
Genetic Algorithm-based Framework for
Layer-Fused Scheduling of Multiple DNNs on

Multi-core Systems
Sebastian Karl∗†, Arne Symons∗§, Nael Fasfous‡, Marian Verhelst§

∗These authors contributed equally, †TU Munich, Germany §KU Leuven, Belgium ‡BMW AG, Germany
sebastian.karl@tum.de, {arne.symons, marian.verhelst}@kuleuven.be, nael.fasfous@bmw.de

Abstract—Heterogeneous multi-core architectures are becoming
a popular design choice to accelerate the inference of modern
deep neural networks (DNNs). This trend allows for more flexible
mappings onto the cores, but shifts the challenge to keeping all
cores busy due to limited network parallelism. To this extent, layer-
fused processing, where several layers are mapped simultaneously
to an architecture and executed in a depth-first fashion, has shown
promising opportunities to maximize core utilization. However,
SotA mapping frameworks fail to efficiently map layer-fused
DNNs onto heterogeneous multi-core architectures due to ignoring
1.) on-chip weight traffic and 2.) inter-core communication con-
gestion. This work tackles these shortcomings by introducing a
weight memory manager (WMM), which manages the weights
present in a core and models the cost of re-fetching weights.
Secondly, the inter-core communication (ICC) of feature data is
modeled through a limited-bandwidth bus, and optimized through
a contention-aware scheduler (CAS). Relying on these models, a
genetic algorithm is developed to optimally schedule different DNN
layers across the different cores. The impact of our enhanced
modeling, core allocation and scheduling capabilities is shown
in several experiments and demonstrates a decrease of 52%
resp. 38% in latency, resp. energy when mapping a multi-DNN
inference, consisting of ResNet-18, MobileNet-V2 and Tiny YOLO
V2, on a heterogeneous multi-core platform compared to iso-area
homogeneous architectures.

Index Terms—deep learning accelerators, layer fusion, hetero-
geneous multi-core, genetic algorithm

I. INTRODUCTION

In recent years, deep neural networks (DNNs) have be-
come more complex, with multi-DNN workloads becoming
an attractive solution to tackle complex applications [7], [8],
[13]. On the other side, heterogeneous multi-core processing
platforms are appearing to accommodate these new DNN
workloads [8], [12], [13]. Traditional processing approaches
execute the workload in a layer-by-layer manner, which has a
high memory footprint and can only to limited extent exploit the
inherent inter-layer parallelism of the DNN. For applications at
the edge, where low latency at high energy efficiency is vital,
the multi-core parallelism can be further exploited through a
new processing paradigm, called layer fusion [13]. Here, a
stack of layers is fused and executed in a depth-first manner,
as opposed to a layer-by-layer manner. Finding optimal intra-
core mappings has been extensively studied, but the end-to-
end hardware overhead of mapping layer-fused processing onto
multi-core architectures is lacking.

Most SotA mapping frameworks focus either on layer-fused
single-core mappings [2] or they only allow to execute a

workload in a layer-by-layer fashion on multi-core systems
[4], [7], [8]. As a result, SotA frameworks are not capable
of mapping multi-DNN workloads on heterogeneous multi-
core platforms in a layer-fused manner. While in layer-by-layer
processing the inter-core communication and the weight traffic
play a minor role, this additional communication overhead has
to be considered for layer-fused processing.

This paper proposes a multi-core mapping framework, which
is capable of finding optimal layer-fused mappings for a multi-
DNN workload. Moreover, the multi-core architecture presents
an additional challenge to allocate the layers to an optimal
core. For this, a genetic algorithm (GA) is implemented and
deployed. The key contributions of this paper are:

• A multi-core mapping framework with an analytic cost
model for layer-fused processing and a genetic algorithm-
based core allocation (Sec. III).

• A weight memory manager (WMM), responsible for the
weight fetching of the different cores and a contention-
aware scheduler (CAS) to handle the inter-core communi-
cation (ICC) through a limited bandwidth bus (Sec. III-C).

• The impact of the ICC and the importance of automated
core allocation are proved empirically and the framework
is exploited to evaluate the best hardware architecture for
optimal deployment of a multi-DNN workload (Sec. IV).

The framework is included in Stream [11] and open-sourced
on GitHub (https://github.com/ZigZag-Project/stream).

II. BACKGROUND

DNN HW accelerators: Besides GPUs and FPGAs, custom
AI accelerator chips are commonly used to process DNN work-
loads. Such accelerators are especially popular for applications
on the edge due to their higher energy efficiency and/or low
latency. Typically, a large MAC array is utilized to exploit the
different degrees of parallelism of the DNN layers. The spatial
parallelization strategy defines which loop dimensions are spa-
tially unrolled onto the MAC units, while the temporal unrolling
defines the temporal execution order and stationary data [9],
[13]. This dataflow varies from one implementation to another,
and is key in achieving good execution efficiency. Single-
core accelerators can either support a fixed spatial dataflow
(FDA) or be reconfigurable (RDA). In multi-core accelerators,
each core is typically a FDA, while the different cores can
provide flexibility through the layer-core allocation [8]. The

2023 Design, Automation & Test in Europe Conference (DATE 2023) – Best Paper Award Candidate	

 978-3-9819263-7-8/DATE23/© 2023 EDAA 

	



challenge is, however, to determine the best hardware mapping
of the workloads across the cores, to maximize the hardware
utilization and hence system efficiency [13].

DNN mappings: Two different subproblems are distin-
guished when mapping a (multi-)DNN workload onto a multi-
core architecture [8]. Firstly, the different layers of a DNN
workload have to be assigned to the available cores. This is
referred to as (layer-)core allocation. Secondly, each layer has
to be optimally mapped on the core to which it is allocated,
referred to as intra-core mapping.

The intra-core mapping is defined through the spatial par-
allelization strategy and the temporal loop order. Efficiently
mapping a DNN layer onto a MAC array has been extensively
covered by previous SotA, with multiple frameworks allowing
to optimize such intra-core mapping [9], [10].

Layer fusion: Classically, DNN workloads are mapped in
a layer-by-layer fashion, which means that the entire layer is
executed before moving to a subsequent layer(s). Under mod-
ern DNN workloads, this scheme suffers from large memory
buffering footprints due to large activation sizes. This degrades
hardware performance for edge applications as on-chip memory
is typically limited, hence requiring frequent expensive off-chip
accesses. Recent research tries to overcome this problem by uti-
lizing fine-grained layer fusion [2], [13]. Under this paradigm,
multiple layers are fused together, computing part of a layer’s
activations and propagating this to the subsequent layer(s) in a
depth-first manner. Research has, to a limited extent, shown the
performance benefits that this paradigm can bring due to higher
hardware parallelism and lower memory buffering footprint
[13]. However, an accurate and fast mapping framework for
layer-fused mapping onto multi-core architectures is missing.

Mapping frameworks: Table I shows relevant DNN map-
ping frameworks and their capabilities. All of them include an
analytical cost model to rapidly estimate hardware performance
of a mapping (in terms of energy, latency and/or memory
usage). ZigZag [9] includes an accurate latency model, allowing
for multi-port memories with limited bandwidth, to estimate
the layer-by-layer performance on a single-core architecture.
Planaria [4] extends this exploration to RDAs by adaptively
dividing the MAC array into a multi-core system. In order to
mitigate reconfiguration overhead, Herald [8] and MAGMA [7]
explored heterogeneous dataflow accelerators (HDA) for layer-
by-layer processing. Olympus [2] and DNNFuser [6] shifted the
focus to layer-fused processing exploration, but are restricted to
a single-core architecture. While these frameworks have shown
the advantages and disadvantages of multi-core architectures
and layer-fused processing separately, an accurate and fast
exploration framework for layer-fused processing on multi-core
architectures is lacking.

III. METHODOLOGY

This section introduces the structure of the proposed multi-
core layer-fused DNN mapping framework in III-A. Subse-
quently, the key innovations of the framework are discussed
in detail: 1.) layer fusion through line-based tiling (III-B), 2.)
communication overhead modeling (III-C) and 3.) optimal core
allocations through a genetic algorithm (GA) (III-D).

TABLE I: Comparison mapping frameworks.

Framework Analytic
Cost Model

Multi-Core
Capabilities

Focus on
HDAs

Layer
Fusion

ZigZag [9] ✓ ✗ ✗ ✗
Olympus [2] ✓ ✗ ✗ ✓

DNNFuser [6] ✓ ✗ ✗ ✓
Planaria [4] ✓ ✓ ✗ ✗
Herald [8] ✓ ✓ ✓ ✗

MAGMA [7] ✓ ✓ ✓ ✗
This work ✓ ✓ ✓ ✓

A. Structure of Framework

The general structure of the implemented mapping and
exploration framework can be divided into three steps, as shown
in Fig. 1.

1) User inputs: The DNN workload description and hard-
ware architecture are provided to the framework as inputs. Each
workload layer contains loop dimension sizes, the stride and
computational bit precision. By providing a graph with uncon-
nected subgraphs, multi-DNN workloads are flexibly supported
by the framework. The hardware architecture contains the
different processing cores, each with their spatial dataflow and
memory hierarchy. A communication bus with fixed bandwidth
is modeled for the ICC.

2) Cost evaluation of workload graph: In this step, a work-
load graph is created and the costs for its nodes are evaluated.
For this, each layer is divided into smaller tiles by applying a
line-based tiling approach (see III-B1). Such a tile is called
a computation node (CPN) in the remainder of this paper.
The data dependencies of the different CPNs are extracted.
For each CPN, the energy and latency cost of executing that
node on each compatible core of the system are extracted with
the intra-core mapping framework ZigZag [9] (see III-B2). The
workload graph includes communication nodes (CMNs) to take
into account the data exchange between the processing cores
(see III-C1). The WMM keeps track of the energy and latency
caused by off-chip memory accesses (see III-C2).

3) Core allocation with genetic algorithm: Next, the CPNs
of the different layers have to be assigned to one of the
compatible processing cores in the architecture. For this, a GA
is utilized in order to find Pareto optimal core allocations of
the workload in the vast allocation space. The GA performs a
fitness evaluation, which can be based on any combination of
latency, energy and on-chip activation buffer requirements. The
final output of the GA is a 3D Pareto front of core allocations.
The three dimensions of the Pareto front are latency, energy and
on-chip activation memory requirements. Besides these metrics,
a report about other metrics such as core utilization can be
obtained for each design point in the Pareto front. A timeline of

User inputs Core allocation
with genetic algorithm

Cost evaluation of  
workload graph

C0 C1

C2 C3

Layer 0

Layer 3

Layer 2

?

Energy? 
Latency?

?
?

...

...

...
Layer 1

...

C0 C1

C2 C3
...

...

...

...

Lowest 
latency:

...

...

...

...

Lowest 
energy:

Hardware
Architecture DNN

Description Layer-fused
workload graph

. . .

Fig. 1: Overview of implemented framework.

!

!



the temporal execution schedule of the nodes in the workload
graph is generated, together with the instantaneous memory
utilization of the on-chip weight and activation buffers. More
details about the GA are provided in III-D.

B. Layer Fusion through Line-based Tiling

1) General Idea: As mentioned earlier, the idea of layer
fusion is to split the computation of a DNN’s layers into smaller
parts. There are many different ways to introduce layer fusion
through tiling. One of these tiling strategies is called line-based
tiling and it will be used in this work since it has shown
promising results in practice [5]. Fig. 2 summarizes which loop
dimensions of a layer are captured within a CPN when line-
based tiling is applied. Here, each CPN includes one entire
line of the output feature map of a layer. This means that all
loop dimensions except the activation row dimension (OY) are
included in the CPN.

Fig. 3a shows an example for the processing of two subse-
quent layers with line-based tiling. In the layer-by-layer case
(top), the processing of layer 0 can only start when processing
of layer 1 is complete. In this scenario, the cores need to store
the entire layer’s activations and the ICC is infrequent and long.
This picture changes when introducing tiling through multiple
CPNs per layer. In this example, a one-to-one dependency is
assumed between CPNs of layer 0 and layer 1, as is the case
in e.g. a point-wise convolution. More processing parallelism
between the layers is possible and the amount of data generated,
stored and communicated by one CPN is much smaller, leading
to frequent and short ICC.

One could be tempted to simply generate many CPNs
for each layer in order to maximize the parallelism in the
processing and to minimize the output size of each CPN. Yet,
this idea leads to a limitation of layer fusion, which is shown
in Fig. 3b. The computational overhead increases significantly
when splitting the output feature map into tiny parts, due to
the reduction in data reuse and parallelization opportunities
stemming from the smaller loop dimensions inside a CPN.
Another reason for this performance degradation is that the
on and offloading of data (input activation and/or weights)
becomes more dominant for small CPNs.

2) Cost Evaluation of CPNs: The costs of a CPN are mainly
caused by the data movement between the on-chip memories
together with the actual computation cost. In order to model
the costs, the ZigZag framework is utilized [9]. It uses an
analytic cost model to determine the costs of a certain intra-

Output Channels: K

Output 
Row: 
OY

Output 
Column: 

OX

for oy = 0 to OY

for k = 0 to K
for c = 0 to C
for fy = 0 to FY
for fx = 0 to FX
O[k][oy][ox] += 
+= I[c][oy+fy][ox+fx] × W[k][c][fy][fx]

for ox = 0 to OX
CPN with

optimal loop
order

determined
with ZigZag

Number of
CPNs per

layer

Computation Node
(CPN)

Other loop dimensions: 
• Input Channels (C) 

• Filter Kernel Row (FY) 
• Filter Kernel Column (FX)

Fig. 2: Output feature map and loop dimensions of a computation
node in the context of a DNN layer when line-based tiling is applied.

Fig. 3: (a) Parallel processing capabilities when introducing layer
fusion. (b) Resulting computational overhead.

core mapping. Our framework selects the mapping with the
lowest energy delay product (EDP). A mapping for each CPN
is chosen for each accelerator core in the system. As all the
CPNs from the same layer have the same characteristics, their
costs are the same. These costs are saved as an attribute for each
CPN in the workload graph, to be used for later scheduling.

When two or more CPNs of the same layer are executed
subsequently, the layer’s weights and part of the activations are
already present within the core. This leads to more efficient
processing, effectively creating a bigger tile with more reuse
opportunities. The tool takes these effects into account and
determines the correct energy and latency when scheduling
multiple CPNs of the same layer.

C. Off-Chip Data Movement

Fig. 4 shows a simplified workload graph utilized in the third
step of the framework. Its main components are CPNs and
communication nodes (CMNs) which are connected with edges
in order to represent data dependencies. III-B2 explained how
ZigZag is used to estimate the energy and latency of the CPNs
in the workload graph. The CMNs are required in order to take
care of the ICC, which occurs when data moves between cores.
III-C1 discusses how the energy and latency of the CMNs are
determined and how they are scheduled with a contention-aware
scheduler (CAS). III-C2 elaborates how accesses to the off-chip
DRAM are handled through the WWM.

1) Inter-core Communication (ICC): The output activation
of a CPN has to be moved to another core in the system
in case two dependent CPNs are not executed on the same
core. In this case additional energy and latency are caused

. . . . . .

CPN 
x+1

CMN 
x+1

CPN 
x

. . . . . .

CPN 
y+1

CMN 
y+1

CPN 
y

CMN 
y

. . . . . .

CPN 
z+1

CMN 
z+1

CPN 
z

CMN 
z

CMN 
x

Layer 0 Layer 1 Layer 2

Fig. 4: Simplified workload graph with computation nodes and
communication nodes of different layers.

!

!



by the inter-core data movement. In order to model the data
exchange between the cores, a communication bus is modeled
in the hardware architecture. While the processing cores take
care of the execution of the CPNs in the workload graph,
the communication bus is responsible for executing the CMNs
which are inserted between the CPNs. The latency of each
CMN is determined by

Runtimecc =
Sizeoutput(CPNi)

BWBus
(1)

where Sizeoutput(CPNi) is the size of the output activation
of the producer CPN in bits. BWBus is the bandwidth of
the communication bus in bits

cc . The communication energy is
determined through:

Energy = Sizeoutput(CPNi)× EBus (2)

where EBus is the energy of a bus transfer in J
bit .

Fig. 5 shows a simplified example to illustrate how a subset
of the CPNs and CMNs from Fig. 4 are scheduled on a two
core system with a communication bus. The activation buffer
requirements can be calculated based on the schedule of the
CPNs and CMNs. While the data is moved into the memory of a
specific core (e.g. time step a to b in Fig. 5), the corresponding
space in core 0’s activation memory is already allocated. The
actual processing of CPN y can only start as soon as all relevant
data is loaded (time step b). During the processing of CPN y (b
to c) the CPN’s input activation as well as the output activation
are kept in core 0’s memory. Input activations can be discarded
as soon as they’re no longer required for future computations
(time step c). Output activations are kept in memory until
they have been transferred to the next core (time step d). The
scheduling as described here is managed by the CAS.

2) Off-chip DRAM Accesses: Before a CPN can be pro-
cessed, its required weights have to be present in the memory
of its processing core. The weight memory manager (WMM)
keeps track of which weights are present in each core and
which weights are to be loaded and discarded. The weights
typically have to be fetched from off-chip DRAM if they are
not present in the on-chip memory. In such a case, additional
costs (latency and energy) are caused by the off-chip memory
accesses through the DRAM port resource.

Fig. 6 shows how the weights for CPN x are fetched from
the off-chip memory through the DRAM port (time step a to
b). The CPNs in this example are from different layers (see
Fig. 4) and therefore, they do not share any weights. The actual

Output Activation

Input Activation
Output Activation

Outp. Act.
t

Inp. Act.

CMN x CMN y CMN z

CPN y

CPN z

Act. Memory
Utilization 

Core 0

Act. Memory
Utilization 

Core 1

Activity Bus

Activity Core 1

Activity Core 0

a b c d e

Input Activation Outp. Act.

Fig. 5: Sequence chart for data exchange between two accelerator
cores through a communication bus.

processing of the CPN x happens from b to c while the weights
of the next CPN y are loaded. If the weight fetching can be
covered completely with the computation of the CPN x, then
processing of the next CPN y can start immediately (c). If the
weight fetching takes longer than the processing of the previous
CPN, a gap in the core activity occurs (d to e). If the weight
memory would overflow when loading new weights, the WMM
removes the oldest layer’s weights first in a FIFO manner.

The latency of the weight loading operation can be calculated
with

Runtimecc =
Sizeweight(CPNi)

BWDRAM
(3)

where CPNi is the CPN associated with the weight loading.
The Sizeweight is the size of the loaded weights in bits and
the BWDRAM is off-chip memory bandwidth of the DRAM
port in bits

cc . The required energy can be determined with

Energy = Sizeweight(CPNi)× EDRAM (4)

where EDRAM is the off-chip access energy in J
bit .

D. Genetic Algorithm for Core Allocation

The GA holds a population of individuals and every individ-
ual of a generation holds a genome with several genes. The best
individuals of a population are selected before crossover and
mutation are performed. An iteration of these steps is called a
generation of a GA. The GA finds gradually better solutions by
evolving its population over several generations and escaping
local minima [3]. The overall objective of the GA is to find
Pareto optimal core allocations based on different optimization
criteria [3]. These optimization criteria can be any combination
of the energy, latency and on-chip activation buffer size. Fig. 7
gives an overview about the general structure of the utilized
GA. Its implementation details are explained next.

Encoding: Each gene in the genome of an individual repre-
sents one core-layer allocation. Meaning that the integer value
of the ith gene describes to which core the CPNs of the ith-
layer are mapped to. The cardinality of the solution space
for the genetic algorithm is equal to mn as a result of the
chosen encoding with m cores in the system and n layers in
the workload.

Fitness Evaluation: The fitness evaluation of an individual
is based on the best schedule compatible with the individual’s
core allocation of the workload graph. The schedule’s energy
can be determined by summing up all the energy values of
the CPNs, CMNs and accesses to the DRAM. In order to get
the latency and the on-chip activation buffer requirements, the
workload graph is temporally mapped to determine the start
and end time of all the nodes in the graph.

Weights CPN y

Weights CPN x
t

Weights 
CPN x

Weights 
CPN y

Weight Memory
Utilization 

Core 0

Activity 
DRAM Port

Activity Core 0 CPN y

Weights 
CPN z

CPN x CPN z

Weights CPN z

Weights CPN y

cba

Maximum

d e

Fig. 6: Sequence chart for weight fetching through DRAM port.

!

!



New Population
• 128 individual 

• Each bit in genome
represents one layer- 

core allocation

Fitness Evaluation
Minimize latency, energy 
and/or on-chip activation 

buffer requirements

Selection
NSGA-II 

Crossover
• Probability: 0.3 

• Ordered crossover
operator

Mutation
• Probability: 0.7 

• Position flip (p=0.25) 
• Bit flip (p=0.75)

500
Generations 

Problem to be solved:  
Find optimal layer-core 
allocation of DNN/HW

Output:  
• 3D Pareto front of valid 

layer-core allocations 
• Report about additional

metrics like resource 
utilization or on-chip 

weight buffer requirements

Fig. 7: Overview of the used genetic algorithm.

Selection, Crossover and Mutation: The surviving individ-
uals of a generation are chosen through a NSGA-II selection
procedure [3]. The probabilities for crossover and mutation
were determined through a grid search in order to ensure a
fast convergence. Crossover is performed through an Ordered
Crossover operation. If the genome of an individual should
be mutated, then either a bit flip mutation or a position flip
mutation is done.

IV. EXPERIMENTS

In this section several experiments are performed to demon-
strate the opportunities the proposed framework brings. At
first the importance of core-to-core communication modeling
is shown by varying the bandwidth of the ICC bus (see IV-A).
Next, the impact of the GA-based core allocation is outlined by
comparing its results to a naive greedy allocation (see IV-B).
Our last experiment highlights the flexibility of the framework
to a broad variety of single core and multi-core hardware
architectures, and different DNN workloads (see IV-C).

All experiments include all convolutional and pooling layers
of the targeted DNNs. Since the paper mainly aims for edge
applications, the batch size is set to 1. The reported scatter
plots are 2D projections of the 3D Pareto front obtained from
the GA, where each design point represents one specific layer-
core allocation.

A. Variation of Communication Bus Width

In this first experiment a heterogeneous quad-core architec-
ture is used (see Fig. 8). Each core has a predefined spatial
dataflow, depicted inside the cores. An additional pooling core
handles the pooling layers. Each core has an on-chip memory
hierarchy connected to the off-chip DRAM memory through

Unrolled 
According 

to Dataflow

Core 0 
D1: 64 OX 
D2: 4 FX 
D3: 4 FY 

Core 2 
D1: 32 C 
D2: 32 K

Core 1 
D1: 32 OX 
D2: 32 K

Core 3 
D1: 32 C 
D2: 32 K

Off-
Chip 

DRAM 

Pooling 
Core 

Weight Output Input
Off-Chip 
Memory

On-Chip 
Memory

MAC Unit

RF 1B

DRAM 

RF 4B RF 1B

SRAM 16kB SRAM 4kB

SRAM 256kBSRAM 256kB
Comm. Bus (16/24/32/64/128 bit)

DRAM Port (64 bit)

On-Chip

Fig. 8: Heterogeneous quad-core architecture (left) and memory
hierarchy in each core (right) for communication bus bandwidth

variation experiment.

Fig. 9: Influence of the communication bus width on the energy and
latency.

a DRAM port. The required access energies for the different
memories are obtained through CACTI 7 [1]. The different
cores are connected through a communication bus, which has
a certain width. The experiment sweeps the bus’ bandwidth
from 16 bits up to 128 bits/cc, to show the impact of correctly
modeling bus congestion on the system’s energy and latency.

Fig. 9 shows the results of this experiment for ResNet-20 and
SqueezeNet-V1.1. Each design point in the plot is equal to one
layer-core allocation and every marker style corresponds to a
certain bus width. For both networks, the achievable latency
and energy differs significantly when considering a limited
communication bus bandwidth. At infinite bandwidth, the best-
case execution time (BCET), i.e. the minimal achievable la-
tency, is shown. A latency degradation of 20%, resp. 44%
can be observed for ResNet-20, resp. SqueezeNet-V1.1 for the
best latency point of the 32 bit architecture. This shows the
importance of taking the bus traffic into into account since it
can cause significant performance degradation.

B. Greedy versus Genetic Algorithm based Core Allocation

This experiment demonstrates the impact of the framework’s
capability to autonomously optimize the layer-core allocation.
As a baseline, SqueezeNet-V1.1 is mapped onto the architecture
of Fig. 8 in a naive greedy allocation scheme, and compared
with our automatic GA-based scheme. The greedy allocation
assigns CPNs of a layer to the core with the best EDP
performance. This allocation is compared to three different
outcomes of the GA-based allocation: the energy, latency and
activation memory leaders. Table II summarizes the relative
performance of these three GA outcomes relative to the baseline
(greedy allocation). It is clear that the GA outperforms the
greedy allocation as it is able dynamically overcome local
minima in the optimization space. A decrease of 62% resp. 54%
can be seen for the latency resp. energy when comparing the
corresponding metric leader to the base line. It is also possible
to pick another design point of the Pareto front somewhere
between the metric leaders which still ensures that they offer a
unique trade-off due to the usage of NSGA-II selection [3].
TABLE II: Relative performance of genetic algorithm-based

core allocation compared to greedy allocation.

Metric Latency
Leader

Memory
Leader

Energy
Leader

Latency - 62% - 26% - 12%
Activation Memory Requirements + 42% - 48% - 19%

Energy - 36% - 49% - 54%

!

!



C. Hardware Architecture Exploration

In this last and extensive experiment, three different ho-
mogeneous quad-core architectures as well as three different
single-core architectures are compared against the previously
mentioned heterogeneous multi-core system, to demonstrate
the flexibility of the framework. All seven architectures have
the same area footprint as they contain the same amount of
MAC units and on-chip memory. The memory hierarchies are
specialized to support the spatial unrolling of the different cores
and the characteristics of the communication bus, the DRAM
and the pooling core are the same in all systems. Each of
the homogeneous multi-core systems holds all four cores with
the same spatial unrolling (i.e. C|K, OX|K or OX|FX|FY ).
As shown in Fig. 8, each core of the heterogenous quad-core
system holds different spatial unrollings. The single-core archi-
tectures have one big core with one of these three unrollings.
For this experiment, the HW architectures are slightly adapted.
Now each core has its own DRAM port. If the weights of
a layer do not fit into the on-chip memory, then the weight
fetching is included in the cost estimation with ZigZag.

In order to see the influence of the architectural design
decision of the different systems, the mappings of SqueezeNet-
V1.1 as well as a multi-DNN workload are evaluated. ResNet-
18, MobileNet-V2 and Tiny YOLO V2 are jointly executed in
the multi-DNN workload. Especially the multi-DNN workload
has a huge solution space for the quad-core architectures since
80 layers have to be freely mapped to the four cores of the
systems. As a result, there are 480 = 1.46×1048 possible layer-
core allocations. Sec. IV-B already outlined how important it is
to have an automated core allocation algorithm to find optimal
solutions. This experiment also draws a comparison to a layer-
by-layer processing of a workload, which is commonly done
in other SotA multi-core mapping frameworks [7], [8]. For the
layer-by-layer mappings, the data is always moved back to the
off-chip DRAM because in most cases the activation of a layer
cannot stay on chip since the on-chip memories are too small.

Fig. 10 shows a plot of the design points (core-allocations)
of the different architectures. The latency leader of the het-
erogneous system has an 8% lower latency and a 38% lower
energy for the multi-DNN workload when comparing to the la-
tency leader of the homogeneous quadcore with OX|K spatial
unrolling. The energy leader of the heterogeneous system has
a 52% lower latency and a 14% lower energy when comparing
to the energy leader of homogeneous quadcore (C|K). The
lower performance of the homogenoeus systems is a result of
only employing one type of spatial unrolling. This experiment
clearly outlines the higher performance of the layer-fused
mappings compared to the layer-by-layer mappings. The layer-
by-layer mappings suffer from limited processing parallelism
and a significantly higher energy and latency due to more off-
chip memory accesses. As a result, the best latency for the
heterogeneous system is 61% lower and the best energy is 83%
lower when processing the multi-DNN workload in a layer-
fused way instead of layer-by-layer. This experiments clearly
shows the benefits of heterogeneous multi-core architectures
and the opportunities provided by layer fusion.

Fig. 10: Pareto plot of latency/energy costs for different architectures
and processing approaches.

V. CONCLUSION

This work introduced a framework for accurate hardware
cost estimation of multi-DNN layer-fused mappings on homo-
geneous and heterogeneous multi-core architectures. A limited
bandwidth communication bus is used to accurately assess
the inter-core communication impact and the off-chip ac-
cesses caused through the layer-fused paradigm are managed
through a memory manager. Moreover, a genetic algorithm
is implemented and deployed to find the optimal layer-core
allocations. Several experiments have shown the importance
of the communication bus and off-chip access modeling, as
well as the importance of the automatic genetic algorithm-based
layer-core allocation. Finally, the framework was exploited to
conduct a hardware architecture exploration, showing that a
heterogeneous system can achieve a 38% lower energy and a
52% lower latency for a multi-DNN workload compared to
iso-area homogeneous architectures.

REFERENCES

[1] R. Balasubramonian et al., “Cacti 7: New tools for interconnect explo-
ration in innovative off-chip memories,” ACM TACO, vol. 14, no. 2, 2017.

[2] X. Cai et al., “Olympus: Reaching memory-optimality on dnn proces-
sors,” IEEE TC, 2021.

[3] N. Fasfous et al., “Anaconga: Analytical hw-cnn co-design using nested
genetic algorithms,” in DATE, 2022.

[4] S. Ghodrati et al., “Planaria: Dynamic architecture fission for spatial
multi-tenant acceleration of deep neural networks,” in MICRO, 2020.

[5] K. Goetschalckx and M. Verhelst, “Depfin: A 12nm, 3.8tops depth-first
cnn processor for high res. image processing,” in VLSI, 2021.

[6] S.-C. Kao et al., “Dnnfuser: Generative pre-trained transformer as a
generalized mapper for layer fusion in DNN accelerators,” CoRR, vol.
abs/2201.11218, 2022.

[7] S.-C. Kao and T. Krishna, “Magma: An optimization framework for
mapping multiple dnns on multiple accelerator cores,” in IEEE HPCA,
2022.

[8] H. Kwon et al., “Heterogeneous dataflow accelerators for multi-dnn
workloads,” in IEEE HPCA, 2021.

[9] L. Mei et al., “Zigzag: Enlarging joint architecture-mapping design space
exploration for dnn accelerators,” IEEE TC, 2021.

[10] A. Parashar et al., “Timeloop: A systematic approach to dnn accelerator
evaluation,” in IEEE ISPASS, 2019.

[11] A. Symons et al., “Towards heterogeneous multi-core accelerators
exploiting fine-grained scheduling of layer-fused deep neural networks,”
2022. [Online]. Available: https://arxiv.org/abs/2212.10612

[12] K. Ueyoshi et al., “Diana: An end-to-end energy-efficient digital and
analog hybrid neural network soc,” in IEEE ISSCC, vol. 65, 2022.

[13] M. Verhelst et al., “Ml processors are going multi-core: A performance
dream or a scheduling nightmare?” IEEE SSC-M, vol. 14, no. 4, 2022.

!

!


	Select a link below
	Return to Previous View
	Return to Main Menu


