
HUnTer: Hardware Underneath Trigger for
Exploiting SoC-level Vulnerabilities

Sree Ranjani Rajendran, Shams Tarek, Benjamin M Hicks,
Hadi M Kamali, Farimah Farahmandi, Mark Tehranipoor

Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA.
Email: {rajendrans, shams.tarek, benjamin.hicks, h.mardanikamali}@ufl.edu, {farimah, tehranipoor}@ece.ufl.edu

Abstract—Systems-on-chip (SoCs) have become increasingly
large and complex, resulting in new threats and vulnerabilities,
mainly related to system-level flaws. However, the system-level
verification process, whose violation may lead to exploiting
a hardware vulnerability, is not studied comprehensively due
to the lack of decisive (security) requirements and properties
from the SoC designer’s perspective. To enable a more com-
prehensive verification for system-level properties, this paper
presents HUnTer (Hardware Underneath Trigger), a framework
for identifying sets (sequences) of instructions at the processor
unit (PU) that unveils the underneath hardware vulnerabilities.
The HUnTer framework automates (i) threat modeling, (ii) threat-
based formal verification, (iii) generation of counterexamples, and
(iv) generation of snippet code for exploiting the vulnerability.
The HUnTer framework also defines a security coverage metric
(HUnT_Coverage) to measure the performance and efficacy of the
proposed approach. Using the HUnTer framework on a RISC-V-
based open-source SoC architecture, we conduct a wide variety
of case studies of Trust-HUB vulnerabilities to demonstrate the
high effectiveness of the proposed framework.

Index Terms—System-on-chip (SoC), Security Properties, Security
Verification, SW-Exploitable Hardware Vulnerabilities.

I. INTRODUCTION

The ever-increasing size and complexity of modern systems-
on-chip (SoCs) have pushed many semiconductor manufactur-
ers to follow a globalized (horizontal) integrated circuit (IC)
supply chain with pressures for faster IC turnaround (tight
time-to-market). SoC architectures are becoming increasingly
complex as they integrate more and more cores, memory,
3rd-party intellectual properties (3PIPs), etc. It significantly
increases the risk that hardware-oriented security vulnerabili-
ties remain unaddressed. So, the number of attacks targeting
the modern complex SoCs is concerningly increasing [1]. In
past recent years, we witnessed more and more sophisticated
attacks combining the design abstraction layers from hardware
to software for exploiting the vulnerabilities. For instance,
attacks like Meltdown [2] and Spectre [3] show how an
attacker can exploit bugs from the software level (or cross
level) of abstraction to circumvent security checks and coun-
termeasures for leaking the hardware-domain security asset,
e.g., authentication data.

Over time, different research endeavors show that the origin
of a significant portion of such vulnerabilities is at hard-
ware, resulting in multiple re-spins or even huge revenue
loss [4], [5]. The semiconductor industries try to incorporate
the security development life (SDL) cycle [6] during the

hardware development cycle. However, commercial electronic
design automation (EDA) tools are more specialized for the
functional aspect of verification, showing why a security-
oriented verification-in-depth is a must for SoC verification,
particularly for building testing cross-layer environments [7].

Since the industry-standard (functional-oriented) verifica-
tion tools mostly fail for security-specific verification and
detecting detect cross-layer attacks [4] in modern SoCs, thus
recent studies focus on crafting specialized, either processor-
centric or IP-centric, security verification, such as security-
oriented assertion-based verification [8], information flow
tracking (IFT) [9], symbolic/concolic testing [10], and more
recently self-evolutionary testing (e.g., fuzz and penetration
testing) [11]–[13]. Even though they have been successful to
some extent, these techniques still lack the fundamentals that
are necessary for SDL. The security-oriented assertion-based
techniques require huge detailed expert knowledge from the
design perspective to be accomplished. IFT-based techniques
suffer from low scalability, particularly at gate-level netlist
and on complex designs. Symbolic/Concolic testing are also
compute-intensive approaches that may lead to failure due
to non-scalability or runtime timeout. Techniques like fuzz
testing heavily rely on coverage metrics that make vulnera-
bility detection more observant-based. This shows that these
methodologies are just shedding light on system-level security
verification.

Given the processor’s central importance to the modern
SoCs, the base of vulnerability identification is recently shifted
more towards the processor’s higher-level language (HLL)
and its instruction set architecture (ISA). For instance, in
fuzz testing, the tuning (mutation) point has pushed into the
software (HLL) running on the processor, and probing the
internal signals leads to vulnerability detection [11], [14], [15].
It is also consistent with the fact that in larger and more
complex SoCs, it is rarely the case that all internal IPs are
directly accessible, which also pushes the adversary to sit up on
the processor (higher-level of abstraction) level for exploiting
the vulnerabilities and establishing new attacks.

In this paper, by relying on the above-mentioned level of
abstraction for monitoring, we introduce HUnTer, which is a
framework for automating the exploiting of hardware-oriented
(IP-level) vulnerabilities from the processor perspective using
formal methods. The HUnTer framework focuses on open-

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

source RISC-V ISA, which has attracted the attention of in-
dustry and academia and is becoming the mainstream [16], and
already integrated into open-source SoCs such as Rocket Chip
(SiFive core), Ariane SoC, PULPino, PULPissimo, Shakti,
Chipyard, and OPENPULP [17], [18]. The main contributions
of this paper are as follows:
(1) We introduce HUnTer, a formal-based automation frame-
work from threat modeling to (ISA-based) snippet code gen-
eration for software-exploitable hardware vulnerabilities.
(2) In HUnTer, we define two different notions: (i)
HUnT_CEX, which is the automatically formal-based gen-
erated counterexample (CEX) generated for the exploited
vulnerability, and (ii) HUnTer_Coverage, which is a coverage
metric for monitoring use cases and possible vulnerabilities.
(3) By using these two notions, i.e., HUnT_CEX and
HUnTer_Coverage, we validate the efficiency of HUnTer on
RISC-V-based Ariane SoC using a wide variety of case studies
of Trust-HUB vulnerabilities [19].

II. BACKGROUND AND PREVIOUS WORK

Fig. 1 demonstrates the overview of a modern SoC that
consists of multiple cores, memories, tens of IPs, and a wide
variety of peripherals. In today’s globalized IC supply chain,
each one of these components may be provided by an indepen-
dent 3rd-party vendor. In such a scenario, each component may
have few/many security assets, i.e., any data whose leakage can
lead to catastrophic consequences with significant revenue loss.
Per each asset, a set of requirements will be defined, known as
security properties that must be met to avoid known security
issues. Additionally, unknown issues are always a threat to the
SoC, and it is unclear how to be caught [12], [20]. It compelled
the semiconductor manufacturers to employ security verifica-
tion as an integral part of the SoC implementation cycle, which
was previously accomplished using conventional manual code
review testing techniques, simulation, and emulation [7]. How-
ever, these techniques are time-consuming, non-scalable, and
expert-knowledge-dependent, making them impractical, partic-
ularly when it comes to interpretation at different levels of
abstraction, from software to hardware. Additionally, in the
last few years, we witnessed a surge-style increasing trend of
identified/investigated vulnerabilities by CWE [21]. This is the
main incentive of newer security verification techniques, whose
main aims are to provide (1) scalability, (2) performance, (3)
high coverage, (4) adaptability, and (5) being EDA-friendly.
The following are the mainstream SoC security verification:
(I) Formal-based Security Verification: In this case, the ver-
ification team specifies how security properties must be im-
plemented (e.g., via SystemVerilog assertions) for a potential
vulnerability (property-based checking) [7], [22]. By defining
the security properties (w.r.t. the security assets), formal tools,
e.g., Cadence JasperGold, will verify the expected security
behavior.
(II) Symbolic/Concolic Execution: In this breed of solutions,
assertions (that are defined based on security assets and
properties) must be crafted into the design, using a set of tags,

Bus
Bridge

Peripheral
Bus (APB)

UARTPIO

KeyPadPIC

A
P

B
/

A
H

B
 M

a
p

System Bus (AHB)
DebugJTAG

Timer

ti
m

er

in
te

rr
up

t

on-chip
RAM

A
X

I B
u

s

DMA

DDR3

RISC-V Core

Custom
Instructions MMU FPU I$ D$

(some) Sources of Vulnerability

AES

HMAC

SHA

(1)

(2) (3)

(1): Request for Encryption Key (Security Asset)

(2): CPU Cmd for Key Send (from MEM to AES)

(3): Access to BUS (w/ Key) via JTAG (Debug)

Fig. 1: Typical RISC-V-based SoC with a Simple Vulnerability Test Case.

symbols, and breakpoints, and after a set of structural/func-
tional graph/path specification, test patterns will be generated
for to push the assertions condition to be met [10], [23].
(III) Information Flow Tracking: In IFT [9], [24], the verifi-
cation engine is built on a label-based propagation, in which,
based on the policy/property, a set of input signals will be
labeled and based on the propagation of the labels, detection
of vulnerabilities will be accomplished.
(IV) Fuzz Testing: Fuzz testing is an evolutionary mechanism
with the capability of self-refinement for hardware vulnera-
bility detection [11], [14], [15]. All fuzzing techniques on
hardware utilize coverage-based testing, and they mutate the
inputs from the software level to the hardware for exploiting
the vulnerabilities.

Solutions of groups (I), (II), and (III) are mostly at the RTL
level of abstraction, and input/output is more IP-centric. How-
ever, solutions of the group (IV) shifted the test environment
mostly to the software level of abstraction, and the test cases
are mostly HLL executing on the processor(s) of the SoC(s). In
[4], it is represented that detecting (and eliminating) security-
relevant hardware vulnerabilities at the RTL level will face
fundamental challenges: (i) Cross-modular (and cross-layer)
vulnerabilities (effects of inter-IP or inter-layer communica-
tion); (ii) timing side-channel vulnerabilities (different timing
flow for different input/output pairs); (iii) non-register states-
related vulnerabilities (cache-based). Amongst the existing
security verification solutions (groups I-IV), fuzz testing has
attracted significant attention very recently as it targets the SoC
vulnerabilities from the software level.

Table I compares the existing methodologies for SoC secu-

TABLE I: Comparison of Security Verification Technqiues in SoC.

Method Model Limit Scale Automate Abstract

Formal
[8], [22]

whitebox No support for Cross-layer &
cross-modular verification

high low RTL

Concolic
[10]

whitebox
(manual)

Path Explosion, False Positive low moderate RTL

Symbolic
[23]

whitebox
(manual)

Only processor-level low moderate RTL

IFT [9],
[24]

whitebox Path Explosion, State space
Explosion

very low high RTL/HLL

Fuzzing
[11],
[14], [15]

graybox Reliance on coverage metrics moderate high RTL/HLL

!

!

rity verification. Compared to these techniques, our proposed
HUnTer tries to address the challenges discussed above and
simultaneously benefits from the formal methods for gener-
ating code snippets at the abstraction level of the software
for exploiting the hardware-oriented security vulnerabilities.
It allows us also to cover cross-layer (different abstracts)
and cross-modular (high scalability) vulnerabilities. Our ex-
periments show that one code snippet can trigger multiple
vulnerabilities in the hardware layer of the processor. This
multi-target snippet generation significantly reduces the effort
of verification by time and complexity.
A. Threat Model

In light of the main objective of the HUnTer framework,
which is to construct a software-exploitable hardware vulner-
ability detection system, we define the following as the main
entry points of threats: (i) an unauthorized application that
is capable of being executed on the processor core of the
system (in our case it would be the execution of unauthorized
software on RISC-V core of the Ariane SoC). With complete
access to user space, unauthorized software can execute illegal
instructions, functions, and system calls in user mode. (ii)
malicious-inserted hardware integrated into the platform and
may have access to some IPs and peripherals. Considering
these sources, The main goal of the adversary here is to
exploit vulnerabilities at the software level to bypass security
regulations, access security-critical data, and illegal actions.

III. HARDWARE UNDERNEATH TRIGGER (HUNTER)

The main aim of the proposed HUnTer framework is
twofold: (1) building a framework that can be engaged for
exploiting the vulnerabilities (hardware vulnerability under-
neath the processor) using software-level test cases, and (2)
Engaging formal tools for generating the test cases at soft-
ware level of abstraction. Considering that each application
(software) running on the CPU core of the SoC will be
translated to machine-language (assembly) code based on the
ISA, the hardware accomplishes the execution of the machine
code (with the preferred sequence). The main aim of the
HUnTer framework is to benefit from software-to-machine and
machine-to-hardware translation to provoke vulnerabilities in
the hardware domain. For instance, a vulnerability in the hard-
ware may cause an interruption in the sequence of instructions
during the processing cycle, which may affect the system’s
confidentiality, reliability, and integrity and leaves a backdoor
to other software/hardware attacks. The HUnTer focuses on
such coupling between abstraction layers and generates snippet
codes to exploit the vulnerabilities. HUnTer uses the potential
hardware weaknesses listed in CWE [21] to automation threat
modeling, counterexample (HUnT_CEX) generation, and con-
structing the code snippets based on HUnT_CEXs that trigger
the underneath hardware vulnerability in the SoC. Fig. 2
demonstrates the major steps of the HUnTer framework, whose
descriptions are as follows:
Step 1 : Identifying and Selecting Threat Model: The main
focus of the HUnTer framework is on the most important

CWE
Database

Identifying &
Selection of
Threat Models

SoC (Generic)
Specification

Definition of
Requirements
(Security)

Security Policy
Generation

Formal Method
(JasperGold)

Changing Model
pass

fail

Counterexample
(HUnT_CEX)
Generation

Snippet Code
Generation

Exploiting
Hardware
Vulnerabilities

- definition of entry points and observable points
- Processor-oriented access policies
- Regulations violated
 w.r.t. the propagation of assets
- Signal transition (inter-module and inter-layer)

new {entry points, observation points, ...}

None of the security-oriented assertions failed

Checking the
assertions

A
ss

er
te

d

D
es

ig
n

 C
o

d
e

- definition of regions (trustworthiness)
- illegal sequences
 both functional and security
- Mapping requirements
 to threat models
- Exceptions (and handling)

- Translating for formal check
 (from requirement to assertion
- Assertion per threat model
- Assertion per observation point

- Output of formal tool
- Tracking (backward/forward)
 for finding the related signals
- Generating the sequence of actions

- Recoding signal values per cycle
- machine code to signal value modeling
- machine code (ASM) generation

Assertion condition(s) met and CEX is generated.

1

2

3

4

5

Fig. 2: The Major Steps of the Proposed HUnTer framework

CWE vulnerabilities and their associated threat models. For the
sake of simplicity, we adopted 6 SoC vulnerability benchmark
designs from Trust-Hub [19] as test case scenarios in this
paper, and we implemented all in the Ariane core of RISC-
V [25]. There are a number of different traits that are used
to characterize these vulnerabilities, such as their security
objectives, requirements, and implications, all listed in Table
II. It is worth mentioning that all of these vulnerabilities
fall under the CAPEC attack pattern of privilege escalation
[26]1. In the benchmarks, control & status register (CSR)
is considered the attack surface and modified to incorporate
the privilege escalation-related vulnerabilities. For instance,
one of the vulnerabilities includes the privilege level issue
during inter-processor interrupt handling. Interrupt handling
may allow the host processor to access the security-critical
information of the target processor if the host processor is at
a higher privilege level than the target processor.
Step 2 : Security Property Generation: To realize the security
properties in this study, we consider Ariane SoC, which is
equipped with a 6-state, in-order RISC-V processor [25]. After
determining the threat model (Step 1), the security properties
are developed based on the SoC’s design specification and
security requirements. An instance of one property has been
demonstrated in Listing 1. This specific property is used to
formally verify the security requirement of the Ariane core
processor to accept debug requests only when the processor
is at the highest privilege level, meaning that the RISC-V
processor must be in the machine mode while accepting the
debug request. All the security properties are developed based
on such kind of security requirements of the design. For this
specific study, we have developed 28 security properties to
formally verify the Ariane core, along with the 15 cover prop-

1The Privilege escalation is when an adversary can perform unauthorized
access to important registers and fuses from a lower privilege level.

!

!

TABLE II: Attack Pattern and Threat Model of the SoC Vulnerability Database Considered in the Proposed HUnTer Framework

SoC
benchmark

Category ID Weakness Name Vulnerability Security Objec-
tive

Security Requirement Attack Pattern
& Description

Ramification

SoC-V1 CWE-1198 Privilege Separation and
Access Control Issues

Unauthorized access to regis-
ters

Confidentiality
and integrity

Correct privilege level
should be assigned and
maintained

CAPEC-233:
Privilege
Escalation

Access control

SoC-V2 CWE-266 Incorrect Privilege Assign-
ment

Improper handling and as-
signment of privileges

Illegal interrupt

SoC-V3 CWE-280 Improper Handling of Insuf-
ficient Permissions or Privi-
leges

Improper assignment or han-
dling of permissions to regis-
ters

SoC-V4 CWE-1272 Erroneous Update of Read
and Write Enable signal

Unauthorized Enable Signal
Assertion during Privilege Vi-
olation

SoC-V5 CWE-1262 Unauthorized Page Access
Request

Unauthorized Page Access
Request

SoC-V6 CWE-1262 Illegal PMP access after
mismatch

Illegal PMP access after mis-
match

erties to verify the scenarios of illegal instruction interruption
at consequent clock cycle (will be discussed in Section IV).

1 @(posedge clk_i) (debug_reg_i == 1’b1)
2 ariane.csr_regfile_i.priv_lvl_o == RISCV::PRIV_LVL_M)

Listing 1: An Instance of Security Property in Ariance SoC.

Step 3 : Formal Verification and HUnT_CEX Generation:
After the generation of all security properties and considering
the threat model(s), the HUnTer framework invokes the
formal tool (i.e., Cadence JasperGold). In formal verification,
the objective is to detect any security violations inside the
design (based on security properties). If the design passes
formal verification, HUnTer will choose another threat
model and will return to 1 . This continues until a CEX
(HUnT_CEX) is obtained for a property violation. In this
study, since the threat model follows a privilege escalation
threat model, the CEX will definitely show a scenario where
an adversary can gain unauthorized access to any lower
privilege level. So, if the design fails formal verification,
the HUnTer framework will check the design scenarios and
conquer a sequence of instructions for each vulnerability at
the hardware level. Throughout our experiments, we find that
the set of instructions from the CEX is unique for a scenario
that violates a security property. Table III shows the output
of JasperGold for the CSR module in the Ariane SoC. The
table covers what security assets are considered, how many
vulnerabilities are exploited, and whether HUnT_CEX is
generated for the exploited vulnerability or not.
Step 4 : Automatic Snippet Code Extraction: One of the
main steps of the HUnTer framework is the automation of
snippet code extraction based on HUnT_CEX(s). The snippet
code generator is the script that takes the counterexample
(HUnT_CEX) from the formal tool (Cadence JasperGold fol-
lowed by sequencing by the HUnTer) as its input. Then, based
on the HUnT_CEX (sequence of interactions), the HUnTer
records the signal values at each clock cycle. For instance, the
signal values of the program counter (a.k.a. instruction pointer)
and 32-bit machine code for each clock cycle are collected at
the decode stage of the Ariane RISC-V core. From the 32-bit
decoded machine code, the field values of register addresses,

operands, and functions can be obtained by HUnTer.

3 .section .text
4 .globl start
5 _start:
6 add x0, x1, x2
7 sw t0, 40(t1)
8 sw t0, 40(t1)
9 loop1 addi x5, x1, 1

10 beq x8, x0, loop1
11 add x0, x0, 0
12 jalr ra, 0(x0)
13 add x0, x0, 0
14 add x0, x0, 0
15 sw t0, 40(t1)
16 sw t0, 40(t1)
17 sw t0, 40(t1)
18 sw t0, 40(t1)
19 csrrci x3, 0x7B0, 15
20 sw t0, 40(t1)
21 sw t0, 40(t1)
22 ecall
23 ecall
24 ecall
25 add x0, x0, 0
26 csrrci x3, 0x7B0, 15
27 end:

Listing 2: Example Snippet Code for Asset #2 of Table III.

Further, the program counter and machine code represent
a single instruction in the assembly that, when compiled and
executed, would generate the HUnT_CEX. An intermediate
file is generated with the 64-bit program counter (address)

Algorithm 1 Snippet Code Extraction
Ensure: compile(ASM)→ CEX
1: ASM ← {} ▷ /*ASM is an empty .asm file*/
2: binaries← CEX.id_stage_i.instruction
3: addresses← CEX.id_stage_i.decoded_instruction.pc{∗1}
4: for i in 0 to addresses.length-1 do
5: binary ← binaries[i]
6: address← addresses[i]
7: instruction← disassemble(address, binary){∗2}

8: ASM ← ASM + instruction

{∗1}: addresses[i] contains the instruction binary, binaries[i], for i in 0 to
addresses.length-1

{∗2}: disassemble(address, binary) returns the instruction string (e.g. add
x0,x0,0). disassemble() is defined by the open-source RISC-V disassem-
bler tool

!

!

TABLE III: JasperGold Formal security Verification Results of CSR module in SoC benchmarks

CWE Weakness & Mod-
ule

Asset Security Requirement No.of
Vul.

HUnT_CEX

Privilege Escalation or Vi-
olation & Control and Sta-
tus Register file

Asset #1: Sensitive asset of the interrupt target During inter-processor interrupt handling, the core should be in ma-
chine mode

1 ✓

Asset #2: Content of control and status register/
control and status bits of CSR

No invalid read or write should take place for control and status
registers

2 ✓

Asset #3: Information regarding current instruction If privilege is violated, the micro-architectural state or read/write
should not be updated to CSR

1 ✓

Asset #4: Information regarding current instruction,
Intermediate result of ongoing encryption operation

While returning from debugging, the previous privilege level should
be restored

2 ✓

Asset #5: Registers When privilege level/mode changes, CSRs should be flushed before
re-fetching the next instruction

2 ✓

Asset #6: Read access exception signal in CSR During debug mode, no exception request should be taken 2 ✓

Asset #7: Protected memory location Memory page access should not be given to users with improper
privilege level

2 ✓

Asset #8: Address translation information In case of physical memory entry mismatch with virtual memory,
memory access should be given only in Machine mode

1 ✓

followed by a 32-bit machine code (data) for every clock cycle
in the HUnT_CEX. The intermediate file is passed to an open-
source RISC-V disassembler, which outputs the instruction
represented by the address and data pair. The sequence of in-
structions that creates a CEX for the considered threat model is
obtained as the assembly language (ASM) and is considered a
snippet code. Algorithm 1 describes the snippet code extraction
algorithm developed in the HUnTer framework. By developing
this algorithm in HUnTer and employing it for asset #2 of
Table III, a snippet code will be generated (see Listing 2).

Step 5 : Exploiting Vulnerability in RISC-V toolchain: The
HUnTer framework benefits from the RISC-V GNU compiler
toolchain [27] to exploit the vulnerabilities revealed and
observed by snippet codes in Ariane RISC-V tool-chain. This
step serves as a verification (confirmation) stage by running
the snippet codes in the RISC-V toolchain environment with
the Spike RISC-V ISA simulator. After running, the log file
is dumped to observe the contents of each register in the
CSR module. Listing 3 is an instance of log file after running
the snippet code for asset #2 of Table III. Obviously, in this
code running at user space with no privilege, CSR-related
operations (csrw and csrr) are unauthorized. If there is
any invalid read/write happening to any control and status
register, an adversary can get access to an address register
that may hold critical information of the processor. In
Listing 2, it is observed that read access is enabled to the
register SR-mtvec since the hardware weakness of privilege
violation is exploited as the vulnerability by running a code
snippet in the simulator of the RISC-V environment. It is also
clear that the registers CSR-scratch and CSR-mhartid
have read/write options which are the additional vulnerabilities
exploited by the snippet code.

To see how snippet code generation is effective for exploit-
ing the vulnerabilities, we define a security coverage metric,
called HUnTer_Coverage. HUnTer_Coverage provides an em-
pirical valuation of the total number of snippet codes to exploit
the total number of vulnerabilities with the number of assets
considered for security verification. In fact, HUnTer_Coverage

demonstrates that, per each asset, and per each CEX generated
for a violated security property, whether a snippet code is
generated or not. The performance of HUnTer is validated
using the HUnTer_Coverage metric in Section IV.

28 : core 0:
29 0x0000000080000268 (0x00000f93) li t6, 0
30 0x000000008000026c (0x34001073) csrw mscratch, zero
31 0x0000000080000270 (0x00000297) auipc t0, 0x0
32 0x0000000080000274 (0xd9428293) addi t0, t0, -620
33 0x0000000080000278 (0x30529073) csrw mtvec, t0
34 0x000000008000027c (0x30502373) csrr t1, mtvec
35 0x0000000080000280 (0x00629063) bne t0, t1, pc + 0
36 0x0000000080000284 (0x00010117) auipc sp, 0x10
37 0x0000000080000288 (0xc3c10113) addi sp, sp, -964
38 0x000000008000028c (0xf14026f3) csrr a3, mhartid
39 0x0000000080000290 (0x00c69613) slli a2, a3, 12

Listing 3: Vulnerability Trigger Log (SoC-V1 for Asset #2 of Table III).

HUnTer_Coverage =
TotalNo. of SnippetCode

(No. of Asset×No. of HUnT_CEX)
× 100

(1)

IV. EXPERIMENTAL RESULTS AND EVALUATION

To evaluate the efficiency of the HUnTer framework, as
demonstrated in Table II, a set of Trust-Hub vulnerabilities
has been targeted. The vulnerabilities are induced in Ariane
core’s CSR [25] and tested using the Ariane SoC test harness
framework. In this model, the privilege level violation will be
a gateway for unauthorized access to the registers and fuses.
Similar to other formal-based techniques, formal verification is
carried out using the Cadence JasperGold tool [8]. All steps of
the HUnTer are established using the RISC-V platform, includ-
ing the toolchain, RISC-V ISA Spike simulator environment,
and the proxy kernel (pk) environment.

Table III shows the results of vulnerability detection, the
number of them, and the capability of reporting HUnT_CEX
by the framework. For this experiment, we focused on privilege
escalation as the main threat model on the CSR module of
the RISC-V core in the Ariane SoC. As shown, the HUnTer
was able to generate HUnT_CEX for all cases. As shown,
the number of assets considered for evaluation is 8. For
these assets, 13 security properties out of 28 are violated,

!

!

TABLE IV: HUnTer_Coverage for Different Security Vulnerabilities through fifteen Different Scenarios (1-15 Clock Cycle(s)).

SoC Benchmark HUnTer_Coverage (%) Average
S∗
1 S∗

2 S∗
3 S∗

4 S∗
5 S∗

6 S∗
7 S∗

8 S∗
9 S∗

10 S∗
11 S∗

12 S∗
13 S∗

14 S∗
15

SoC-V1 83.65 84.62 85.58 85.58 83.65 89.42 83.65 87.50 87.50 87.50 83.65 80.77 86.54 81.73 89.42 85.38

SoC-V2 80.77 79.81 82.69 79.81 80.77 84.62 79.81 86.54 81.73 81.73 89.42 80.77 85.58 86.54 84.62 83.01

SoC-V3 84.62 78.85 79.81 87.50 83.65 84.62 89.42 89.42 79.81 90.38 84.62 78.85 79.81 84.62 84.62 84.04

SoC-V4 85.58 79.81 84.62 81.73 91.35 82.69 85.58 85.58 90.38 84.62 82.69 75.96 91.35 83.65 87.50 84.87

SoC-V5 79.81 81.73 82.69 80.77 84.62 87.50 75.96 89.42 80.77 90.38 91.35 86.54 79.81 89.42 83.65 84.29

SoC-V6 87.50 84.62 91.35 81.73 80.77 82.69 84.62 87.50 91.35 90.38 92.31 84.62 89.42 91.35 88.46 87.24

Average 84.41
S∗
i : Scenario used to validate the HUnTer performance, where, S∗i is the scenario i to verify the occurrence of illegal instruction for i consecutive clock cycle(s)

whose HUnT_CEX are generated as the output of the formal
verification tool. Apart from the security properties, coverage-
based properties are written to evaluate the sequence of events.
This allows us in HUnTer to capture the sequence and impact
of instructions in ISA. The assumption is that the interruption
of illegal instruction in the ISA flow will exploit the hardware
weakness to provide access control to the registers in the CSR
module. For this, we consider 15 different scenarios, each for
verifying the sequence of instruction for consecutive clock
cycles. Violation of this sequence results in generating new
HUnT_CEX. Table IV reflects the HUnTer_coverage for all
targeted vulnerabilities (from Table II), which is based on
Eq. 1. Per each vulnerability, as mentioned previously, 15
different scenarios are selected each for different clock cycles.
Clock cycle counts are swept (1-15) to build different snippet
codes per scenario. On average, the HUnter framework can
achieve +84% coverage, which means that for 8 assets with
13 different vulnerabilities (8×13 = 104 combinations), more
than 84%×104 = 87 are exploited with available snippet code.

V. CONCLUSION AND FUTURE WORK

This paper proposes HUnTer, a formal-based SoC security
verification that focuses on uncovering the vulnerability of
the underneath hardware through the integrated processor
unit. HunTer correlates the exploited vulnerabilities found by
the formal method with snippet codes generated based on
ISA. By doing this, per each counterexample (HUnT_CEX)
generated by the formal tool, the HUnTer creates a snippet
code for exploiting the vulnerabilities from the software level
of abstraction. HUnTer has been evaluated through numerous
SoC benchmarks with induced vulnerabilities from the Trust-
Hub repository. By concentrating on the privilege escalation
threat model and CSR-based assets, HUnTer shows more than
84% coverage for generating snippet codes in ISA. In future
work, HUnTer focuses on both weakness and asset-based
vulnerabilities to fork out the SoCs confidentiality/integrity.

REFERENCES

[1] M. Tehranipoor, Emerging Topics in Hardware Security. Springer, 2021.
[2] P. Kocher et al., “Spectre attacks: Exploiting speculative execution,”

Communications of the ACM, vol. 63, no. 7, pp. 93–101, 2020.
[3] M. Lipp et al., “Meltdown,” arXiv preprint arXiv:1801.01207, 2018.
[4] G. Dessouky et al., “Hardfails: Insights into software-exploitable hard-

ware bugs,” in USENIX Security Symposium, 2019, pp. 213–230.

[5] Z. Kenjar et al., “V0ltpwn: Attacking x86 processor integrity from
software,” in USENIX Security Symposium, 2020, pp. 1445–1461.

[6] M. Howard et al., The security development lifecycle. Microsoft Press
Redmond, 2006, vol. 8.

[7] F. Farahmandi et al., System-on-Chip Security. Springer, 2020.
[8] N. Farzana et al., “Soc security verification using property checking,” in

IEEE International Test Conference (ITC), 2019, pp. 1–10.
[9] A. Ardeshiricham et al., “Register transfer level information flow track-

ing for provably secure hardware design,” in Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2017, 2017, pp. 1691–1696.

[10] X. Meng et al., “Rtl-contest: Concolic testing on rtl for detecting
security vulnerabilities,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 41, no. 3, pp. 466–477, 2021.

[11] K. Laeufer et al., “Rfuzz: Coverage-directed fuzz testing of rtl on fpgas,”
in IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2018, pp. 1–8.

[12] K. Z. Azar et al., “Fuzz, penetration, and ai testing for soc security
verification: Challenges and solutions,” Cryptology ePrint Archive, 2022.

[13] H. Al-Shaikh et al., “Sharpen: Soc security verification by hardware
penetration test,” in Asian and South Pacific Conference on Design
Automation Conference (ASP-DAC), 2023, pp. 1–6.

[14] T. Trippel et al., “Fuzzing hardware like software,” in USENIX Security
Symposium, 2022, pp. 3237–3254.

[15] A. Tyagi et al., “Thehuzz: Instruction fuzzing of processors using golden-
reference models for finding software-exploitable vulnerabilities,” arXiv
preprint arXiv:2201.09941, 2022.

[16] K. Asanovic et al., “Instruction sets should be free: The case for risc-
v,” EECS Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2014-146, 2014.

[17] A. Traber et al., “Pulpino: A small single-core risc-v soc,” in 3rd RISCV
Workshop, 2016.

[18] K. Asanovic et al., “The rocket chip generator,” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2016-17,
vol. 4, 2016.

[19] Trust-Hub, “Trust-hub Repository,” https://trust-hub.org/.
[20] S. Bhunia et al., Hardware security: a hands-on learning approach.

Morgan Kaufmann, 2018.
[21] MITRE, “HW CWEs,” https://cwe.mitre.org/data/definitions/1194.html.
[22] P. Bhamidipati et al., “Security analysis of a system-on-chip using

assertion-based verification,” in IEEE International Midwest Symposium
on Circuits and Systems (MWSCAS), 2021, pp. 826–831.

[23] A. Ahmed et al., “Scalable hardware trojan activation by interleaving
concrete simulation and symbolic execution,” in 2018 IEEE International
Test Conference (ITC), 2018, pp. 1–10.

[24] W. Hu et al., “Hardware information flow tracking,” ACM Computing
Surveys (CSUR), vol. 54, no. 4, pp. 1–39, 2021.

[25] F. Zaruba et al., “The cost of application-class processing: Energy and
performance analysis of a Linux-ready 1.7-GHz 64-bit RISC-V core
in 22-nm FDSOI technology,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 27, no. 11, pp. 2629–2640, 2019.

[26] S. Barnum, “Common attack pattern enumeration and classification
(capec) schema,” Department of Homeland Security, 2008.

[27] RISC-V Software Collaboration, “RISC-V GNU Compiler Toolchain,”
https://github.com/riscv-collab/riscv-gnu-toolchain.

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

