
Quo Vadis Signal? Automated Directionality
Extraction for Post-Programming Verification of a

Transistor-Level Programmable Fabric
Apurva Jain, Thomas Broadfoot, Yiorgos Makris, Carl Sechen

Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, Texas, USA
{apurva.jain, thomas.broadfoot, yiorgos.makris, carl.sechen}@utdallas.edu

Abstract—We discuss the challenges related with developing
a post-programming verification solution for a TRAnsistor-level
Programmable fabric (TRAP). Toward achieving high density, the
TRAP architecture employs bidirectionally-operated pass transis-
tors in the implementation of its logic and interconnect network.
While it is possible to model such transistors through appropriate
primitives of hardware description languages (HDL) to enable
simulation-based validation, Logic Equivalence Checking (LEC)
methods and tools do not support such primitives. As a result,
formally verifying the functionality programmed by a given
bit-stream on TRAP is not innately possible. To address this
limitation, we introduce a method for automatically determining
the signal flow direction through bidirectional pass transistors
for a given bit-stream and subsequently converting the HDL
describing the programmed fabric to consist only of unidirectional
transistors. Thereby, commercial EDA tools can be used to check
logic equivalence between the transistor-level HDL describing the
programmed fabric and the post-synthesis gate-level netlist.

I. INTRODUCTION

A TRAnsistor-Level Programmable fabric (TRAP) was re-
cently developed [1] and used in the context of integrated circuit
redaction [2] to protect hardware intellectual property from an
untrusted foundry. Unlike traditional FPGAs, which implement
logic functions using Look-Up Tables (LUTs), TRAP pushes
granularity of post-fabrication programmability down to the
transistor level. TRAP claims significant reduction in area,
performance and power consumption overhead over conven-
tional LUT-based solutions, while at the same time presenting
much harder obstacles for brute-force or intelligent search-
based reverse engineering attacks to overcome [1].

Widespread adoption and utilization of this promising tech-
nology, however, requires support by commercial CAD tools
for all design-related tasks, including formal verification. This
capability is particularly important for unconventional custom
fabrics, such as TRAP, to instill confidence regarding cir-
cuit implementation correctness. While industry-standard Logic
Equivalence Checking (LEC) tools are capable of understand-
ing and handling transistor-level constructs, this capability is, in
itself, insufficient for performing formal verification of an entire
design. Indeed, describing a design at the switch level results
in a tremendous number of nodes that need to be compared
and, therefore, prohibitive time. Instead, LEC tools employ a
transistor abstraction method that converts switch-level designs
into their gate-level equivalent. Such conversion assumes that
the signal flow direction in MOS transistors is resolved and
known to the LEC tool. However, toward implementing a dense
fabric, TRAP employs various bidirectional pass transistors for
which it is challenging to determine the actual signal direction,
even if the programming bitstream is known.

This paper introduces a method which leverages the infor-
mation produced by the placer, router and bitstream generator
when mapping a design to a TRAP fabric, to generate a
signal flow graph and deduce direction across bidirectional
pass transistors. This information enables derivation of an HDL
model for a programmed TRAP fabric, which can be used by
LEC tools to mathematically assert that the Boolean expression

Fig. 1. HDL for an Unprogrammed Transistor Array (TA)

implemented by a transistor-level netlist on TRAP is the same
as the one implemented by the post-synthesis gate-level netlist.

II. TRAP ARCHITECTURE AND HDL MODELING

This section highlights the architecture and HDL of the
two core programmable components: (i) a transistor array
(TA) and (ii) an interconnect network. These components are
hierarchically arranged into a Unit, which is then replicated in
a 2-dimensional array to produce a continuous fabric. An array
of memory cells (i.e., custom SRAM) is inter-weaved with it
to store the programming bits.

A. Transistor Array
Fig.1 shows transistor-level HDL code written for two

columns of the TA. In HDL, modeling with built-in pmos/nmos
primitives requires that we define the input and output for a
transistor, while a tranif0/tranif1 construct, which is a bidi-
rectional PMOS/NMOS respectively, has no such requirement.
Hence, switches with known signal direction are modeled as
pmos/nmos, while switches for which signal direction is not
established are modeled as tranif0/tranif1.

Depending on the logic being implemented on a set of
columns in the TA, the so-called horizontal transistors can
have a signal flow in either direction (highlighted in yellow
in Fig. 1). Transistors P3 and P1 are defined as unidirectional
PMOS devices because the signal flow direction through them
is known (i.e., one node is clearly at a higher potential than
the other). However, the specific signal direction for transistor
P2 will depend on how the transistor gates are programmed in
this column; therefore, P2 must be defined as tranif0. A similar
logic is used to define transistors in the pull-down network.

B. Interconnect Network
Fig.2 shows the transistor-level HDL for one column of

the interconnect network of TRAP. Switches, shown as dots,
are NMOS pass transistors that connect orthogonal metals
(i.e., L3 and L4), controlled by the corresponding SRAM bit
(MEM[n]) at multiple locations. The signal flow direction in
the interconnect network depends on the application mapped on

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA 

	



Fig. 2. HDL for an Unprogrammed Interconnect network of TRAP

it. Hence, the bidirectional NMOS construct tranif1 correctly
represent each switch. When switches are turned ON, the two
metal layers connected by the switch share the same signal.

III. AUTOMATED DIRECTIONALITY EXTRACTION

The HDL model of the unprogrammed, TRAP fabric as de-
rived in the previous section, can be used in conjunction with a
programming bitstream to perform simulation-based validation.
However, the use of the HDL construct tranif1/tranif0, which
was necessary for modeling the bidirectional pass transistors in
the TA and interconnect network of TRAP, is not supported by
LEC tools. Indeed, in order to employ such tools, the signal
flow direction through these bidirectional pass transistors must
first be resolved, and the tranif0/tranif1 constructs must be
converted to their equivalent pmos or nmos constructs. Such
information is not available until after the device is programmed
and, even then, it is not trivial to extract.

A. Resolving Signal Direction in the Transistor Array
Depending on how such transistors are programmed (and

therefore also connected together), not only is the logic being
programmed on the fabric different, but also the direction of
how signals flow across each pass transistor is different. In-
deed, a key issue encountered in transistor-level programmable
fabrics is that, in addition to the transistors implementing the
functionality, additional permanently turned ON or OFF tran-
sistors are used in order to stitch together the logic functionality
and to delineate/isolate logic gates from the rest of the array,
respectively. To handle the latter, we developed a method,
which not only makes use of the programming bitstream but
also leverages two important observations regarding the TRAP
architecture. First, for signal integrity purposes, the maximum
number of NMOS or PMOS transistors that can be stitched
in series is small (in our case, three). Second, the location of
the output nodes in each column of the TA is pre-determined.
We categorizes horizontal bidirectional pass transistors in the
TA based on the signal that drives their gate and, accordingly,
performs the following actions:

• When the gate is OFF: When bidirectional pass transis-
tors are programmed to be are permanently off, we model
the transistor as an open circuit which is equivalent of
remove the corresponding tranif0/tranif1 construct in the
HDL code.

• When the gate is ON: When bidirectional pass transis-
tors are programmed to be permanently on, the nodes
connecting the source and drain are shorted. Therefore,
we replace the corresponding tranif0/tranif1 construct in
the HDL implementation with the primitive tran, which

connects the two nodes mentioned in its arguments, thus
effectively implementing a shorted wire.

• When the gate input is a signal: In this case, we convert
tranif0/tranif1 to a directional pmos/nmos construct by
resolving the two remaining ports as source and drain,
respectively, based on their proximity to power/output
ports to which they are connected through conducting
transistors. For example, a node connected to a power port
through an ON transistor is classified as source.

B. Resolving Signal Direction in the Interconnect Network
The regular interconnect architecture in TRAP has orthog-

onal metal lines connected via bidirectional NMOS pass tran-
sistors. To resolve their directionality and develop the HDL
that describes the programmed interconnect, we rely on the
path generated by the router for each net, a list of active
switches and a graph of the unprogrammed TRAP interconnect
architecture (II-B). To generate the HDL of the interconnect of
the programmed fabric, we select one routing path at a time
and traverses it starting from origin of the net and until it
encounters the first active switch. At that point, it determines
that the origin of the net is the driving net for the next segment.
It then continues traversing the routing path and every time
it encounters an active switch, the previous net becomes the
driving net, eventually determining independently the signal
flow path through each active pass transistor in each branch
of the path. Once the source and drain terminals of each active
switch are determined by this traversal. This method generates
the HDL for the programmed interconnect by replacing each
encountered tranif1 construct of the unprogrammed fabric with
an appropriately directed nmos. Finally, we remove all inactive
transistors from the interconnect HDL.

IV. FORMAL VERIFICATION OF PROGRAMMED TRAP
Once the signal directionality through bidirectional pass

transistors in the TA and the interconnect network of TRAP
is resolved and the tranif1/tranif0 statements of the unpro-
grammed HDL description of TRAP are replaced with appro-
priate constructs, each primary input and output is assigned
to the corresponding track on fabric. The resulting HDL de-
scribing the programmed TRAP fabric can be readily used
by commercial LEC tools. This HDL is verified against the
synthesized netlist to ensure equivalence between the desired
gate-level implementation and the actual transistor-level imple-
mentation on TRAP.

V. CONCLUSION

Towards maximizing flexibility in implementing logic func-
tions, transistor-level programmable fabrics, such as TRAP,
often employ bidirectional pass transistors. While such tran-
sistors can be appropriately modeled in an HDL and simulated
for validating the functionality of a programmed fabric, the
corresponding HDL constructs cannot be handled by LEC tools
due to their unknown signal directionality. The methodology
presented in this work resolves this limitation by automatically
extracting signal directionality of such bidirectional pass tran-
sistors in the TRAP architecture and by generating an HDL
for the programmed fabric which is accepted by LEC, thereby
enabling formal verification between a synthesized gate-level
netlist and its actual transistor-level implementation on a fabric.

REFERENCES

[1] J. Tian et al., “A Field Programmable Transistor Array Featuring Single-
Cycle Partial/Full Dynamic Reconfiguration,” in DATE, 2017.

[2] M. Shihab et al., “Design Obfuscation through Selective Post-Fabrication
Transistor-Level Programming,” in DATE, 2019, pp. 528–533.

!

!


	Select a link below
	Return to Previous View
	Return to Main Menu


