1.8 · 102 1000 16 1.73 · 10−4 ❍

HEAX [4] FPGA - Intel Arria10 GX 1150 214 27 582148 / 1554005 / 3986 / 2018 - 300 1536 † N/A
Roy [5] Xilinx Zynq UltraScale+ ZCU102 212 30 63522 / 25622 / 400 / 200 - 200 16425 † N/A

TABLE I: Comparative table and performance of the NTT operation against related work
† No information is available to accurately map FPGA resources to silicon area

Command Inputs Operations
n [x⃗] [y⃗] [ω⃗] q n−1 [⃗t] δ ↱ ↣

NTT • • • • • Performs NTT on x⃗.

iNTT • • • • • • Performs inverse NTT
on x⃗.

PMODADD • • • • • Pointwise modular
addition of x⃗ and y⃗.

PMODMUL • • • • • Pointwise mod. multi-
plication of x⃗ and y⃗.

PMODSQR • • • • Pointwise modular
squaring of x⃗.

PMODSUB • • • • • Pointwise mod. sub-
traction of x⃗ and y⃗.

CMODMUL • • • • Mod. multiplication
of x⃗ by a constant.

PMUL • • • • Pointwise multiplica-
tion of x⃗ and y⃗.

MEMCPY • • • Memory-to-memory
data transfer.

MEMCPYR • • • Memory data transfer
in bit-reverse.

TABLE II: CoFHEE’s operations. [·]: memory address function,
n: polynomial degree, x⃗ and y⃗: polynomials, ω⃗: twiddle factors,
q: modulus, n−1: inverse of n, t⃗: temporary values, δ: length
(in words), ↱: source address, ↣: output/destination address

(a) Time for all towers (b) Power

Fig. 2: Comparison to CPU execution

III. EXPERIMENTAL EVALUATION

A. Power and latency

We measure the latency and power for several operations
supported by CoFHEE using n = {212, 213}. Peak power is
observed during NTT, while Hadamard and iNTT consume
less power. The iNTT operation involves multiplication with
a constant (n−1), and a decimation in frequency operation. Its
average power is lower as the constant multiplication consumes
less power, and therefore reduces the average. For the same
reason, iNTT takes more cycles than NTT to execute. To
summarize, CoFHEE needs a power supply with peak power
rating of around 30mA and an average power of around 25mA
to run polynomial multiplication in a fraction of a millisecond.

B. Comparison to CPU

We compare CoFHEE against a software implementation
in terms of execution time and power consumption using a
ciphertext multiplication without relinearization. We use one

instance of CoFHEE. For the software implementation, we
use the Microsoft SEAL 3.7 library [6] running on an AMD
Ryzen 7 5800h (TSMC 7nm FinFET) at 3.8Ghz with 16GB
of RAM on Ubuntu 20.04 LTS, and we collect the power
measures using powertop. We set n = {212, 213} and
log q = {109, 218} bits, which provide a security level of 128
bits against classical computers. Fig. 2 presents the results.
For (n, log q) = (212, 109), the SEAL implementation takes
2.1ms, while CoFHEE needs 0.84ms to finalize the ciphertext
multiplication. When (n, log q) = (213, 218), the software
implementation spends 8.5ms, while CoFHEE takes 3.58ms
to operate on the same task.

IV. RELATED WORK

When comparing CoFHEE with the closest work (F1), to
establish a fair evaluation, we normalize the performance in
terms of the area and scaling factor between the technology
nodes. In order to derive the scaling factor, the Barrett modular
multiplier is synthesized using the GF14/12nm technology
library (same as F1). Results indicate a scaling factor that
reduces the area by 9.8× and the critical path by 8×. After
normalizing the performance figures, F1 performs 1.73 · 10−4

NTT operations per ns per mm2, while CoFHEE achieves
2.6 · 10−4, which implies a speedup of 1.5×. The speed-up
is mainly attributed to the use of a pipelined Barrett multiplier,
instead of an iterative Montgomery multiplier.

V. CONCLUSION

In this paper, we presented the basic components of the de-
sign, front-end, and architectural of a specialized co-processor
for Fully Homomorphic Encryption. An extended version of our
work with details on the front-end, back-end, and post silicon
validation efforts can be found in [1].

REFERENCES

[1] M. Nabeel, D. Soni, M. Ashraf, M. A. Gebremichael, H. Gamil, E. Chielle,
R. Karri, M. Sanduleanu, and M. Maniatakos, “Silicon-proven ASIC design
for the polynomial operations of Fully Homomorphic Encryption,” arXiv
preprint arXiv:2204.08742, 2023.

[2] E. Chielle, O. Mazonka, H. Gamil, N. G. Tsoutsos, and M. Maniatakos,
“E3: A framework for compiling c++ programs with encrypted operands,”
Cryptology ePrint Archive, 2018, online: https://eprint.iacr.org/2018/1013,
GitHub repository: https://github.com/momalab/e3.

[3] A. Feldmann, N. Samardzic, A. Krastev, S. Devadas, R. Dreslinski,
K. Eldefrawy, N. Genise, C. Peikert, and D. Sanchez, “F1: A fast and
programmable accelerator for fully homomorphic encryption (extended
version),” arXiv preprint arXiv:2109.05371, 2021.

[4] M. S. Riazi, K. Laine, B. Pelton, and W. Dai, “HEAX: An architecture
for computing on encrypted data,” in ASPLOS ’20, 2020, p. 1295–1309.

[5] S. S. Roy, F. Turan, K. Jarvinen, F. Vercauteren, and I. Verbauwhede,
“FPGA-based high-performance parallel architecture for homomorphic
computing on encrypted data,” in HPCA, 2019.

[6] “Microsoft SEAL (release 3.7),” https://github.com/Microsoft/SEAL, Sep.
2021, microsoft Research, Redmond, WA.

!

!


	Select a link below
	Return to Previous View
	Return to Main Menu


