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Abstract—Research in the field of brain-inspired HyperDimen-
sional Computing (HDC) brings orders of magnitude speedup to
both Machine Learning (ML) training and inference compared
to deep learning counterparts. However, current HDC algorithms
generally lack uncertainty estimation On the other hand, existing
solutions such as the Bayesian Neural Networks are generally
slow and lead to high energy consumption. This paper proposes
a hyperdimensional Bayesian framework called DropDim, which
enables uncertainty estimation for the HDC-based regression
algorithm. The core of our framework is a specially designed
HDC encoder that maps input features to the high dimensional
space with an extra layer of randomness, i.e., a small number of
dimensions are randomly dropped for each input. Our key insight
is that by using this encoder, DropDim implements Bayesian
inference while maintaining the efficiency advantage of HDC.

I. INTRODUCTION

In the past ten years, research in the area of deep learning

observed the fast growth of Deep Neural Network (DNN)

based algorithms. However, the complexity of DNNs and

the computation cost of using such networks have also been

increasing significantly. This inevitably leads to a surge of

power consumption for training and inference

Therefore, brain-inspired computing methods such as HDC

are gaining traction because of their better efficiency. In par-

ticular, HDC mimics human brain functionalities by learning

in high-dimensional spaces with lightweight operations [1].

To enable HDC operations, inputs from the original low-

dimensional space are encoded to vectors with thousands of

dimensions, i.e., hypervectors. Recent research brings this

advantage of HDC to different kinds of learning tasks, and

it enables low-latency learning with less power consumption.

However, we observed that HDC-based ML algorithms

still lack the ability to provide uncertainty along with reg-

ular prediction. This ability is a must for safety-critical tasks

where the importance of model trustworthiness and robust-

ness are particularly emphasized. Different from regular ML,

Bayesian inference parameters have a probability distribution

instead of a single value. The advantage of Bayesian statistics

is that the posterior predictive distribution accounts for the

noise of observation, model stochasticity, and prior knowledge

about the task. Prior research works try to incorporate this

advantage into the DNN learning process and propose several

Bayesian Neural Networks (BNN) algorithms. Unfortunately,

existing BNN algorithms bring more computations and larger

energy costs in the learning, compared to already complex

DNNs. We believe the lightweight HDC with uncertainty

estimation is a more efficient alternative to existing BNN

algorithms. We find that introducing random noise to the

HDC encoding process effectively approximates the posterior

distribution. This functions as the key to Bayesian inference

while keeping the whole framework as lightweight as possible.

We propose DropDim, a hyperdimensional Bayesian frame-

work that enables efficient uncertainty estimation for HDC-

based regression. Our contributions includes:

• Through DropDim, we overcome a major limitation in

existing HDC-based ML methods, i.e., the inability to

provide uncertainty estimation. Previously, without model

confidence, the usability of HDC regression algorithms is

limited in safety-critical tasks.

• Our novel HDC encoder includes perturbations via ran-

domly dropped dimensions to propagate the uncertainty esti-

mation in our DropDim framework. It avoids complications

to the original regression and simplifies the training.

II. RELATED WORK

Bayesian Inference: There are multiple challenges in mak-

ing modern ML algorithms Bayesian, especially if they are

deep. Markov Chain Monte Carlo (MCMC) methods that

approximate and generate samples from desired posterior

distributions [2] are hardly scalable, memory-hungry, and

time-consuming. Stochastic Variational Inference (SVI) learns

a tractable variational distribution for the posterior but it

requires significant training time and computational costs [3].

MC-Dropout [4] alleviates this overhead by leveraging neural

network dropout layers but the computationally heavy DNN

training process significantly increases its energy consumption.

Hyperdimensional Computing: Prior works propose HDC-

based algorithms for various real-world applications [5]–[8].

These works have shown that HDC-based ML achieves notable

energy savings and speedups in both training and testing,

making HDC suitable for machine learning on CPUs even

with tight power budgets.

III. DropDim: ENABLING EFFICIENT BAYESIAN HDC

Fig. 1 presents an overview of our DropDim, and com-

pares it with the non-Bayesian hyperdimensional regression

algorithm. As shown in Fig. 1(a), regular regression gives

point estimates while DropDim in (b) approximates predictive

distribution through a noisy HDC Bayesian encoder.

A. Hyperdimensional Regression

Vector Function Architecture (VFA) [9] defines a func-

tion space where functions can be represented using high-

dimensional vectors. The VFA representation for f(x) is as
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Fig. 1. Overview of DropDim

follows: f(x) =
∑

k αkK(x − xk) =
∑

k αkϕ(xk)ϕ(x) =

yTk ϕ(x) where yk is the function representation and ϕ is

the mapping for the kernel K. However, the exact mapping

ϕ is often intractable. Work in [10] proposes that with a

large but finite dimensional mapping Z, the shift-invariant

kernel K can be approximated using inner products. For

example, the following Z approximates the RBF kernel:

ZD(x) =
√

2

D
cos(H⃗x + B⃗). H⃗ is a vector of dimension D,

randomly sampled from standard Gaussian distribution, and B⃗

is sampled from the uniform distribution.

In HDC-based regression, we construct a hyperdimensional

representation of the function, similar to yk, with the mapping

ZD: R⃗ =
∑

k αkZD(xk). We refer to this mapping ZD as an

HDC encoder that outputs encoded hypervectors ZD(x). The

representation R⃗ shows that we can approximate the function

through a weighted sum of encoded training samples. We refer

to R⃗ as the model hypervector, and the inference is simply the

inner product between the model and encoded hypervector. To

update the model hypervector R⃗, we use prediction error as

the weight for the corresponding encoded input.

B. Hyperdimensional Uncertainty Estimation

The regression mentioned above with VFA provides only

point estimates with a deterministic HDC encoder, which is

unable to inject uncertainty during training. We found that it

is effective to randomly drop dimensions in the HDC encoder

to implement stochastic perturbations. We define an encoder

matrix H = {H⃗1, H⃗2, . . . , H⃗n} with size n × D, of which

the elements are randomly generated: H⃗n ∈ ND(0, 1). The

bias is defined as: B⃗ ∈ UD(0, 2π). The main difference in

this encoder is that some of the dimensions in the encoded

output S⃗ are set to zeros or dropped. We show this modi-

fication as a randomly generated mask M⃗ with its elements

m ∈ Bernoulli(pB).
To model the uncertainty, it is crucial to learn the posterior

distribution conditioned on all training samples, which can

be defined using Bayes’ theorem. The intractable posterior

becomes the main difficulty in calculating the accurate pre-

dictive distribution. Therefore, the only way to deal with

it is by approximating the intractable posterior distribution,

i.e., variational inference. A surrogate variational distribution

q(R⃗) is used in place of the real posterior p(R⃗|x, V ). To

ensure that q(R⃗) is a good approximation, we can minimize
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Fig. 2. DropDim uncertainty estimation with different Bernoulli probabilities

the Kullback–Leibler (KL) divergence between these two

distributions. We construct a proper variational distribution

q(R⃗) in DropDim by adding a random mask in the HDC

Bayesian encoder. We observe that a noisy HDC encoder not

only perturbs the encoded results but also can be equivalently

added onto the variational distribution q(R⃗) as element drop-

ping. KL divergence can be further approximated: LKL ∝
∑

k
1

2K
(Vk − V̂ )2 + pB

2τK
||R⃗||2

2
. This can also be intuitively

understood as a likelihood function plus an extra regularization

term. They ensure that the regression will converge to the

true values, and prevent overfitting and deviating too much

from the prior distribution through the KL divergence. We

learn the DropDim HDC regression model by minimizing the

loss above. It maintains the advantage of regular HDC-based

algorithms such as the efficient training process.

Fig. 2 shows the effect of different Bernoulli probabilities on

uncertainty estimation: the range of uncertainty increases when

we tune down pB . The model is unsure about the prediction

in −3 < x < −2 due to the lack of training data. Notice that

the uncertainty is not zero even with training data because the

data contains noise during training.
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