
Metric Temporal Logic
with Resettable Skewed Clocks
Alberto Bombardelli

Fondaziome Bruno Kessler
Via Sommarive, 18, 38123 Povo TN

abombardelli@fbk.eu

Stefano Tonetta
Fondazione Bruno Kessler

Via Sommarive, 18, 38123 Povo TN
tonettas@fbk.eu

Distributed Real Time Systems (DRTS) are systems com-
posed of various components communicating through a net-
work and depending on a large number of timing constraints
on the exchanged data and messages. Formal verification of
DRTS is very challenging due to the intertwining of timing
constraints and synchronization and communication mecha-
nisms. Moreover, in a decentralized system, clocks may be
skewed and it is necessary to synchronize them periodically,
e.g., with the Berkeley synchronization algorithm.

In formal verification, local and global properties are typ-
ically specified in temporal logics such as Linear-time Tem-
poral Logic (LTL) [9], which is able to specify temporal con-
straints on the succession of events or exchange of messages.
When dealing with real-time systems and their properties,
one of the most popular temporal logics is Metric Temporal
Logics (MTL) [5], which enriches the temporal operators
with bounds to constrain the time intervals in which formulas
must be satisfied. Another variant, Event Clock Temporal
Logic (ECTL) [10] uses event clock constraints to specify
bounds on the time since the last time or until the next
time a formula holds. Timed Propositional Temporal Logic
(TPTL) [1], instead, uses freezing quantifiers to compare and
constrain time at different points. One of the issues to specify
and reason with MTL properties in DRTS is that clocks are not
perfectly synchronized and the nodes of a distributed system
may refer to different, possibly skewed, clocks. Distributed
variants of MTL and ECTL use local temporal operators that
refer to local times (e.g., [8]), which are independent but
usually strictly increasing.

In this paper, we consider components of DRTS that use
local clocks that are occasionally reset for synchronization and,
so, that may be not monotonic. This may happen in practice,
for example, when a component uses a local clock to send
a message periodically and the clock is sometimes updated
for synchronization with other components by means of a
distributed algorithm for approximating real-value variables
(cfr., e.g., [6]). Standard metric operators are not always
suitable to express properties in this setting. For example,
suppose to specify that a certain condition b holds for p time
units with respect to a local clock c. If c is monotonic, this
property can be formalized in a distributed version of MTL
(as in [8] for ECTL) with the formula Gc

≤pb. If c is not
monotonic, the same formula requires b to hold in all (possibly

Time0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

c

y1

y2

Fig. 1: Examples violating or satisfying Gc
≤5b when the time

reference is given by a skewed clock (orange line). The clock
has a constant drift and is reset to approximately the correct
value (black line). In order to satisfy Gc

≤5b, b must be true
in the disconnected intervals [0, 4] and [5, 16/3]. Thus, if b
is y1 ≤ 2, then the formula Gc

≤5b is satisfied, while if b is
y2 ≤ 2, then the formula Gc

≤5b is violated.
disconnected) points that are less than p (see Figure 1), which
is not what intended.

Thus, in this paper, we define alternative metric operators U
and its derivates (G,F) with a semantics that is more suitable
to specify properties of components that use skewed resettable
clocks. For example, G

c

≤pb requires a component to keep b true
for the first p time units according to its local clock c, without
relying on a clock reset, since this is not under its control.

MTL with skewed clocks and reset:: We first formally
define some assumptions on the clocks to ensure that, despite
the resets, they are diverging. We assume to be given two
constants ϵ and λ that are used as bounds for the drift and
resets, respectively.

Definition 1. A “resettable skewed clock” (henceforward,
simply, “clock”) is a variable c ∈ V such that, for every trace
π

1) for every i ∈ N, π(t)(c) is differentiable in Ii with
dπ(t)(c)

dt ∈ [1− ϵ, 1 + ϵ].
2) for every t, if t is a discrete step |π(succ(t))(c)) −

ν(t)| ≤ λ.
where ν(t) represents the value of time at step t and a

discrete step is defined as a step in which time does not pass.

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

Definition 2. Given a signature Σ, a set of variables V , and
a set of clock variables C ⊆ V , MTLSK formulas are built
with the following grammar:

ϕ :=pred | ϕ ∧ ϕ | ¬ϕ | ϕU c

Iϕ | ϕU c
Iϕ

where pred is a predicate over V , c ∈ C, and I ⊆ R.

Abbreviations are defined similarly to the standard case.
The semantics of the new operator is defined as follows:

π, t |= φU
c

Iψ ⇔ exists t′ > t, s. t.
π(t′)(c)− π(t)(c) ∈ I, π, t′ |= ψ, and
for all t ≤ t′′ < t :

π, t′′ |= φ and π(t′′)(c)− π(t)(c) ∈ I−

where I− := I ∪ (−∞, inf(I)].
U extends U to guarantee that in each point t′′ between t

and t′, the difference between c at step t′′ and c at step t is
below the upper threshold of I. Thus, surpassing the upper
threshold of I without an occurrence of ψ falsifies φU

c

Iψ
while it does not falsify φU c

Iψ since ψ might hold in a future
point after a reset.

It should be noted that with resettable clocks, the interval
domain is R instead of the positive counterpart used in MTL.
It happens because clock resets may decrease clocks. Indeed,
I is defined as a subset of R instead of R+.

Theorem 1. For all π, φ: π |= φU
c

Iψ ⇒ π |= φU c
Iψ and

If sup(I) = +∞, π |= φU c
Iψ ⇔ π |= φU

c

Iψ.
If there is no reset (weakly monotonic case)
π |= φU

c

Iψ ⇔ π |= φU c
Iψ

Moreover, if there is no drift and no reset, i.e., ϵ = 0∧ λ = 0
(perfect clocks), then

π |= φU
c

Iψ ⇔ π |= φUIψ ⇔ π |= φU c
Iψ

All proofs can be found in [2].
Compositional Reasoning Example: Consider for exam-

ple a system of two components. The first component sends
an alive signal (variable alv) to the second component unless
there is a fault (variable f). The second component monitors
the alive signal and, if absent, raises an alarm (variable alm).
Globally, we expect that if there is a fault, an alarm is
triggered in due time. The components use clocks c1 and c2,
while the global clock is c. The compositional reasoning is
formalized with the following formula: (G(f → Gcl1

≤p¬alv)∧
G(Gcl2

≤p¬alv → (F cl2
≤p alm))) → G(f → F cl

≤palm)

The formula is valid if the clocks are not skewed. Let us
suppose instead that they are skewed and that the maximum
drift between the local clocks and the global one is r. Then, the
formula is valid if we add safe margins to the bounds to take
into account the drift as follows: (G(|c−c2| ≤ r)∧G(|c−c1| ≤
r) ∧G(f → G

cl1

≤p¬alv) ∧G(G
c2
≤p−4r¬alv → (F

c2
≤palm))) →

G(f → F
c

≤p+2ralm)

Related work: Various works customized the modal op-
erators of temporal logics to better suit the specification of
DRTS. TPTL was extended in [12] by using explicitly multiple
local clocks and supporting inequalities to express constraints
on the precedence between local clock readings. In [8], a
distributed variant of ECTL is proposed. Similarly, [7] defines
a distributed modal logic where the time varies independently
in each component of the system, represented by a network of
timed automata. In all these works, local times are assumed
strictly increasing, thus, not addressing the semantic issues of
the temporal operators when the time is not monotonic.

The problem of modelling DRTS with drifting and synchro-
nized clocks was considered in [11], where specific patterns of
timed automata were proposed and verified. This work focuses
on the modelling of clock drifts and synchronizations, but does
not consider the specification of timed properties that refer to
skewed synchronized clocks.

The satisfiability of MTL and TPTL over non-monotonic
time has been studied in [3] in the context of data words,
where timed words are considered a special case. However,
the authors used the standard operators of MTL, without
considering the semantic issues that we highlighted.

Last, we mention [4], which focuses on runtime verification
of MTL formulas in a distributed system. Here, the authors
address the problem of monitoring a global property on all
traces that are compatible with a given sequence of local
observations with timestamps taking into account the possible
drift of local clocks. Thus, the metric operators are not, as in
our case, used in local properties and related to local clocks.

REFERENCES

[1] R. Alur and T. A. Henzinger. A Really Temporal Logic. J. ACM,
41(1):181–204, 1994.

[2] A. Bombardelli and S. Tonetta. Metric Temporal Logic with Resettable
Skewed Clocks - Extended version with proofs. Available at https:
//drive.proton.me/urls/D5Y7DARN3M#6io5si7nuH1E.

[3] C. Carapelle, S. Feng, O. F. Gil, and K. Quaas. Satisfiability for MTL
and TPTL over Non-monotonic Data Words. In LATA, volume 8370 of
LNCS, pages 248–259, 2014.

[4] R. Ganguly, Y. Xue, A. Jonckheere, P. Ljungy, B. Schornsteiny,
B. Bonakdarpour, and M. Herlihy. Distributed Runtime Verification
of Metric Temporal Properties for Cross-Chain Protocols. CoRR,
abs/2204.09796, 2022.

[5] R. Koymans. Specifying real-time properties with metric temporal logic.
Real-Time Syst., 2(4):255–299, oct 1990.

[6] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
[7] J. J. Ortiz, M. Amrani, and P. Schobbens. MLν : A Distributed Real-

Time Modal Logic. In NFM, pages 19–35, 2019.
[8] J. J. Ortiz, A. Legay, and P. Schobbens. Distributed Event Clock

Automata - Extended Abstract. In CIAA, pages 250–263, 2011.
[9] A. Pnueli. The temporal logic of programs. pages 46–57, 09 1977.

[10] J. Raskin and P. Schobbens. The Logic of Event Clocks - Decidability,
Complexity and Expressiveness. Journal of Automata, Languages and
Combinatorics, 4(3):247–286, 1999.

[11] G. Rodrı́guez-Navas and J. Proenza. Using Timed Automata for
Modeling Distributed Systems with Clocks: Challenges and Solutions.
IEEE Trans. Software Eng., 39(6):857–868, 2013.

[12] F. Wang, A. K. Mok, and E. A. Emerson. Distributed Real-Time System
Specification and Verification in APTL. TOSEM, 2(4):346–378, 1993.

	Select a link below
	Return to Previous View
	Return to Main Menu

