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Abstract—This paper presents an adaptation of the well-known
normal boundary intersection (NBI) method for approximating
complete feasible performance spaces of analog integrated circuits.
Those spaces provide accurate information about all feasible
combinations of competing performance parameters in a circuit.
While the NBI-method is originally designed for computing the so-
called Pareto front of a multi-objective optimization problem only,
it can be adapted for approximating the complete performance
space with some modifications. A scalarization into single-objective
optimization problems is performed within our developed tool,
which can be connected to any Spice-based simulator. Besides
presenting the algorithm and its adaptations, the focus lies
on investigating parallelization techniques and their effect on
decreasing the computational time. Numerical experiments show
the computed approximations of two- and three-dimensional
performance spaces of several OTAs and compare the efficiencies
of different parallelization schemes.

Index Terms—analog circuits, performance space, optimization

I. INTRODUCTION

Multi-objective optimization strategies have become increas-
ingly important and useful for the practical design of integrated
analog circuits in the last decades. Not only do they allow
to simplify and accelerate the design process, but also do
they make design decisions less dependent on the experience,
which is necessary to satisfy the idea of an analog synthesis
approach [1]. Various methods and software tools are available
for automated numerical sizing, centering, and modeling of
circuits, e.g. [2]. With Pareto optimization [3], we will provide a
suitable method for modeling the complete performance space
as a tool for initial decisions for analog system designers or
automated synthesis approaches.

In analog circuits, the performance parameters (e.g. band-
width, power consumption, area consumption) typically com-
pete with each other. Therefore, an optimal compromise for
those criteria is aimed for. However, there is not one com-
bination of design parameters, also called utopian point,
that optimally satisfies all performance criteria simultaneously.
Therefore, a set is considered, where no point is dominated by
another. This set is called Pareto front. The normal boundary
intersection (NBI) method [4] is a reliable deterministic method
for approximating this set. For each Pareto point, a circuit
sizing process must be performed. In [5], NBI is used for
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approximating the Pareto front with gradient-based optimiza-
tion methods. The successive NBI-method [6] establishes an
improved iterative approach to generate the entire Pareto front
including its boundary regions. Further modifications to the
NBI-method were presented in [7]–[9]. Besides gradient-based
methods, also stochastic optimization strategies were applied
in the literature, like simulated annealing [10], particle swarm
optimization [11], [12], or evolutionary approaches [13], [14].
Furthermore, there are combinations of both gradient-based
solvers and stochastic solvers, e.g. Bayesian optimization [15].

This work focuses on the description, adaptation, and ap-
plication of the NBI-method for approximating the complete
feasible performance space (CFPS), which provides a pre-
sentation of the set of all attainable performance parameter
combinations, compare Fig. 1. Complete performance space
models are well-suited for comparing circuit topologies and
creating efficient high-level simulation models. Such models are
very useful for analog and mixed-signal designers of systems-
on-chip, especially while making topology decisions. Moreover,
these models can support efficient system-level simulations,
since they deliver information about circuit property boundaries
with the accuracy of a transistor-level simulation. With this,
also a topology proposal that meets the specification for the
system-level task can be given to the analog designer. Even
if design experience is available, the presented models can
support the analog designer with a visualization of the influence
of technical restrictions [16]. This can contribute to a better
objective evaluation of the circuit and facilitate the decision to
switch to topologies with lower complexity. In addition, these
models can be useful for analog synthesis algorithms to perform
the initial topology selection step.
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Fig. 1. Two-dimensional performance spaces of OTAs with different transistor-
level topologies, computed automatically by the presented tool.
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The Complete Feasible Performance Space

The goal of this work is the approximation of the entire
performance space. Compared to the Pareto front, the effort
increases exponentially, e.g. fourfold for the two-dimensional
case and eightfold for the three-dimensional case. While multi-
objective optimization typically aims for computing or approx-
imating the Pareto front, there are good reasons for computing
the CFPS:

(1) Analog integrated circuits are never designed as stand-
alone components and always used in a system. Therefore, it
does not make sense to design, e.g., an amplifier for maximum
gain, as this would affect the stability of the system. In addition,
process variations during chip fabrication lead to technology-
dependent deviations from nominal performance values. There-
fore, small perturbations may lead to infeasible circuit designs.
The logical consequence is that a safety margin to the Pareto
front should be maintained. For this, however, the knowledge
about the shape of the region dominated by the Pareto front is
important.

(2) To make reliable topology decisions at early design
stages, CFPS-supported system-level simulations can help [17],
e.g., to decide whether a topology of an analog circuit part is
suitable for the application and to match system components
to each other. Therefore, we need to know what properties can
be achieved with each component. To create such simulation
models (e.g. in SystemC, Matlab), the Pareto front is not
sufficient, because a description of the limitation of all other
feasible circuits is needed.

In Section II, the multi-objective optimization problem for
computing the CFPS is defined. Then, in Section III, the
focus lies on the here used, modified NBI-method, which is
explained step by step. Section IV then presents numerical
results for several OTAs as well as a discussion on the efficiency
of different parallelization schemes. A conclusion is given in
Section V.

II. THE OPTIMIZATION PROBLEM

All matrices are denoted by capital letters, e.g. H , to
distinguish them from scalars t or vectors x. All inequality
operators ≤ and ≥ are used component-wise for vectors. Sets
are written in calligraphic letters, e.g. D.

A. Multi-objective optimization

The adjustable design parameters of an analog circuit are
denoted by x ∈ Rn. These are, e.g., the channel length and
width of transistors or the dimensions of passive components
such as resistors and capacitors. They are constrained by
inequalities c(x) ≥ 0, mostly resulting from design rules of the
semiconductor fabrication process, but also from constraints
ensuring the electrical functionality of a circuit. Lower and up-
per technical limitations are considered as bounds x` ∈ Rn and
xu ∈ Rn, resp. [18] gives suggestions on reasonable constraints
for the sizing of analog circuits, which can be determined
by operating point simulations. The design parameter space
D ⊆ Rn includes all parameters, that satisfy the constraints:

D = {x ∈ Rn | c (x) ≥ 0 , x` ≤ x ≤ xu} (D)

We are interested in optimizing the performances fi(x) of
a circuit which are, e.g., gain, bandwidth, power consumption
and area consumption. These are summarized in the vector-
valued objective function F (x) = [f1(x), f2(x), . . . , fm(x)]

T.
All fi(x) are chosen such that the optimal value is obtained
by minimization. This can be achieved by a multiplication
with −1, if necessary. For all x ∈ D, the attainable objective
values F (x) form the performance space P ⊆ Rm:

P = {F (x) ∈ Rm | x ∈ D} (P)

Typically in multi-objective optimization (MOP), one would
like to compute the Pareto front (all non-dominated solutions)
by solving the following optimization problem:

min
x∈D

F (x) = [f1(x), f2(x), . . . , fm(x)]
T (MOP)

But as explained before, we aim for computing—more precisely
approximating—the entire image space P , since it represents
the CFPS of the circuit. As we will see in the following,
Problem (MOP) is also helpful for this task.

B. Scalarization of MOP
The NBI-method [4] is a numerical approach for approximat-

ing the Pareto front of multi-objective optimization problems
like (MOP). Therby, among other steps, (MOP) is decomposed
into several single-objective optimization problems (GA) like
in [19]. This method uses so-called base points b—that can lie
either inside or outside the performance space P—which are
defined as product of a matrix H and a weight vector w ∈ Rm.
The matrix H consists of two or more of the individual minima
of each fi(x) [4]. The vector w consists of m elements which
add up to one. A vector v indicates the direction of the
optimization starting from the base point b. This is done by
minimizing an additional scalar parameter t. Thus, a scalar
optimization problem is formed:

min
x∈D, t∈R

t s.t. F (x) ≤ b + tv , b = Hw (GA)

While the original version contains equality constraints, as sug-
gested in [20], the goal-attainment (GA) method [21] provides
an improved approach. Here, the constraints become inequality
constraints. With decreasing t, the intersection of F (x) and
the constraint becomes smaller until a solution point x on the
Pareto front is reached. A geometric visualization of this can
be seen, e.g., in [19].

To generate not only the Pareto front but the CFPS with the
help of scalarized problems of type (GA), we use a rotation
scheme for the constraints as introduced in [19]. Now, by using
a set of base points b with suitable directions v, the entire
boundary of the performance space P can be approximated.
This procedure is explained in detail in the following section.

III. CFPS APPROXIMATION APPROACH

A. Initialization
Each performance criterion fi(x) is individually min- and

maximized to obtain the vertices for an initial polyhedral
approximation of the CFPS:

min
x∈D

±fi(x) (1)
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Fig. 2. Image points of individual minima and maxima (left) and initial
polyhedral approximation of the performance space (right).

We denote the image points belonging to those individual
minima and maxima with f̂i and f̃i, resp. After a normalization,
the convex hull of these points yields a first approximation of
the performance space P , compare Fig. 2:

A0 = conv
{
f̂1, f̃1, . . . , f̂m, f̃m

}
For implementation, the individual minima and maxima get
renamed and numbered: f̄1, . . . , f̄2m (compare Fig. 3–5).

B. Subproblem Definition

For a successive refinement of the CFPS-approximation,
subproblems of different dimensions have to be defined and
solved (Sec. III-E). Those subproblems are described by the
convex hull S of the involved vertices and the set of their
associated indices I:

Ik,j , Sk,j = conv
{
f̄i | i ∈ Ik,j

}
, k = 1, . . . ,m− 1

All Sk,j are k-dimensional faces (vertices, edges, faces, . . . ) of
the initial convex hull A0, where j ∈ N is the numerator. The
subproblems are defined successively, starting with the highest
dimension of the faces of A0, as detailed in Fig. 3.

Fig. 3. Subproblem generation: choose face of highest dimension (A),
build subproblem (B), partition into lower dimensional subproblems without
doubles (C).

C. Base Point Distribution

The quality of the generated approximation highly depends
on the distribution of base points b on A0. Each base point
will be used to compute a solution point on the boundary ∂P
of the CFPS by solving the scalarized problem (GA) (see
Sec. II-B). We start by distributing base points on each edge
of A0 (subproblems of dimension k = 1). Depending on the
length of the edge, the number of set base points varies. In [6],
a linear program is now proposed to generate evenly distributed
base points on the faces of higher dimension k ≥ 2. While this
is an efficient method, it can only be used if the number of base
points on each edge is constant. Therefore, we use a modified
centroidal Voronoi tessellation (CVT), cf. [22].

D. Search Direction

For solving the scalarized problems (GA), next to base
points b, also suitable search directions v are needed. The
original NBI-method [4] therefore uses quasi-normal vectors
of the associated faces. But this approach only works for
approximating the Pareto front (compare also [20]). Instead, we
compute normal vectors for all faces of the highest dimension
k = m − 1 and then calculate search vectors for lower k-
dimensional faces as arithmetic mean of search vectors from
adjoining (k + 1)-dimensional faces. Fig. 4 shows search
vectors v for two 2-dimensional faces and two 1-dimensional
faces (edges) of our example from Fig. 2.
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Fig. 4. Search directions v for two faces (left) and two edges (right).

E. Solving Subproblems

Now, for each base point b with associated search direction v,
the scalarized problem (GA) has to be solved. Its solution
yields a boundary point of the CFPS. Fig. 5 presents the
execution of subproblems for the example from Fig. 2. Here,
each subproblem is executed sequentially. This procedure can
be partially parallelized as we will explain in Sec. III-G.

F. Approximation

For the final approximation of the CFPS, we use a Delaunay
triangulation—which is actually intended for convex spaces.
The Quickhull algorithm [23] provides a well-tested imple-
mentation for this, by providing a mapping of point lists for
neighborhood relations (Fig. 5). Due to the successive computa-
tion of subproblems, it is possible to store point enumerations
for each subproblem dimension k and adopt them up to the
highest dimension k = m− 1. Together with the set of all
computed boundary points of P , a triangulated approximation

!



f1

f̄1

f̄5

f̄3

f̄2
f̄4

f̄6

f2

f3 A

f̄1
f̄3

f̄6

C

B

f̄1
f̄3

f̄6

B
C

Fig. 5. Solution of subproblems: choose subproblem (A), generate evenly
distributed base points (B), solve the related scalar optimization problems (C).

of P can be created. In Fig. 6, the approximation steps for
increasing subproblem dimension k ∈ {0, 1, 2} are shown for
a mathematical example from [6, Sec. 9.1]:

min
x1,x2,x3

F (x1, x2, x3) = [x1, x2, x3]
T (Ex)

s.t. x1 · x2 · x3 ≥ 300 , x2
1 + x2

2 + x3 ≥ 119

0 ≤ x1, x2, x3 ≤ 10

In the presented tool, the number N ∈ N of base points at the
longest edge is used as a setting option to control the accuracy
of the computed approximation, i.e., the number of resulting
base points nb and therefore the number of computed boundary
points of the CFPS by solving Problem (GA). Table I shows that
with increasing N , the total number nb of computed boundary
points increases more than linearly for Example (Ex). The com-
putational time of our presented method grows proportionally
with nb—as expected.

nb,max = 6
k = 0, nb = 4 k = 1, nb = 30 k = 2, nb = 111

k = 0, nb = 4 k = 1, nb = 30 k = 2, nb = 111

k = 0, nb = 4 k = 1, nb = 60 k = 2, nb = 455

Fig. 6. Successive approximation of the image space of (Ex) with N = 6 (top
row) and N = 12 (bottom row). nb is the total number of base points b.

G. Parallelization

Once all subproblems for a dimension k are defined, the nu-
merical solution of the associated scalarized optimization prob-

TABLE I
COMPARISON OF DIFFERENT N AND RESULTING NUMBERS nb FOR (Ex).

N 2 4 6 8 10 12 14 16

nb 19 59 111 198 305 455 741 1089

CPU-time [s] 6 15 30 70 140 219 407 515

lems (GA) is independent of each other. Only the generation
of base points for subproblems of the higher dimension k + 1
depends on the computed solutions of dimension k. Therefore,
it is appropriate to compute the solutions for all k-dimensional
problems in parallel (see also [20]). Since the evaluation of
the constraints c(x) as well as the objective function F (x)
requires computational-time-intensive Spice-simulations, it is
also advisable to store all computed points. Dependent on the
number of available processes, various parallelization schemes
are possible. Thereby, the number of parallelly considered k-
dimensional subproblems as well as the number of parallelly
solved optimization problems (GA) for each subproblem can be
chosen. The efficiency of those variants will be discussed and
compared to the original sequential approach in the following
section.

IV. EXPERIMENTS

A. Application: Topology Selection

1) Example Circuits: We selected a group of similar oper-
ational transconductance amplifiers (OTA, see Table II) with
different topology complexities to show the applicability of the
presented CFPS approximation method. All OTAs have a single
amplification stage (1) with an NMOS differential pair (N). We
have varied the load type of the differential input pair, which
is indicated by capital letters. The different types are a single
current source (A), a current mirror (B), a cascode current
mirror (C), and a modified Wilson current mirror (D). It is
expected that these variations will primarily improve the gain or
increase the gain-bandwidth with respect to the Wilson current
mirror. In addition, a folded cascode stage (fc) is added to
improve gain, but at the cost of higher active area requirements.
For the computation of two-dimensional performance spaces
of the selected OTAs, gain (AV0 in dB) and gain-bandwidth
(fGBW in Hz) are chosen as performance criteria of interest.
For three-dimensional performance spaces, we add the active
area requirement (area in m2) as a third criterion.

TABLE II
SELECTION OF DIFFERENT OTA TOPOLOGIES

Key-Name Features

OTA-A-N-1 Simple current source load (A)
OTA-B-N-1 Current mirror (CM) load (B)
OTA-C-N-1 Cascode CM load (C)
OTA-C-N-1-fc Folded cascode stage (fc) with CM load
OTA-C-N-1-fc-ci Folded cascode stage (fc) with CM load and

cascode current source (ci) for the diff. input pair
OTA-D-N-1-fc-ci Folded cascode stage (fc) with CM load, improved

Wilson CM and cascode current source (ci)
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Fig. 7. Two-dimensional performance spaces for OTA topologies with N = 15
and an increasing complexity from upper left to bottom right. Load capacitance:
CL = 1pF; VDD = 3.3V; T = 27◦C; Technology: 180nm Standard CMOS.

TABLE III
INDIVIDUAL BEST PERFORMANCES FOR EACH OTA.

A B C D

best value – – – fc fc-ci fc-ci

AV0 / dB 68.3 70.8 72.6 142.5 143.2 141.9
fGBW /GHz 1.507 2.641 2.155 1.150 0.938 2.223
area / µm2 – 16.0 – – – 59.8

nb (2D) 42 48 47 50 43 42
nb (3D) – 268 – – – 197

2) CFPS Computation: First, we approximated two-
dimensional fully realizable performance spaces for all OTAs,
where gain competes with gain-bandwidth. Fig. 7 shows the
results of our developed tool with N = 15. As expected, the
CFPS increases with higher complexity of the circuit topology,
i.e., the gain increases with the complexity of the current
load and the added folded cascode, while there is no loss
in gain-bandwidth. A computation of the three-dimensional
performance spaces of an OTA with low complexity (OTA-
B-N-1) and an OTA with high complexity (OTA-D-N-1-fc-
ci) shows that the advantage of higher gain arises at the
expense of a larger active area requirement due to the higher
number of transistors, see Fig. 8 (N = 8). With the help of
two-dimensional projections of the three-dimensional CFPS,
the higher amount of required active area of the complex
folded cascode OTA can be determined. Table III depicts the
component-wise best performances for all considered OTAs as
well as the total number of computed boundary points nb for
the final approximation of each CFPS. For all computed two-
and three-dimensional approximations, a uniform distribution
of boundary points can be observed.

B. Computational Effort

The computation of the CFPS—and already of it’s Pareto
front only as, e.g., in [6, Sec. 9.2]—is extremely expensive
regarding computational time. Even for a low number of perfor-
mance criteria m ∈ {2, 3} and a coarse approximation quality,
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Fig. 8. Three-dimensional performance spaces (N = 8) for two OTAs with
different topology complexity and their two-dimensional projections.

controlled by N , the computation may take several hours up
to a few days (also depending on the circuit complexity), if no
parallelization is used. Therefore, we will use the sequential
approach (see e.g. [19]) as a baseline and show the efficiency
of different parallelization schemes for solving the generated
subproblems in the following.

1) Hardware and Implementation: For our experiments, we
use an Intel® Xeon® E5-2667 v3 CPU with 2×16 cores and
128 GB of RAM. As SPICE-simulator, Cadence® Spectre®

18.1.0.077 is used. The numerical solution of the (generally
non-convex) optimization problems (1) and (GA) is done by a
basin-hopping algorithm, which is a global optimization tech-
nique that combines a stochastic global stepping approach with
a local minimization method (SLSQP). The implementation of
the developed and presented tool is mostly done in Python 3.8.

2) Results: The computational effort is twofold. On the
one hand, depending on the choice of N (see Sec. III-F),
the number nb of base points b and, therefore, the number
of optimization problems (GA) for computing boundary points
of the CFPS grows (see also Table I). On the other hand, for
the numerical solution of each problem (GA), several SPICE-
simulations have to be done. Actually, for each iteration of
the local optimizer, two simulations are necessary: one for
evaluating the objective function and one for evaluating the
constraints. Those SPICE-simulations are time-consuming and
become more expensive with increasing complexity of the
underlying circuit.

For OTA-B-N-1 (low complexity) and OTA-D-N-1-fc-ci
(high complexity), we compute the three-dimensional CFPS
(gain vs. gain-bandwidth vs. area requirement) for N ∈ {4, 8}.
In Table IV, we compare the sequential computation with two
parallelization schemes. The first scheme (1, 8) considers one
subproblem after the other, while solving eight base points in
parallel. The second scheme (8, 8) considers eight subproblems
in parallel and solves eight base points for each subproblem in
parallel—having a total of 64 processes in parallel. The greatest
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TABLE IV
COMPUTING TIMES [HH:MM] FOR DIFFERENT PARALLELIZATION SCHEMES.

OTA-B-N-1 OTA-D-N-1-fc-ci

N scheme time nb time nb

4
(1, 1) 15:31 53 115:15 48
(1, 8) 13:41 70 58:07 43
(8, 8) 7:11 69 14:20 64

8
(1, 1) –(1) – –(1) –
(1, 8) 50:40 348 160:40 453
(8, 8) 25:03 464 23:24 286

(�,�) (parallel subproblems, parallel base points per subproblem)
–(1) computation not possible within 12 days

time gain can be achieved by the full parallelization scheme—
as expected. Compared to the sequential approach, the (8, 8)-
scheme is about twice as fast for OTA-B-N-1 and even about
eight times as fast for OTA-D-N-1-fc-ci in the low accuracy
setting N = 4. The results are even more impressive in the
high accuracy setting N = 8, since without parallelization,
the computation for neither of both OTAs was possible within
twelve days. With full parallelization, we obtained a fine
approximation for each OTA in about one day. Overall, the time
gain through (full) parallelization was larger for approximating
the CFPS of OTA-D-N-1-fc-ci. Here, due to its high complexity,
SPICE-simulations are more expensive, while the effort for the
remaining optimization process keeps similar.

Due to the fact that our modified CVT-method (see
Sec. III-C) contains stochastic elements, the number of base
points distributed on the surfaces of the CFPS-approximation
(k = 2) varies in each computation. Therefore, we also included
the total number nb of computed boundary points of the CFPS
in Table IV, since this also influences the computational time.

V. CONCLUSION

We have presented a general approach for approximating
the complete feasible performance space (CFPS) of integrated
analog circuits, which bases on the well-established normal
boundary intersection method. Thereby, we propose models for
a reliable comparison of analog circuit topologies. Designers of
mixed-signal systems can benefit from graphical information
on all attainable performance parameters. Parallel to this work,
an interactive tool with out-of-the-box functionality has been
developed for the computation and exploration of performance
spaces. It can be connected to any numerical optimization
software as well as any SPICE-simulator. The efficiency of
different implemented parallelization schemes has been shown
for real use cases. Due to parallelization, performance spaces up
to dimension three can be computed with high accuracy within
in a reasonable time. Such computations would not be possible
by applying the conventional, sequential approach. For future
works, our parallelized method also allows the computation of
higher dimensional performance spaces, where more than three
performance criteria compete.
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