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Abstract—The utilization of fully reconfigurable logic and
routing modules may be considered as one potential and even
provably resilient technique against intellectual property (IP)
piracy and integrated circuits (IC) overproduction. The embed-
ded FPGA (eFPGA) is one instance that could be used for
IP redaction leading to hiding the functionality through the
untrusted stages of the IC supply chain. The eFPGA architecture,
albeit reliable, unnecessarily results in exploding the die size even
while it is supposed to be at fine granularity targeting small
modules/IPs. In this paper, we propose SheLL, which primarily
embeds the interconnects (routing channels) of the design and
secondarily twists the minimal logic parts of the design into
the eFPGA architecture. In SheLL, the eFPGA architecture is
customized for this specific logic locking methodology, allowing
us to minimize the overhead of eFPGA fabric as possible. Our
experimental results demonstrate that SheLL guarantees robust-
ness against notable attacks while the overhead is significantly
lower compared to the existing eFPGA-based competitors.

Index Terms—Logic Locking, eFPGA, IP Redaction.
I. INTRODUCTION

The ever-increasing rate of globalization in the semiconduc-
tor supply chain has raised big concerns over the trustworthi-
ness of the IC supply chain, which results in emerging threats
like IP piracy and IC overproduction [1]. Logic locking as
a proactive IP protection solution can promise robustness if
implemented appropriately. In logic locking, the designer will
add programmability into the design using additional gates,
known as key gates, and the input to these key gates, i.e., key
input, which is only known to the trusted parties, will recover
the correct functionality. Logic locking received significant
attention over the last decade. However, the endless cat-and-
mouse game between attacks and defenses in logic locking
shows low reliability of many of these techniques [2].

One particular breed of logic locking solutions relies on
the complexity of reconfigurable routing and logic modules
using basic reconfigurable cells, i.e., multiplexers (MUXes)
and look-up-tables (LUTs) [3]–[5]. These techniques can build
strong robustness against the widely-used attacks on logic
locking, e.g., Boolean satisfiability (SAT) attack and its vari-
ants [6], [7]. However, they are not structurally flawless, thus,
allowing machine learning (ML) based attacks to break them
[8], [9]. These reconfigurable-oriented logic locking solutions
resemble the FPGA structures in which the bitstream serves as
the configuration of MUXes/LUTs. Hence, few recent studies
have extended this concept by utilizing the embedded FPGA
(eFPGA) as the source of secrecy for post-manufacturing
programmability. In such solutions, the designer will redact
part(s) of the design by replacing them with eFPGA fabric(s)
to add full reconfigurability for security purposes [10]–[12].

By mostly relying on the open-source eFPGA fabric gener-
ators and synthesizers, such as OpenFPGA [13], the existing
eFPGA-based redaction solutions select part(s), module(s),
or IP(s) of a system, and will replace them with the coun-
terpart FPGA fabric generated, in which the corresponding
bitstream recovers the functionality and serves as the secret,
resembling the key of logic locking [10]–[12]. Both recon-
figurable route&logic locking solutions [3]–[5] and eFPGA-
based IP redaction techniques [10]–[12] follow almost the
same attributes, such as (i) the use of symmetric structures
for building the redacted logic (route&logic), (ii) inclusion
of cyclical blocks in the wiring of the locked part(s), (iii)
cascading logic and/or routing blocks, and (iv) large size of the
secret configuration, and by possessing such attributes, these
techniques resemble the attributes of universal circuits that
meet preliminary formal requirements needed for the future of
logic locking, specifically indistinguishability (IND-LL) [14].

Although the engagement of fully reconfigurability might
be suited enough to meet the formal requirements, they incur
striking and mostly prohibited area overhead, which makes
them less applicable for resource-constrained devices [15],
[16]. A recent design space exploration for attack resilience
vs. area overhead on eFPGA-based solutions shows that even
while identifying the part(s)/module(s)/IP(s) to be embedded
into the FPGA has been done heuristically [12], the overhead
would be at-least 2x [11], which brings down the usability of
such approaches for the designers.

In this paper, by revisiting the utilization of eFGPA for IP
redaction, we introduce SheLL, a framework for reconstructing
and shrinking the building blocks/tiles of the selected eFPGA
fabric in multiple ways, allowing us to have a customized
fabric for IP protection purposes at much more acceptable
overhead ratio. In SheLL, we also introduce a specific form
of logic locking that is suited the most for mapping and
placement on the eFGPA fabric. The SheLL framework enables
the designer to get the benefit of routing clusters of eFPGA as
a means of routing-based locking solution, and the framework
is built in a way to maximize the utilization of the eFPGA
resources. Our contributions are as follows:
(1) We revisit the eFPGA fabric generation/synthesis in open-
source eFPGA automation tools, i.e., OpenFPGA [13] and
FABulous [19]. We retouch the main steps to maximize re-
source utilization and minimize the tiles needed for redaction.
(2) We utilize FABulous [19] using the Skywater 130nm, with
better standard cell-based optimizations, which significantly
improve the overhead ratio.
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Fig. 1: Logic Locking Relying on Reconfigurability. (a) Traditional (Random) LUT insertion [17], (b) Heuristic LUT insertion [18], (c) MUX-based Routing
Locking [3], (d) MUX+LUT Routing+Logic Locking [4], [5], (e) eFPGA-based IP Redaction [10]–[12]. (*: Circuit could consist of sequential elements (FFs).)

(3) We introduce a routing-oriented, yet logic-based, locking
solution that fits with the lowest overhead ratio on the eFPGA
fabric architecture, built using the FABulous framework. The
routing-based mapping and placement are on the MUX chains
of eFPGA, which saves the space in eFPGA-based redaction.
(4) We comparatively evaluate the robustness as well as the
overhead of SheLL vs. that of the existing (re)-configurable-
based (mostly eFPGA-based) solutions.

II. BACKGROUND AND PRIOR ART

Reconfigurable logic was first used in [17] to prevent IP/IC
piracy. Over the last decade, this breed has been extended
through different avenues, from LUT-based logic locking to
eFPGA-based IP redaction, as described below.

A. Reconfigurability for Locking

(i) Traditional LUT insertion [17]: As shown in Fig. 1(a),
LUTs will be replaced with gates (random/test-based gate-to-
LUT mapping), and LUTs’ configuration serves as the secret
(key). This method is already broken using the SAT attack [6].
(ii) Heuristic LUT insertion [18]: To be resilient against the
SAT attack, this method uses logic-level (e.g., De Morgan’s
law with no back-to-back LUT as shown in Fig. 1(b))
and topological features (e.g., fanout counts and observabil-
ity/controllability) for LUT-based locking. However, to achieve
(SAT) robustness, large numbers of LUTs may be needed for
designs, which degrade the efficiency in terms of overhead.
(iii) MUX-based Routing Locking: In [3], the relation be-
tween robustness and clause-to-variable (c2v) ratio1 has been
engaged for introducing SAT hard instances for logic locking
purposes. This study proposes a cascaded MUX-based routing
locking (for hiding the connectivity of the cells in the design),
which has a close resemblance to the FPGA routing. However,
since it is localized as shown in Fig. 1(c), they are vulnerable
and eventually breakable by a specific ML-based attack [8].
(iv) MUX+LUT Routing+Logic Locking: As its name im-
plies, in [4], [5], a cascaded set of MUXes has been twisted
with LUTs for logic locking purposes. As shown in Fig.
1(d), this LUT+MUX twisting has a spirit similarity with the

1The SAT attack [6] input is in conjunctive normal form (CNF), which
consists of clauses and variables, and the hardness of SAT solving can be
related to the attributes of the CNF, e.g. clause-to-variable (c2v) ratio.

FPGA architecture, in which part of the configuration (key)
is for logic (LGC) and the other part is for the routing and
connectivity (ROUTE)2. All the attributes of this sub-group
are in line with eFPGA redaction techniques.
(v) Embedded FPGA for Locking: This is the most complete
version of reconfigurability that tries to hide the real function-
ality of the selected design portions (either LGC or ROUTE)
behind a fully reconfigurable logic array, i.e. eFPGA fabric
[10]–[12], shown in Fig. 1(e). The previous studies on eFPGA
redaction are more related to the fabric sizes and architectures
[10], [11], rather than investigating the module that must be
redacted [12]. Compared to these techniques, the main aim of
the proposed SheLL is threefold: (1) The redaction can be
accomplished in a way that the eFPGA fabric is utilized the
most (the highest utilization ratio), (2) the redacted part can
be selected more ROUTE-based than LGC-based to minimize
the number and the dependency of tiles, (3) non-cyclical MUX
chains of the eFPGA fabric can be used as a lucrative resource
for ROUTE-based locking. The proposed SheLL not only
considers the size, architecture, and module selection for
the eFPGA redaction but also introduces a new mapping
for eFPGA automation customized for locking.

As shown in Fig. 1, from left to right, the robustness has
an increasing rate. However, it has been achieved with a much
larger key size, at much more coarse granularity, and excessive
(almost prohibited) overhead. A design space exploration on
LUT-based logic locking demonstrates that the overhead of a
robust solution can go easily above 2x [20]. Similarly, another
design space exploration on eFPGA-based IP redaction shows
the worst trend for the overhead [11]. Although inefficient in
terms of overhead, studies with more focus on the formalism
of logic locking show that reconfigurability could be promising
enough for a long life of logic locking. For instance, a recent
study focuses on the definition of two main attributes (notions)
needed for the formalism of the logic locking [14], which are
(i) IND-LL and (ii) SIM-LL. Amongst these notions, IND-LL,
which is recently revealed as one of the main requirements of
logic locking [2], means that the adversary cannot get benefit
from the structural differences between locked vs. original

2LGC and ROUTE stand for the logic cells (gates) and routing wires and
switches of the design, respectively. In Fig. 1, all gijs are LGC and all wires
between gijs as well as all wires between I/Os and gijs are ROUTE.
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circuit, and it is a more generic definition of being symmetric
and distributed as concluded by [3], which is met by the use
of reconfigurability [14] for locking purposes.

B. Threat Model
In this study, we follow the same threat model used in

the previous eFPGA-based redaction solutions, i.e., the oracle-
guided attack on logic locking. In this model, the attacker has
access to the reverse-engineered (locked) netlist, the activated
chip (oracle) with a fully-scanned architecture. The attacker is
able of pinpointing the eFPGA fabric in the locked netlist and
the location of bitstream storage cells (FFs). Since the SheLL
framework is an eFPGA-based solution, an attack is successful
when they can restore the correct bitstream of the eFPGA.

III. EFGPA AUTOMATION: REVISITING FOR LOCKING

Custom eFPGA modules can be created using the recently-
published open-source FPGA fabric generation and synthesis
automation frameworks, such as OpenFPGA [13] and FABu-
lous [19]. Almost all existing eFPGA-based IP redaction tech-
niques have used OpenFPGA for the automation of redaction.
In OpenFPGA, the main steps are LUT-based synthesis and
Fabric mapping that are done using Yosys and VPR/VTR,
respectively. However, the OpenFPGA framework is not opti-
mized efficiently either logically or physically, leading to an
unnecessarily large fabric size with prohibited overhead: (i)
the square-like eFPGA fabric may contain significant tiles that
are not utilized. For instance, as demonstrated in Fig. 2, for
an arbitrary design, named desX.v mapped on a 7x7 eFPGA
fabric, 11 out of 49 tiles are not utilized (≤77% utilization).
(ii) The attributes of a significant portion of routing fabrics,
switch multiplexers, and interconnection wires do not improve
the robustness. For instance, a significant portion of wiring
in eFPGA may add (combinational) cyclical blocks. Since the
targeted module is usually acyclic, this can be tracked and
ruled out by the attacker as a helpful pre-processing before
running any form of attack. (iii) OpenFPGA does not use
custom and the smallest possible bounding boxes for CLBs
and switching multiplexers that are the most contributors to
the eFPGA fabric. Also, OpenFPGA does not support MUX
chains for modeling the logic, and in such cases, both LGC
and ROUTE will be mapped to the tiles (CLBs), which
significantly increases the fabric size needed for the redaction.

Considering that eFPGA in this application is for locking
purposes (redaction), one can define the logic locking (redac-
tion) in a way that such inefficiencies will be omitted through
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Fig. 3: How SheLL Locks. (a) Original System Platform, (b) @always Parts
of an IP, (c) Locked System Platform, (d) Locked IP.

the eFPGA automation. With the least modification to the
existing eFPGA automation flow, the main aim of the proposed
SheLL is to mitigate such impactful inefficiencies using (1) a
retouched automation flow for eFPGA-based redaction, (2) a
new module selection methodology for the redaction part, and
(3) using a different open-source eFPGA automation flow with
higher physical (and also logical) optimization.

IV. PROPOSED SCHEME: SHELL

The ultimate goal of the SheLL framework is to demonstrate
that, for eFPGA-based redaction, it is more beneficial for the
designers to focus more on ROUTE to be mapped into the eF-
PGA than LGC. Hence, we introduce a new module selection
for redaction in the SheLL framework, whose big pictures have
been demonstrated in Fig. 3. Unlike the other eFPGA-based
solutions, SheLL, with a more efficient approach w.r.t. the
overhead, enables the eFPGA-based redaction at both IP-level
and SoC-level with more fine granularity. In SheLL (for SoC-
level), most (but not all) part of the customized eFPGA fabric
is dedicated to hiding the inter-IP interconnection (ROUTE),
and a small part of the eFPGA resources is dedicated to
the logic (LGC) redaction. Fig. 3(a) shows a typical system
platform consisting of multiple IPs and the crossbar (Xbar).
Running the SheLL framework on this example will produce
the circuit depicted in Fig. 3(c). In this case, as a system-
level solution, eFPGA is used for constructing the AXI-based
Xbar between IPs. Additionally, a small (LGC) part of core2
and core4 and their wrappers will be mapped to the eFPGA
fabric. The Xbar is a simple memory-addressed MUX-based
arbitration between multiple AXI channels (ROUTE). This will
be combined with a minimal logic (LGC) related to core2
and core4 to make the redacted part robust against removal-
based attack (in which the adversary can replace the whole
eFPGA with a AXI-based simple Xbar). Also, the minimal
LGC selected from core2 and core4 is close (neighboring) to
PI/PO of the AXI channel (ROUTE). In our experiment, we
show that selecting the LGC close to ROUTE will minimize
the dependency and overhead of tiles needed for redaction.

Fig. 3(b) and 3(d) shows how the SheLL framework works
at IP-level description of the design. In this case, the SheLL
framework is able to target @always blocks or module instan-
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tiations. However, the main target is the connection between
modules or @always blocks. Fig. 3(b,d) theoretically shows
how it works on @always blocks. In this case, the signals
transceiving (ROUTE) between different @always blocks and
a set of direct logic to these transfers will be mapped to the
eFPGA. Also, to select the LGC to be redacted, we applied a
straightforward connectivity analysis to select the LGC leading
to better propagation (corruptibility). For instance, in Fi. 3(d),
a part of LGC dedicated to @always3 and @always4 (with
more connections) will be selected for redaction.

In SheLL, via FABulous, we utilize MUX-based chains
with custom cells for modeling and implementing the routing
channels (ROUTE). It significantly reduces the number of
LUTs and logic tiles required for mapping, leading to having
a smaller fabric (lower overhead) for larger redaction. A
simple comparison between the efficiency of OpenFPGA and
FABulous (with and without MUX chain use) has been demon-
strated in Table I (≥ 50% improvement with custom MUX
chain [21]). In FABulous, when the ROUTE is built using
MUX chains, the required resources for generating the fabric
are significantly reduced (compared to the non-MUX chain
model in either FABulous or OpenFPGA). In line with this
observation, SheLL focuses primarily on redacting ROUTE
rather than LGC, resulting in better fabric utilization.
TABLE I: Resource Utilization for a ROUTE circuit (8 AXI channels Xbar).

Tool Multiplexer Flip Flop Latch

OpenFPGA [13] 1650 M2s 650 DFFs –
FABulous (std3 cell) 560 M4s + 80 M2s 20 CFFs 650
FABulous (std cell w/ mux chain) 185 M4s + 63 M2s 12 CFFs 431

M2: Mux2 M4:Mux4 CFF: Custom FF

Fig. 4 shows the main (8) steps of the SheLL framework:
(1) Connectivity and Modular Analysis: Given the circuit to
be locked (e.g., desX.v), the SheLL framework first builds
the graph-based (connectivity) representation of the design.
For the SoC level, it will be done more coarse-grained by
analyzing inter-IP communications. For the IP level, it is more
fine-grained by evaluating wiring between main structures like
main sub-modules or the @always blocks. For either SoC-
level or IP-level, after simply flattening and uniquifying the
design, we utilize FIRRTL [22] for building an intermediate
representation for easier to-graph conversion.
(2) Connectivity Score Feature and Sorting: After generating
the graph-based representation from FIRRTL, we extract and
use a set of graph-based (more focus on centrality measures
[23]) as well as circuit-based attributes for the nodes as

3Custom cells are also defined in the FABulous framework through an
iterative optimization (up to 30% die size shrinkage) for MUX-chain structure.

TABLE II: Graph/Circuit-based Measures in the proposed SheLL Framework.

Attribute Detail Coeff. Objective

iDgC Degree of the node (inlet/outlet) α High

oDgC Degree of the node (outlet) β High

ClsC Closeness to the observable/controllable nodes of the
graph through the shortest path

γ Low

BtwC Node occurrence in the shorting paths between observ-
able/controllable nodes

λ Low

EigC Neighboring node(s) type (gate type) ξ High

LuTR LUT-based resource needed for the node σ Low

iDgC: inlet Degree Centrality oDgC: outlet Degree Centrality
ClsC: Closeness Centrality BtwC: Betweenness Centrality
EigC: Eigen Centrality LuTR: LUT-based Resource Utilization

demonstrated and elaborated upon in Table II. By defining a
coefficient for each attribute, a score function will be defined
as shown in Eq. 1. In the experimental results, we demonstrate
how sweeping these coefficients affects the efficacy of the
SheLL framework. Also, as one of the graph nodes attributes,
we estimate the LUT needed per each node (based on the
gate/module type)4. It leads to selecting the best logic around
the routing that fits in the eFPGA fabric (best utilization).
score = α.iDgC+β.oDgC+γ.ClsC+λ.BtwC+ ξ.EigC+σ.LUTR (1)

(3) Sub-circuit Selection: Based on the attributes, SheLL fol-
lows simple rules for selecting the best sub-circuit to be
mapped on the selected eFPGA fabric (defined as an objective
in Table II): (i) Nodes with the highest inlet/outlets are the
best choice for routing-based locking (high iDgC/oDgC), (ii)
Selected nodes should cover (indirect connection) a good
portion of the design nodes (≥ 50% node coverage) with
lower observability/controllability (low ClsC/BtwC), (iii) The
(estimated) sum of LUTs needed for the logic associated
with the selected node must fit in the eFPGA fabric available
resource (low LuTR), and (iv) Per each node selected with
high inlet/outlet, a small (but generic) logic must be involved
(high EigC). A big portion of the sub-circuit selected after this
step is from ROUTE accompanied by a small part of LGC.
(4) Decoupling Logic and Routing: For the selected sub-
circuit, the SheLL framework decouples the sub-circuit as-
sociated with the ROUTE from the sub-circuit associated
with the LGC. Since sub-circuit selection (step 3) operates
on connections and the logic around them (Fig. 3(a/c) and
3(b/d)), this decoupling will create two detached logic (LGC)
and routing (ROUTE) sub-circuits.
(5) Yosys Synthesis: In SheLL, we call Yosys twice for the
synthesis. One is for the synthesis of LGC which must be

4Instead of estimation, it can be done accurately using LUT-based Yosys
synthesis per each neighboring node/module. However, for making the flow
less time-consuming, we created an offline (estimated) database.
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mapped to the LUTs of CLBs. In this case, synthesis is done
based on LUT-based (tree of MUXes) mapping. The second
synthesis is for ROUTE which must be mapped to MUX chains
(not LUTs). The FABulous framework allows us to map these
two sub-circuits separately using nextPNR [19].
(6) eFPGA Creation and Mapping: Once the synthesized
(LUT-based LGC and MUX-based ROUTE) sub-circuits are
ready, we use FABulous and nextPNR for generating the
eFPGA fabric and mapping these synthesized sub-circuits into
the CLBs and MUX chains, respectively. The fabric size will
be determined based on the estimated LUTs, MUXes, and
other resources required for the synthesized sub-circuits.
(7) eFPGA Fit Check: Although the eFPGA fabric size will be
determined based on the estimation of all resources required
for ROUTE and LGC subcircuits, it is possible that the eFPGA
will not be large enough to map the subcircuits due to routing,
mapping, and placement constraints. SheLL switches back to
step 6 to select a larger fabric if it does not fit5.
(8) Shrinking Reconfigurability and Size: Once the FABulous
successfully maps the ROUTE and LGC sub-circuits to the
fabric, the SheLL framework will shrink the reconfigurability
based on the generated bitstream. In this step, part of the
resources (MUX chains, LUTs, and FFs) not used for ROUTE
and LGC sub-circuit will be removed (physically) based on the
bitstream value. This is for reducing the possibility of applying
any form of pre-processing for guessing the key values without
any attack (e.g., removal of combinational stateful cycles [11]).

V. EXPERIMENTAL RESULTS AND EVALUATION

To evaluate the efficiency and resiliency of ROUTE-oriented
yet LGC-based redaction via the SheLL framework, we tar-
geted a RISC-V-based SoC as well as a few individual IPs
listed in Table III. We utilized both OpenFPGA [13] and
FABulous [19] for generating eFPGA fabrics using open
Skywater 130nm process [24]. The SheLL framework is built
in Python, and the Verilog-related scripting around the eFPGA
tool (e.g., decoupling ROUTE from LGC) has been done using
PyVerilog framework [25]. The experiments include synthesis,
verification, and physical design, which were carried out using
Cadence Genus, Jaspergold, and Innovous, respectively (using
the Skywater 130nm std library).

First, to show how the SheLL framework applies the
redaction efficiently, we compared four different scenar-
ios: (i) no-strategy redaction using OpenFPGA [10], [11],
(ii) module/cluster filtering-based redaction using OpenFPGA

5Based on the output log of the eFPGA automation tool (FABulous and
NextPNR), the type of shortage (resources type) will be determined, and the
SheLL framework scripts it to expand the fabric size as needed.

TABLE III: Specifications of the selected Benchmark Circuits.

Benchmark Description # of # of Input ∼ # of Output
Modules Pins Pins

PicoSoC Size-Optimized RISC-V CPU 12 8-64 8-96
AES AES Encryption/Decryption 11 16-128 16-128
FIR Finite Impulse Response Filter 7 32-128 16-128
SPMV Sparse Matrix Vector Multiplication 16 8-32 8-64
DLA Lightweight DLA-like Accelerator 4 64-256 64-256

[12], (iii) no-strategy redaction using FABulous, (iv) SheLL
(ROUTE-oriented yet LGC-based) using FABulous. Table IV
shows the targeted sub-circuit(s) for redaction (TfR) and the
normalized overhead comparison in terms of area, power, and
delay (A/P/D) for these scenarios. In SheLL, the sign ”a→b”
means the connection (ROUTE) between a/b is targeted for
redaction. Please note that all these fabrics are tested using
cyclic-reduction+SAT attack [26], and with a timeout of 48
hours, none of them were broken. According to these numbers,
compared to other scenarios, SHeLL reduces the overhead
by 53% (no-strategy in OpenFPGA), 55% (module/cluster
filtering-based in OpenFPGA), and 67% (no-strategy in FAB-
ulous), respectively, in terms of area, power, and delay. The
delay overhead improvement specifically shows how MUX
chains of eFPGA fabric can be used for ROUTE with less
configurable cells. Also, if the TfRs of cases 1-3 were similar
to that of case 4, this improvement was better (see Table V).

In steps (2-3) of the proposed framework, we engage a
set of attributes (graph-based and circuit-based) for the best
sub-circuit selection. Table VI shows why the objectives for
these attributes are defined as listed in Table II (particularly for
minimizing the overhead). In this study, for 6 attributes (iDgC,
oDgC, ClsC, BtwC, EigC, and LUTR), being high/low (h/l)
for the coefficient means the best/worst choice w.r.t. the
attribute. For instance, high LUTR means that for LGC the
sub-circuit with the highest required LUT estimation will be
selected. As shown, {h,h,l,l,h,l} can achieve the best results
that are used as objectives in SHeLL (Table II). Future work
will explore these attributes more quantitatively and more
heuristically (e.g., use of (M)ILP, GA, or ML)

One crucial constraint that must be followed in the SheLL
framework is that LGC must be close (direct connection) to
ROUTE. This constraint also significantly contributes to the
overhead reduction. Table VII shows different scenarios in
terms of correlation between LGC and ROUTE. As shown,
once the LGC and ROUTE are not directly correlated (non-
neighboring parts), eFPGA routing and placement faces a
huge overhead due to the back-and-forth inlet/outlet (+ extra
pins) required for this form of mapping. But, once they are
connected, it minimizes the routing fabric within the eFPGA
for these two parts (i.e., between CLBs and ROUTEs).

VI. CONCLUSION AND FUTURE WORK

This paper presented SHeLL, an overhead-efficient au-
tomatic framework for eFPGA-based IP/SoC redaction. In
SHeLL, routing-oriented yet logic-based parts of the design are
analyzed and selected for redaction using FABulous eFPGA
automation framework and MUX chains. This significantly
reduces the overhead (compared to other eFPGA-based redac-
tion techniques) while the resiliency is still guaranteed by
benefiting from eFPGA fabric. Our flow shows how eFPGA
optimization could be done specifically for security (redaction)
purposes. The SHeLL framework defines a set of topological
attributes of the circuit that directly affect the overhead of
eFPGA-based redaction, whose further investigation can lead
to a suited fine-grained redaction at acceptable overhead.
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TABLE IV: Comparative (Normalized) Overhead in eFPGA-based IP Redaction (All cases are Resilient against SAT (Timeout set to 48 hours)).

Benchmark
Case 1 [10], [11]: Case 2 [12]: Case 3: Case 4:

No-Strategy via OpenFPGA Filtering via OpenFPGA No-Strategy via FABulous Proposed SheLL (ROUTE then LGC) via FABulous

TfR A P D TfR A P D TfR A P D TfR A P D

PicoSoC /_mem_wr 1.74 1.95 2.11 /_mem_wr 1.87 1.97 2.28 /_mem_wr 1.71 1.88 1.94 /_mem_wr→picorv32.mem_wr 1.39 1.45 1.47
+ /_regs_rdata + /_regs_rdata + /_mem_wr_en

AES /_addround_last 2.11 2.34 3.15 _addround_last 2.07 2.33 3.25 _addround_last 1.98 1.94 2.22 /_key_sch→top.addround 1.38 1.51 1.55
+ /_shrow_last + /_shrow_last + /_addround_xor

FIR /_ternary_addi 2.97 3.11 4.02 /_ternary_addi 3.17 3.21 4.14 /_ternary_addi 2.89 2.99 3.23 /_multj →_addi 1.66 1.77 1.82
+ /_ctrl_valid + /_ctrl_valid + /_ctrl_valid

SPMV /_ind_array_inc 1.57 1.73 2.61 /_ind_array_inc 1.76 1.88 2.74 /_ind_array_inc 1.94 2.03 2.88 /_multj →_sum 1.36 1.41 1.52
+ /_len_check + /_len_check + /_len_check

DLA /_active_check 1.41 1.57 2.34 /_active_check 1.55 1.72 2.66 /_active_check 1.60 1.74 2.44 /_DDRj →_PEj 1.29 1.33 1.40
+ /_drain_PE + /_drain_PE + /_max_pool_valid

TfR: Targeted for Redaction A/P/D: Normalized Area/Power/Delay Overhead

TABLE V: Comparative (Normalized) Overhead in eFPGA-based IP Redac-
tion with Same Target (ROUTE-based) for Redaction (All cases are SAT-
Resilient).

Benchmark Case 1 [10], [11] Case 2 [12] Case 3 Case 4: Proposed

A P D A P D A P D A P D

PicoSoC 1.993 2.162 2.674 1.994 2.161 2.676 1.756 2.036 2.214 1.390 1.447 1.473

AES 2.505 2.814 3.450 2.505 2.814 3.450 2.274 2.470 2.715 1.384 1.509 1.548

FIR 3.251 3.50 4.68 3.421 3.559 4.697 3.31 3.57 3.82 1.663 1.768 1.816

Case 1 and 2 are equal as they use both OpenFPGA with no change.

TABLE VI: Attributes Used for Sub-Circuit Selection (TfR).

Benchmark

{α, β, γ, λ, ξ, σ}

c1:{l,l,l,l,h,l} c2:{h,h,h,h,h,l} c3:{h,h,l,l,l,l} c4:{h,h,l,l,h,h} c5:{h,h,l,l,h,l}
A P D A P D A P D A P D A P D

PicoSoC 1.58 1.59 1.97 1.41 1.58 1.45 1.42 1.46 1.46 1.81 1.93 1.99 1.39 1.45 1.47

AES 1.64 1.77 1.88 1.55 1.61 1.77 1.43 1.46 1.60 2.24 2.36 2.77 1.38 1.51 1.55

FIR 1.88 2.01 2.06 1.75 1.79 1.99 1.65 1.69 1.94 2.33 2.50 2.94 1.66 1.77 1.82

SPMV 1.66 1.70 1.83 1.36 1.41 1.64 1.35 1.42 1.58 1.77 1.78 2.08 1.36 1.41 1.52

DLA 1.36 1.45 1.59 1.31 1.32 1.55 1.38 1.53 1.95 1.58 1.64 2.09 1.29 1.33 1.40

h: high l:lowc c1:low degree c2:high closeness/betweenness
c3:low eigen (masking gate type [and/or]) c4:high LUT c5: SHeLL choices
strikethrough cells: Cases broken using the SAT attack.
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