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Abstract—Application-specific systems with FPGA accelerators
are often designed using high-level synthesis or hardware con-
struction tools. Nowadays, there are many frameworks available,
both open-source and commercial. In this work, we aim at
a fair comparison of several languages (and tools), including
Verilog (our baseline), Chisel, Bluespec SystemVerilog (Bluespec
Compiler), DSLX (XLS), MaxJ (MaxCompiler), and C (Bambu
and Vivado HLS). Our analysis has been carried out using a
representative example of 8×8 inverse discrete cosine transform
(IDCT), a widely used algorithm engaged in JPEG and MPEG
decoders. The metrics under consideration include: (a) the
degree of automation (how much less code is required compared
to Verilog), (b) the controllability (possibility to achieve given
design characteristics, namely a given ratio of the performance
and area), and (c) the flexibility (ease of design modifications
to achieve certain characteristics). Rather than focusing on
computational kernels only, we use AXI-Stream wrappers for the
synthesized implementations, which allows adequately evaluating
characteristics of the designs when they are used as parts of real
systems. Our study shows clear examples of what impact specific
optimizations (tool settings and source code modifications) have
on the overall system performance and area. It emphasizes how
important is to be able to control the balance between the
communication interface utilization and the computational kernel
performance and delivers clear guidelines for the next generation
tools for designing FPGA-accelerator-based systems.

Index Terms—electronic design automation, application-
specific computing, hardware construction, high-level synthesis,
field-programmable gate array, inverse discrete cosine transform

I. INTRODUCTION

The traditional flow for electronic design automation (EDA)
starts with the development of a register-transfer-level (RTL)
model in a hardware description language (HDL), such as
Verilog or VHDL [1]. Appeared in the 1980-90s, the HDLs
revolutionized the hardware design, but now, despite the minor
updates made in the early 2000s, they look outdated and do not
provide high productivity, especially when it comes to certain
application domains, such as digital signal processing (DSP).

Currently, there are two directions for rapid hardware de-
velopment: (a) high-level synthesis (HLS) and (b) hardware
construction (HC) [2], [3]. In the first case, an RTL model
is synthesized from a high-level description that ignores the
implementation details (roughly speaking, from an algorithm).
In the second case, hardware microarchitecture is specified
explicitly, but in a flexible, highly parameterized way. Both
approaches enable users to perform design-space exploration

(DSE) and optimize their designs according to the given
constraints on performance, power consumption, and area.

The aim of the work presented here is (a) to study the state
of the art in HLS/HC for FPGA, (b) to engage different tools,
and (c) to evaluate their effectiveness. We use 8 × 8 inverse
discrete cosine transform (IDCT) [4] as a benchmark and the
following comparison metrics: (a) the degree of automation
(how much less code is required as compared to Verilog),
(b) the controllability (possibility to achieve given design
characteristics, i.e. a point in the Performance × Area
space), and (c) the flexibility (ease of modifying a design
and/or finding tool settings to achieve certain characteristics).

To understand our motivation, a broader context should be
considered. We are working on an infrastructure for organizing
IP libraries in an FPGA-focused EDA system. The main
requirements are (a) the ease of describing IP cores (mainly
mathematical ones) and (b) the ability to adjust them to spec-
ified constraints. Accordingly, IP core generators (based on
HLS/HC) are more suitable than predefined HDL descriptions,
and it is important to understand which tools are working best.
The IDCT example has been chosen for the following reasons:
(a) this is a well-known algorithm used in JPEG and MPEG
decoders [5], [6]; (b) it represents an “average” computational
kernel; (c) there exist many ready-to-use implementations
(e.g., in C [6], DSLX [7], and BSV [8]).

The main contributions of this work are as follows:
• novel methodology for assessing HLS/HC tools;
• careful comparison of the existing HLS/HC solutions.
All results presented in this paper and the related source

code are available on GitHub [9].
The rest of the paper is organized as follows. Section II

classifies HLS/HC approaches and reviews existing HLS/HC
surveys. Section III describes our evaluation methodology: the
metrics, the benchmark, and the procedure. Section IV presents
our experimental analysis of the tools: the obtained indicators
and the overall comparison. Section V summarizes the results
and outlines directions for further research.

II. BACKGROUND AND RELATED WORK

The classical HDLs, such as Verilog and VHDL, are still
the main means of designing hardware. However, the sit-
uation is changing, and nowadays we have a wide range
of languages and tools. Their appearance and development
is dictated by the obvious desire to reduce labor costs
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for system design and verification. Depending on how this
goal is implemented, we identify the following groups of
tools: (a) highly specialized generators aimed at building
efficient hardware implementations of particular algorithms
(e.g., FloPoCo [10]); (b) HC tools built on top of programming
languages (e.g., Chisel/Scala [11], MyHDL/Python [12], and
JHDL/Java [13]); (c) HC tools based on high-level HDLs
(e.g., Bluespec Compiler [14]); (d) HLS tools for imperative
programming languages, such as C/C++ and Fortran (e.g.,
Bambu [15], LegUp [16], and Vivado HLS [17]); (e) HLS
tools for parallel programming languages, such as CUDA C,
OpenCL, and DPC++ (e.g., Vitis HLS [19], Intel FPGA SDK
for OpenCL [20], and oneAPI [21]); (f) HLS tools for dataflow
programming languages based on both the imperative and the
functional paradigms (e.g., MaxCompiler [22] and XLS [7]);
and (g) HLS tools for domain-specific languages, such as
MATLAB, TensorFlow, and OpenVX (e.g., HDL Coder [23],
Vitis AI [24], and HiFlipVX [25]).

In the last decade, a number of HLS/HC surveys were
published. In [26], W. Meeus et al. have evaluated a broad
selection of tools. The comparison criteria are as follows:
(a) source language and abstraction level (untimed, cycle-
accurate or mixed); (b) ease of description and learning curve;
(c) support for fixed- and floating-point numbers; (d) ease of
DSE (optimization options, source code modification, etc.);
(e) verification facilities (namely testbench generation); (f) re-
source usage of the generated designs (number of FPGA
slices). As a benchmark, the 3 × 3 Sobel filter was applied.
At present, that survey looks somewhat outdated. Moreover,
being targeted mainly at design productivity, it lacks some
information relevant to our study: how much the tools can
optimize the designs compared to hand-written RTL models.

In [27], L. Daoud et al. concentrate on using HLS/HC for
developing heterogeneous systems with FPGA-based acceler-
ators. Existing tools have been divided into four categories
according to the input language: (a) C/C++ and its derivatives;
(b) non-C/C++ languages: MATLAB, Python, etc.; (c) visual
modeling languages: LabVIEW, Simulink, etc.; (d) GPU-
oriented languages: CUDA and OpenCL. The review provides
a good idea of the HLS/HC landscape, but does not compare
the frameworks with each other. Good many of the mentioned
solutions are no longer supported or available for download.

In [28], R. Nane et al. have attempted to overview recent
HLS/HC frameworks and evaluate some of them (four pop-
ular C-to-HDL compilers). The comparison is based on such
indicators as license type, input/output languages, application
domain, testbench automation, and support for floating- and
fixed-point numbers. A distinctive feature of the work is that
it unveils how HLS/HC works “under the hood” and describes
basic optimizations. In-depth evaluation has been made for
three academic tools (Bambu, DWARV, and LegUp) and a
commercial one (undisclosed). The authors performed two sets
of experiments: first, they executed each tool with the default
settings; then they modified the source code and the options to
maximize the performance. In both cases, there were assessed
the frequency and wall-clock time as well as the LUT, DSP

and BRAM usage. Most of the benchmarks were taken from
the CHStone suite [29]. The idea of conducting two sets of
experiments looks interesting and has been used in our work.
However, we have compared tools of different types (not only
C-to-HDL compilers) and applied other metrics.

To summarize this section, the available surveys of HLS/HC
solutions are mostly obsolete and either contain qualitative,
non-measurable information, or focus on a rather small number
of tools. Our aim is to mitigate these disadvantages.

III. EVALUATION METHODOLOGY

In this section, we describe the methodology used to assess
HLS/HC tools: the metrics, the benchmark, and the procedure.

A. Metrics

Our study exploits the following primary indicators:
• source code size (L) – the number of lines of code (LOC),

including tool settings (directives, parameters, etc.);
• performance, or throughput (P ) – the number of opera-

tions per second (OPS);
• area, or resource usage (A) – the number of utilized

lookup tables (LUT) and flip-flops (FF).
We do not treat L as a perfect metric, but it is an objective

one. It can even be adopted for visual modeling languages
(since the tools should produce code at some stage); however,
such languages and tools are out of the scope of this paper.

The ratio Q = P
A captures the design quality, or its

efficiency. Let Φ be an optimization criterion being maximized.
Unless otherwise stated, we assume that Φ ≡ Q. Based
on L and Φ we measure the degree of automation (α), the
controllability (CΦ), and the flexibility (FΦ).

Let A be an algorithm (a benchmark), L be an HDL, and
T be an HLS/HC tool for L.

1) Degree of Automation: α shows how easy it is to
describe A in L and setup T compared to Verilog (LV ):

α =
(LV − L)

LV
× 100%. (1)

2) Controllability: By control abilities we mean the spec-
trum of facilities that allow a hardware designer to influence
the synthesis result (in terms of Φ) without changing the
functionality. They include tool settings, code annotations, and
source code itself. The metric is defined as follows:

CΦ =
Φ∗

Φ∗
V

× 100%, (2)

where Φ∗ is the maximum value of Φ achieved by the tool T
and Φ∗

V is the “absolute” maximum expected with Verilog.
3) Flexibility: FΦ indicates how easy it is to improve the

Φ value by setting up T and modifying the source code:

FΦ =
Φ∗ − Φ0

∆L
, (3)

where values Φ∗ and Φ0 relate respectively to the “optimal”
and “initial” designs, while ∆L = ∆L++∆L− is the number
of changed lines of code (added and removed), including code
annotations and parameters.

 



B. Benchmark

As a benchmark, we use 8×8 IDCT (known as DCT-III).
All the implementations are IEEE 1180-1990-compliant [4]
and mostly based on IDCT from the ISO/IEC 13818-4:2004
conformance test suite [6], [32]. The input is a matrix of 12-
bit numbers, while the output is a matrix of 9-bit numbers.
For more information, see the source code on GitHub [9].

C. Procedure

For each language considered in this study (Verilog, Chisel,
Bluespec SystemVerilog, DSLX, MaxJ, and C), the “initial”
IDCT description is developed in accordance with the Chen-
Wang’s butterfly algorithm [30], [31]. When RTL languages
(Verilog and Chisel) are used, such a description is likely to be
a combinational circuit. For the resulting functional unit, LOC
is counted (excluding comments and blank lines) — LFU .

For each tool, the “optimal” design is created with the aim
to maximize Φ. It is done by using the command-line options,
pragmas, and/or code modifications. It worth noting that the
most frequent optimization is pipelining.

To make designs AXI-Stream-compliant [33] (which is quite
common for IP libraries [34]), an interface adapter is created.
Input/output data are transmitted row-by-row. The adapter is
either generated automatically (by the HLS/HC tool) or written
manually (in the source language or Verilog). In the second
case, LOC is counted — LAXI . Being a system-level tool,
MaxCompiler generates the PCIe adapter. In this case, we
evaluate a kernel without the interface wrapper (LAXI = 0).

If the tool requires tuning, the size of configuration files and
the number of parameters are counted — LConf . For the initial
experiment, the default settings are applied (LConf = 0).

The labor costs for creating the functional unit are measured
as L = LFU +LAXI +LConf . The degree of automation (α)
is estimated according to equation (1).

To synthesize the implementation, we use the Vivado design
suite (v2017.4) [18] with the default settings. We determine the
minimum clock period, for which the synthesis is successfull
(Tclk), and estimate the maximum frequency and throughput:

νmax =
1

(Tclk − Twns)
, P =

νmax

TP
,

where Twns is the worst negative slack provided by Vivado
and TP is the periodicity, which is the minimum number of
cycles between starts of two subsequent operations. Latency
(TL), i.e. the number of cycles required to execute an operation
(including I/O transmission) is also of interest.

With regard to FPGA area, we use the following indicators:
(a) NLUT – the number of LUTS; (b) NFF – the number of
FFs; (c) NDSP – the number of DSP blocks; (d) NIO – the
number of inputs and outputs. As synthesis differently maps
different designs to resources (first of all to DSP blocks), we
use the normalized indicator:

A = N∗
LUT +N∗

FF ,

where N∗
LUT and N∗

FF are respectively the numbers of
utilized LUTs and FFs when disabling the DSP usage (this can
be done by setting maxdsp=0 in Vivado). As designs do not
use on-board memory, BRAM consumption is not considered.

Language Paradigm Tool Type Openness
Verilog Classical RTL Vivado LS/PR Commercial
Chisel Functional/RTL Chisel HC Open-source
BSV Rule-based/RTL BSC HC Open-source

DSLX Functional XLS HLS Open-source
MaxJ Dataflow MaxCompiler HLS Commercial

C Imperative
Bambu HLS Open-source

Vivado HLS HLS Commercial

TABLE I
LANGUAGES AND TOOLS UNDER EVALUATION

After P and A are known, the objective function Φ is
calculated. To evaluate HLS/HC tool capabilities, we optimize
the design according to Φ (as much as possible) and measure
CΦ and FΦ as stated in equations (2) and (3).

IV. EVALUATION

The evaluated languages and tools are presented in Table I
(LS/PR stands for logic synthesis/place & route). We used Vi-
vado to synthesize the designs, obtain their characteristics, and
generate the FPGA bitstreams. The device is Xilinx’s Virtex
Ultrascale+ (XCVU9P-FLGB2104-2-E): NLUT = 1, 182, 240,
NFF = 2, 364, 480, NDSP = 6, 840, and NIO = 702.

Below we report our results grouped by input languages.
The quantitative data are summarized in Fig. 1 and Table II.

Verilog is a classical HDL created in the mid 1980s [35].
A description is a hierarchy of modules; each module contains
input/output ports and encapsulates net declarations, processes
(always blocks and continuous assignments), and instances
of other modules. Nets require the bit widths to be explicitly
specified; blocks are written procedurally in a C-like syntax.
To design reusable IP cores, the language supports module
parameterization and generate statements.

Initial Design: The starting point is a naive combinational
circuit with the row-by-row AXI-Stream adapter. It contains
eight IDCTrow and eight IDCTcol instances performing row-
and column-wise IDCTs respectively. Obviously, such organi-
zation requires lots of resources and leads to low frequency.
The major bottleneck here is the sequential adapter (in theory,
the implementation could run 8 times faster).

Optimization(s): Two optimized designs have been tried.
The first consists of one IDCTrow and eight IDCTcol instances.
There is no point in having eight IDCTrow if only one row
arrives at each clock cycle. The throughput grows by 1.8 times
(as goes the frequency), and the area reduces by 1.7 times.
Accordingly, the quality is more than tripled.

The second design contains one IDCTrow and one IDCTcol.
Such architecture increases the latency from 17 to 24 cycles.
However, the throughput is doubled (compared with the initial
version), the area reduces by 4.6 times, and the quality
increases by the factor of 9.4.

Chisel is an open-source Scala-based language for RTL
design [11]. In addition to conventional HDL constructs, it
provides object-oriented and functional programming facilities
(polymorphism, abstract data types, and recursion), which
makes it possible to build flexible IP core generators [3]. To

 



reduce efforts, the language supports type inference: bit widths
of ports and registers are specified manually, but the remaining
widths can be derived automatically.

Initial Design: As before, we started with a simple combi-
national circuit. Interestingly, compared to Verilog, this design
has slightly better performance (105.7%) while requiring less
area (94.6%). It might be explained as follows. The Verilog
description uses 32-bit arithmetic (as in [6]), while Chisel
infers the bit widths automatically and more accurately.

Optimization(s): The best solution is also a pipelined design
with one IDCTrow and one IDCTcol. It is slightly inferior to
Verilog: performance is 98.7% and area is 109.5%. However,
the Chisel description was developed about 2–3 times faster.

Bluespec SystemVerilog (BSV) is a rule-based HDL [14].
As in other HDLs, descriptions are hierarchical, but modules
are written differently. Each of them includes state elements
and rules that modify the state. A rule is an atomic guarded
action: the guard specifies the condition under which the
rule is applied; the action describes the state modification.
Compared to Verilog and Chisel, BSV offers higher timing
abstraction: the programming paradigm implies the one-rule-
at-a-time semantics, but a compiler may optimize the design
and schedule multiple rules within a clock cycle.

We have created two designs and synthesized 26 circuits
with Bluespec Compiler (BSC) by varying the tool options
and code attributes. It has been shown that the settings have
a negligible impact on the performance and area (at least for
our example); the data below are for the default configuration.

Initial Design: At first, we manually translated the original
C program [6] to BSV. It turned out that the resulting imple-
mentation is slightly better than the initial design in Verilog:
the performance is 110.3%, while the area is 97.2%.

Optimization(s): Although the optimized version is similar
to ones in Verilog and Chisel, its quality is slightly worse:
the performance is 80.2%, and the area is 107.1% (compared
to Verilog). The main reason for the lower performance is
that the periodicity is one cycle higher (9 instead of 8). In
theory, this “bubble” could be eliminated, which would make
the characteristics comparable to Chisel’s.

DSLX is a dataflow-oriented functional language for de-
signing computational kernels [36]. It mimics Rust, while
extending the latter with hardware-specific features (fixed-size
objects and fully analyzable call graphs). Supported data types
include bit vectors, tuples, structures, and arrays. It is worth
highlighting the following facilities: parametric structures and
functions, type inference, and for expressions (“loops” with
known number of iterations). DSLX ignores timing issues,
allowing a compiler to schedule computations.

We have adapted an existing IDCT example [7] (changed the
bit widths of input/output matrix elements) and synthesized 19
implementations with XLS by varying the following options:
(a) the circuit type (combinational or pipelined) and (b) the
number of pipeline stages.

Initial Design: The starting point is a combinational circuit
with a hand-crafted AXI-Stream adapter. This implementation
is noticeably better than the initial designs mentioned above:
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the performance is 120.3%, and the area is 89.2% (compared
to the initial Verilog description).

Optimization(s): Our experiments have shown that the max-
imum quality is achieved when the number of pipeline stages
is set to 8 (for unknown reasons, operation in this case takes
3 cycles): the performance is 221.2%, and the area is 578.1%
(compared to the optimized Verilog design). The quality score
of 38.3% does not look good; the problem, again, is in the
sequential adapter (the throughput could be 8 times higher).

MaxJ is an imperative-style dataflow language for devel-
oping high-performance systems [37]. A system description
is split into three parts: computational kernels, a manager
(connecting kernels to the CPU, RAM, and other kernels), and
software. MaxJ is about kernels and a manager. It is based on
Java and can be viewed as a means of constructing dataflow
graphs with the following types of nodes: values (constants
and runtime parameters), computation nodes (arithmetic and
logic operations), offsets (access to past and future elements
of data streams), multiplexers (decisions), counters (looping),
and inputs/outputs (data stream connections).

Unlike the other tools evaluated here, MaxCompiler allows
developing a whole system, not only an FPGA part. It provides
an API and a runtime library for transferring data to kernels
and controlling computations. The software and hardware parts
are linked through the PCIe interface. So, it is not quite right
to compare MaxJ designs to the other implementations.

Initial Design: First we developed a kernel that can input
and output an 8×8 matrix every clock cycle. The synthesized
implementation has a pipeline of 47 stages and operates at
403.13 MHz, the highest frequency among all of the designs.
The bottleneck here is the PCIe bus. The throughput has been
estimated as the bandwidth of the PCIe 3.0 x16 interface
(about 16 GB/s) divided by the input data size (1024 bits).
Although the implementation consumes a lot of resources, its
quality is superior to the handwritten Verilog’s (963%).

 



Optimization(s): To reduce the area, we have developed
another kernel that receives a matrix row at each clock cycle
and stores intermediate results in the on-board memory. In
contrast to the initial design, the performance here is limited
by the frequency. The occupied area is roughly 2.8 times less
than of the previous design, the throughput is 2.7 times lower,
and the quality is 4% higher.

C is a well-known imperative programming language devel-
oped in the 70s [38]. It offers only a single-thread execution
model, making parallel hardware design synthesis challenging.

We have made experiments with two C-to-HDL compilers:
the open-source Bambu and the commercial Vivado HLS. In
both cases, the original C code [6] has been slightly modified:
rounding in IDCTcol is implemented as a function (iclip),
not a pre-filled array [9]. Bamboo, unlike Vivado HLS, cannot
generate an AXI-Stream adapter; that component has been
developed manually in Verilog.

Bambu has a rich set of options covering all HLS stages:
scheduling, operation binding, memory allocation, etc. Our ef-
forts have been concentrated on the experimental-setup
presets aimed at different optimization criteria: performance,
area, and something in between. As we have seen, most of the
options do not have a tangible impact on the design quality.
During evaluation, we have tried 42 configurations.
Initial Design (Bambu): We started with the following configu-
ration: channels-type=MEM_ACC_11 (one read port and
one write port) and memory-allocation-policy=LSS
(local/static variables and strings are allocated in BRAMs).
Despite the relatively high frequency (471.4% compared to the
initial Verilog design), the implementation, being sequential,
has the low performance (11.7%). The small area (29.2%) does
not save the situation.
Optimization(s) (Bambu):The best quality has been achieved
on the preset BAMBU-PERFORMANCE-MP (two read ports
and two write ports in the memory) in conjunction with
the following options: speculative-sdc-scheduling
and memory-allocation-policy=LSS. The results ob-
tained are close to the initial ones and are significantly inferior
to the ones of the other optimized designs: the performance is
9.8% and the area is 160.1% (compared to Verilog).

In Vivado HLS, the synthesis is controlled by preprocessor
directives (pragmas). There are ones for pipelining, function
inlining, loop unrolling, array optimization, structure packing,
interface synthesis, etc. It is worth noting that the tool auto-
mates interface generation. To make the AXI-Stream adapter,
we have added an extra function and applied #pragma HLS
INTERFACE axis port=⟨name⟩.
Initial Design (Vivado HLS): The implementation constructed
in the push-button mode is not good: the throughput is almost
18 times lower compared to the initial Verilog design. The
main problem is that the tool does not inline the IDCTrow

and IDCTcol units and, moreover, generates superfluous AXI-
Stream interfaces to communicate with them.
Optimization(s) (Vivado HLS): To overcome the problem,
the source code has been modified: short buf[8] in
the IDCTrow and IDCTcol functions has been replaced with

short buf0, ..., short buf7; in addition, #pragma
HLS PIPELINE has been injected. As a result, the quality
has become close to the optimized Verilog design (89.7%):
the performance is 116.1% and the area is 129.5%.

The data obtained in our study are represented in Fig. 1
and Table II. The figure shows the design space exploration in
the Performance × Area space. The table contains details
on the initial and optimized designs developed with different
HLS/HC tools. The best characteristics are highlighted in bold.
The highest automation is provided by MaxCompiler and
Vivado HLS. The former is a more specialized tool, while the
latter suits as a better solution for rapid prototyping. Speaking
about the controllability (and the quality of the resulting
designs), we should highlight Chisel and BSC. Vivado HLS
also demonstrates good results. MaxCompiler controllability
of more that 100% is due to higher bandwidth of PCIe
comparing to AXI-Stream. The most flexible tools are XLS and
(again) Vivado HLS, though they are configured differently:
the former utilizes only one parameter (the number of pipeline
stages), while the latter uses source code pragmas.

The resource utilization for the IDCT benchmark is low due
to the simplicity of its design. We are confident that our results
cannot be easily extrapolated to more complex benchmarks.
During FPGA bitstream generation PR tools are used that can
perform differently if near all available resources are used.
However, our goal is not to test PR; it is about HLS/HC
transformations being carried out before the LS/PR.

V. CONCLUSION

In this work, we considered a number of HLS/HC tools:
Chisel, BSC, XLS, MaxCompiler, Bambu, and Vivado HLS.
For each of the tools, we have evaluated the ease of creating an
FPGA-based implementation of 8×8 IDCT compared to man-
ually writing Verilog code, the quality of that implementation
(performance-to-area ratio), the flexibility (how easy it is to
optimize the quality), and the controllability (to what extent it
is possible). Our experiments provide helpful tips (which tool
to use for best performance, resource utilization, etc.) and are a
“snapshot” of tool choices today. Explaining the differences in
metrics output would require deeper insights of the considered
tools (a topic for future research).

Our study shows that the most balanced solution (among
those considered) is the commercial Vivado HLS. However,
we believe that the future lies in open-source and extensible
frameworks. The concept of such a tool can be sketched as
follows. At the top level, there are domain-specific languages
and related translation and optimization engines. Next comes a
general-purpose language oriented towards parallel computing
(e.g., MaxJ) and the corresponding intermediate representation
(computation graph). Individual units (nodes) can be designed
using various lower-level tools, both universal (XLS, Chisel,
BSV, Verilog, etc.) and specialized (e.g., FloPoCo). An im-
portant feature is the ability to generate external and internal
interfaces. The development of such open source HLS/HC
framework is the main direction of our future work.

 



Language Verilog Chisel BSV DSLX MaxJ C
EDA Tool Vivado Chisel BSC XLS MaxCompiler Bambu Vivado HLS
Configuration Initial Opt Initial Opt Initial Opt Initial Opt Initial Opt Initial Opt Initial Opt
LOC, including options 247 316 195 222 238 199 242 243 121 163 183 191 125 130
Modification, ∆L 258 131 434 3 231 29 71
Automation, α 0% 0% 21.1% 29.8% 3.6% 37.0% 2.0% 23.1% 51.4% 48.4% 25.9% 39.6% 49.0% 58.9%
Quality, Q = P/A 230 2,155 257 1,942 259 1,614 310 825 2,215 2,308 91 132 69 1,933
Controllability, CQ 100% 90.1% 74.8% 38.3% 100% [107.1%] 6.1% 89.7%
Flexibility, FQ 7.5 12.9 3.1 171.7 0.4 1.4 26.3
Frequency, MHz 55.88 113.21 59.15 111.77 100.25 102.18 67.30 250.50 403.13 403.13 263.44 257.33 132.61 131.46
Throughput, MOPS 6.99 14.15 7.39 13.97 7.71 11.35 8.41 31.31 123.08 44.79 0.82 1.39 0.39 16.43
Latency, cycles 17 24 17 24 21 26 17 19 47 60 323 185 340 26
Periodicity, cycles 8 8 8 8 13 9 8 8 1 9 323 185 340 8
Area, N∗

LUT + N∗
FF 30,396 6,567 28,778 7,194 29,549 7,036 27,127 37,965 55,580 19,413 8,879 10,514 5,633 8,501

N∗
LUT (maxdsp=0) 29,059 3,909 27,441 4,530 27,565 4,781 25,805 26,960 19,704 5,941 5,443 7,134 4,103 4,974

N∗
FF (maxdsp=0) 1,337 2,658 1,337 2,664 2,184 2,255 1,322 11,005 35,876 13,472 3,436 3,380 1,530 3,527

NLUT 13,850 2,106 9,283 2,205 26,560 4,643 25,805 26,010 19,704 5,941 5,090 6,614 2,334 3,123
NFF 1,337 2,658 1,337 2,661 2,184 2,255 1,322 10,717 35,876 13,472 3,436 3,156 1,481 3,346
NDSP 160 20 184 23 40 4 0 16 384 48 5 9 22 19
NIO 172 170 172 172 174 172 170 170 59 59 174 174 270 267

TABLE II
HLS/HC TOOLS EVALUATION RESULTS
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