
An Efficient Fault Injection Algorithm for
Identifying Unimportant FFs in Approximate

Computing Circuits
Jiaxuan Lu

Nagoya University
jiaxn lu@ertl.jp

Yutaka Masuda
Nagoya University
masuda@ertl.jp

Tohru Ishihara
Nagoya University
ishihara@ertl.jp

Abstract—Approximate Computing (AC) saves energy and im-
proves performance by introducing approximation into computa-
tion in error-torrent applications. This work focuses on an AC
strategy that accurately performs important computations and
approximates others. In order to determine which calculations are
unimportant, we propose a novel importance evaluation algorithm,
in which the key idea is a two-step fault injection to extract
the near-optimal set of unimportant flip-flops in the circuit.
The proposed algorithm reduces the complexity of architecture
exploration from an exponential order to a linear order with-
out understanding the functionality and behavior of the target
application program.

Index Terms—approximate computing, importance evaluation,
fault injection

I. INTRODUCTION

Over the last decade, approximate computing (AC) [1]–
[4] has attracted much attention as a post-Moore computing
paradigm, enabling further power saving, area reduction, and
performance enhancement of integrated circuits. AC relaxes
the conventional policy that all computations are performed
accurately and introduces approximation into the computation.
This work focuses on an AC strategy that accurately performs
important computations and approximates others. To make AC
circuits practical, we need to determine which computation
is how important carefully and thus need to appropriately
approximate the unimportant computation for maintaining the
required quality.

Here, as one of the most popular techniques in the depend-
able computing field, fault injection (FI) has been widely stud-
ied [5]–[9]. FI refers to the operation of introducing fault infor-
mation into a circuit. The algorithm, computational mechanism,
and circuit component vulnerable to faults can be evaluated
by observing whether the fault information induces abnormal
behaviors. Originating from its simplicity and flexibility, FI can
be widely deployed for importance evaluation. For example,
Constantin et al. proposed a method using dynamic timing
analysis and instruction set level FI to assess the impact of
delay faults on AC circuits [10].

Motivated by the achievements of FI for importance eval-
uation, this paper tackles to evaluate the importance of com-
putation in AC circuits using FI. This work focuses on the
importance at the flip-flop (FF) level, which is defined as
”how much the computational quality degrades when the ap-
proximation is applied for the FF.” One naive approach is to

perform FI for all combinations of FFs, estimate the importance
of each combination, and derive unimportant FFs. However,
this is not feasible since the number of combinations explodes
exponentially for the number of FFs.

In this paper, we propose a novel importance evaluation
algorithm in which the key idea is a two-step FI. In the first
step, we perform the FI simulation for each FF and extract the
candidates of unimportant FFs, which reduces the complexity
of architecture exploration from an exponential order to a linear
order. Considering the case that several FFs are simultaneously
approximated, the second step in the proposed algorithm further
explores unimportant FFs in a binary search manner. The main
contributions of this work include (1) the importance evaluation
methodology and (2) quantitative evaluation of area reduction
and power saving effects thanks to the design optimization for
extracted unimportant FFs.

II. PROPOSED ALGORITHM

Figure 1 shows an overview of the proposed algorithm. We
formulate the problem of extracting unimportant FFs as follows:
The inputs for this problem are one pre-AC circuit having NFF

FFs and the constraint of computational quality (Qualitymin).
The output is a list of unimportant Nunimp FFs. The objective
of this problem is to maximize Nunimp in order to amplify the
benefit of AC. Note that this work assumes the FI simulation
that the value of selected FFs is always fixed with user-defined
constant values.

The proposed algorithm derives unimportant FFs with the
two-step FI. In the first step, candidates of unimportant FFs
are extracted by performing the FI simulation on each FF.
After each FI simulation, the computational quality is derived
and compared with the constraint of Qualitymin. If the quality
satisfies the constraint, we regard the FF as an unimportant
candidate. Thus, the first step extracts Ncand

unimp candidates of
unimportant FFs with NFF times FI simulation.

In the second step, we extracted Nunimp FFs from Ncand
unimp

FFs in a binary search manner. Specifically, each FI simulation
in the second step performs the FI to Nunimp FFs, not one FF
in the first step. Note that Nunimp is swept in binary search
manner between 0 and Ncand

unimp. Therefore, in the second step,
the required number of FI simulations is (⌊log2(Ncand

unimp)⌋+1)
times at most, whose overhead for the first step is quite small.
In summary, the proposed algorithm reduces the complexity of

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA 

	



��������

�	
������

���������

�����������	
	������

��
��������� �������	
���

������

�

���������	��
������������	�����������	���
����� �

��	
���

������

��������

�	
������

���������

�
�
�������
�
��
��


����������������
�

��	
��������

��	
��������

��
��������������������� ��

��
���������� ���

��
�������� �������! "

����������
����������������
�������� �

Fig. 1. Overview of the proposed algorithm with the two-step FI.

architecture exploration without understanding the functionality
and behavior of the target application program.

III. EXPERIMENTAL EVALUATION

This section evaluates the importance of FFs in a case study
of an image processing accelerator and discusses the area
reduction and power saving effects thanks to the approximation
for extracted unimportant FFs.

As the target circuit, we used the Sobel Filter in S2CBench
[11] and designed a 16-way Sobel accelerator. We selected
9 images from SIDBA [12] as the workload, chose the Peak
Signal-to-Noise Ratio (PSNR) as the computational quality, and
prepared 3 PSNR constraints of 20 dB, 30 dB, and 50 dB. The
PSNR of the output image can be calculated by referring to the
golden outputs from the circuit. The lower PSNR indicates that
inserted errors highly degrade the output image quality, i.e., the
inserted FF has higher importance.

Firstly, the pre-AC circuit and 3 images are given to the
proposed algorithm. We used Verilator as the RTL FI simulator
and utilized FI operation that always fixes the input to target
FF to ”0”. Then, in each of the 16 Sobel instances, the first step
identifies 11 FFs and 19 FFs as candidates of unimportant FFs
for the cases with constraints of 30 dB and 20 dB, respectively.
With the most strict constraint, i.e., 50 dB PSNR, the algorithm
concludes that no unimportant FFs exist. This is an interesting
observation since it can suggest the designer to give up the
approximation if necessary. Through the second step, 7 FFs
and 13 FFs in each Sobel instance are finally extracted as
unimportant FFs for the cases with constraints of 30 dB and 20
dB, respectively. For extracted FFs, we applied the simple AC
technique that truncates the input to unimportant FFs to ”0”.

Next, we perform the quality validation with different 6
input images to discuss the importance of the second step of
the proposed algorithm. Table I shows the summary of PSNR
comparison results. We can see that the comparative approach
violates the PSNR constraint, whereas the proposed algorithm
satisfies it. From these results, we experimentally confirmed
that the second step contributes to mitigating the optimistic
property in the importance evaluation.

Finally, the power dissipation and circuit area are compared
to the baseline circuit under the ASIC-based and FPGA-based

TABLE I
PSNR COMPARISON RESULTS. THE COMPARATIVE APPROACH TRUNCATES

FFS EXTRACTED WITH THE FIRST STEP OF PROPOSED ALGORITHM.

image PSNR 30 dB const. PSNR 20 dB const.

name PSNR[dB]
(Proposed)

PSNR[dB]
(Comparative)

PSNR[dB]
(Proposed)

PSNR[dB]
(Comparative)

Aerial 32.2 25.2 22.7 12.1
Boat 31.4 24.1 21.8 10.6
Clock 31.1 23.4 21.4 11.2
House1 31.2 24.1 22.2 9.0
Jelly beans 30.0 22.8 20.8 10.5
Text 30.7 23.9 22.1 11.3

Fig. 2. (a) Area reduction and (b) power saving effects under the ASIC
implementation and (c) power saving effects under the FPGA implementation
thanks to the AC for unimportant FFs extracted with the proposed algorithm.

implementation using logic synthesis tools (Synopsys Design
Compiler and Xilinx Vivado). Figure 2 shows the comparison
results. From Fig. 2, we can see the significant area reduction
and power saving effects both under the constraint of 20 dB
and 30 dB. For example, from Fig. 2(a)(b), the circuit area
and power dissipation are saved by 29.6% and 35.8% under
the ASIC-based implementation with the PSNR constraint
of 20 dB. Similarly, from Fig. 2(c), we can see that the
dynamic power and total power dissipation under the FPGA-
based implementation are saved by 37.0% and 11.9%. There-
fore, we experimentally confirmed that the proposed algorithm
contributes to enhancing the area and power efficiency while
satisfying the constraint. When we target FPGA to implement
the circuits found by our algorithm, the proposed algorithm can
be more general, contributing to reducing the power dissipation
of the different applications run on FPGA.

ACKNOWLEDGMENT

This work was partially supported by JSPS KAKENHI
Grant Number JP20K19767 and JST, PRESTO Grant Number
JPMJPR20M9, Japan.

REFERENCES

[1] J. Han et al., Proc. ETS, pp. 1-6, 2013.
[2] H. Esmaeilzadeh et al.,Proc. ASPLOS, pp. 301-312, 2012.
[3] R. Hegde et al., IEEE TVLSI, vol. 9, no. 6, pp. 813-823, 2001.
[4] A. B. Kahng et al., Proc. ASP-DAC, pp. 825-831, 2010.
[5] N. J. Wang et al., Proc. DSN, pp. 61-70, 2004.
[6] F. F. D. Santos et al., Proc. DSN, pp. 292-304, 2021.
[7] N. J. Wang et al., IEEE TDSC, vol. 3, no. 3, pp. 188-201, 2006.
[8] R. Venkatagiri et al., Proc. MICRO, pp. 1-14, 2016.
[9] Y. Zhang et al., Proc. DATE, pp. 60-63, 2022.

[10] J. Constantin et al., Proc. DAC, pp. 1-6, 2016.
[11] B. C. Schafer et al., IEEE Embedded Systems Letters, vol. 6, no. 3, pp.

53-56, 2014.
[12] Signal and Image Processing Institute, https://sipi.usc.edu/database/.

!

!


	Select a link below
	Return to Previous View
	Return to Main Menu


