
Aiding to Multimedia Accelerators: A Hardware

Design for Efficient Rounding of Binary Floating

Point Numbers

Mahendra Rathor

Department of CSE

Indian Institute of Technology Kanpur

rmahendra@cse.iitk.ac.in

Vishesh Mishra

Department of CSE

Indian Institute of Technology Kanpur

vishesh@cse.iitk.ac.in

Urbi Chatterjee

Department of CSE

Indian Institute of Technology Kanpur

urbic@cse.iitk.ac.in

Abstract—Hardware accelerators for multimedia applications
such as JPEG image compression and video compression are
quite popular due to their capability of enhancing overall
performance and system throughput. The core of essentially all
lossy compression techniques is the quantization process. In the
quantization process, rounding is performed to obtain integer
values for the compressed images and video frames. The recent
studies in the photo forensic research has revealed that the direct
rounding e.g. round up or round down of floating point numbers
results into some compression artifacts such as ‘JPEG dimples’.
Therefore in the compression process, performing rounding to the
nearest integer value is important especially for High Dynamic
Range (HDR) photography and videography. Since rounding to
the nearest integer is a data-intensive process, hence its realiza-
tion as a dedicated hardware is imperative to enhance overall
performance. This paper presents a novel high performance
hardware architecture for performing rounding of binary floating
point numbers to the nearest integer. Additionally, an optimized
version of the basic hardware design is also proposed. The
proposed optimized version provides 6.7% reduction in area
and 7.4% reduction in power consumption in comparison to
the proposed basic architecture. Furthermore, the integration of
the proposed floating point rounding hardware with the design
flow of the computing kernel of the compression processor is
also discussed in the paper. The proposed rounding hardware
architecture and the integrated design with the computing kernel
of compression process have been implemented on an Intel FPGA.
The average resource overhead due to this integration is reported
to be less than 1%.

Index Terms—Binary Floating point, rounding to nearest
integer, hardware acceleration.

I. INTRODUCTION

Algorithms used in image and video processing are rather

computationally expensive than the trivial computer appli-

cations that could be easily catered through system ALUs.

Catering such applications often require a dedicated hardware

commonly known as hardware accelerator for enhancing the

system performance. Therefore, the high performance require-

ments entail the integrating hardware accelerators in a system-

on-chip (SoC) employed in electronic systems [1].

Nowadays, multi-exposure High Dynamic Range (HDR)

capture is becoming popular in photography and videography.

The multi-exposure HDR capture technique allows to take high

dynamic range images by capturing and then combining dif-

ferent exposures of the same subject matter. To support HDR

in photography and videography, it is desirable to represent the

sample values in floating point (FP) numbers [2]. For example,

the EXR format employed in post-processing of cinematic

material uses a 16-bit FP number representation that can

cover dynamic ranges up to 10.7 magnitudes in luminance [2].

Further, modern shading units in GPUs represent pixel data in

floating point [3]. Thereby, the application of FP numbers in

photography and videography is well acknowledged.

Recently, compression of HDR photography [2] and HDR

videography [4] have gained attention. The lossy compression

of HDR images and videos is vital to satisfy the less storage

and fast transmission requirements [5]. Typically, a quantiza-

tion step in the compression techniques consists of truncation

followed by rounding operation. However, recently, photo

forensic of JPEG images [6] revealed that the compression

artifacts may incur if the appropriate FP rounding mode is

not chosen. For example, using the round up or round down

modes incur a single darker or brighter pixel in 8 × 8 pixel

blocks, which is termed as a dimple. This kind of compression

artifact is also prevalent in commercial cameras [6]. Therefore,

rounding of FP numbers to the nearest integer is desirable in

the compression process.

A typical compression kernel performs DCT transforma-

tion and quantization steps. In the quantization stage, FP

multiplication/division is followed by rounding to the closest

integer. Since rounding is a data-intensive task which is

performed on each quantized pixel, the hardware realization

of FP rounding to the closest integer is important to achieve

enhanced performance. Further, area and power consumption

are also critical parameters of a hardware accelerator. Hence,

designing an area-power efficient and low-latency architecture

generalized for rounding of FP numbers to the nearest integer

is vital.

In the literature, Tsen et al. [7] have proposed rounding

hardware design for decimal FP arithmetic for the conventional

rounding modes. However, it does not present the hardware for

binary FP numbers rounding unlike the proposed approach.

Moreover, the existing compression framework is amenable

to the binary FP arithmetic as it supports a larger range of

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

numbers in contrast to the decimal FP arithmetic. To the

best of our knowledge, the hardware acceleration of binary

FP numbers rounding to the nearest integer value has not

been explicitly discussed so far. Therefore, this paper caters

two main issues: (1) a low latency and efficient hardware

architecture design for the rounding process of FP numbers to

the nearest integer value, (2) integration of rounding hardware

module with the design process of a compression kernel, to aid

multimedia accelerators for achieving enhanced performance.

In summary, the main contributions of this paper are high-

lighted as follows:

• This paper presents an algorithmic flow of rounding a given

FP number to the nearest integer value. The proposed idea

of rounding is extendable to rounding of single and double

precision FP numbers as well, without making substantial

changes in the proposed algorithm.

• This paper also presents a basic low latency register transfer

level (RTL) circuit design for rounding the FP number to

the nearest integer value.

• Next, we present an optimized architecture to further reduce

area and power consumption. The rounding hardware has

been implemented and functionally validated on an FPGA.

• Finally, we present an integration flow of the proposed

scheme with the computing core of compression process

used in image/video compression applications. The inte-

grated design is also implemented on a FPGA platform to

analyze the resource overhead which is found to be less than

1%.

The rest of the paper is organized as follows. Section II

presents the proposed FP number rounding algorithm, its

hardware realization and the integration with the compression

kernel design flow. Further, Section III presents experimental

results and analysis and finally section IV concludes the paper.

II. PROPOSED FLOATING POINT NUMBER ROUNDING

ALGORITHM AND ITS HARDWARE REALIZATION

This section first discusses the basic intuition behind the

proposed approach of rounding a FP number to the nearest

integer value. Second, we present the flow of the proposed

rounding algorithm with a demonstrating example. Third, we

present a hardware architecture for the proposed FP rounding

process and a potential interconnect hardware optimization

into it. Fig. 1 shows a generic block diagram of the rounding

algorithm for the 16-bit binary FP numbers, where bs, be[4 : 0]
and bm[9 : 0] denote the sign, exponent and mantissa part of

the input FP number; cs, ce[4 : 0] and cm[9 : 0] denote the

sign, exponent and mantissa part of the output FP number.

A. The Basic Intuition of the Proposed Rounding

Let us assume a floating point number to be represented as

[D.F] where D represents the integer part and F the fractional

part. As discussed in Section I, for rounding to the nearest

integer, if 0 ≤ F < 5, we choose the number to be rounded

down and if F ≥ 5, then it is rounded up. The basic intuition

of our proposed FP rounding operation to the nearest integer

leverages the dynamic range and precision feature of the FP

Sign bit

determination logic

Exponent and Mantissa

Field determination logic

bs be[4 : 0] bm[9 : 0]

ce[4 : 0] cm[9 : 0]cs

Fig. 1. Generic Logic blocks of proposed FP rounding to nearest integer

TABLE I
EXPONENT AND MANTISSA BITS OF INPUT FP NUMBER USED FOR

ROUNDING

The range of integer part of
input FP number to be rounded off

(total values= 29−n)
b
e[4 : 3] b

e[2 : 0]
MBI (bm

n

bit of mantissa
field)

1 01 111 b
m

9

2 to 3 10 000 b
m

8

4 to 7 10 001 b
m

7

8 to 15 10 010 b
m

6

...

128 to 255 10 110 b
m

2

numbers, which is discussed as follows.

Leveraging dynamic range feature: Due to the dynamic

range feature, the range of the integer part of input num-

bers exponentially increases with the single increment in the

corresponding exponent field of its binary FP representation

as shown in Table I. For example, the exponent field be[4 :
0] = “01111” in a 16-bit FP corresponds to only one integer

value i.e. ‘1′ whereas be[4 : 0] = “10110” corresponds to

128 different integer values. Therefore, in our approach, the

condition of rounding for a range of the numbers is determined

using a particular value of the exponent field. It is to be noted

that the be[4 : 0] in between the range “00000” and “01110”
corresponds to the values in between 0 and 1.

Leveraging dynamic precision feature: Due to the dy-

namic precision feature of FP numbers, small numbers can be

represented with higher precision in comparison to the larger

numbers. For example, the 16-bit FP representation of 1.0 and

1.5 are “0 01111 0000000000” and “0 01111 1000000000” re-

spectively. Here, the mantissa part can accommodate total 511
different numbers in-between 1.0 and 1.5. However, in case of

larger numbers, the precision is relatively less. For example,

the 16-bit FP representation of 255.0 and 255.5 are “0 10110
1111111000” and “0 10110 1111111100” respectively. Here,

the mantissa part can accommodate only 3 different numbers

in-between 255.0 and 255.5. This observation indicates that

as the numbers become larger, the effective part of mantissa

(highlighted in the bold) shrinks toward the least significant

bit (LSB).

In this effective part of mantissa, we propose a mantissa

bit of interest (MBI) to determine the condition of rounding to

the nearest integer. The MBI is defined as that bit of mantissa

which undergoes low-to-high transition when the fractional

part ‘F ′ becomes equal to 5. Table I shows the MBI for the

different range of integer part of the FP numbers. As we move

from smaller to larger range of numbers, the respective MBI

propagates from MSB to LSB. The MBI is the 9th bit of

mantissa in case of the integer part is 1, whereas it is the 2nd

if be[4]=1

bs be[4 : 0]

if
be[3 : 0]="1110" OR

 be[3 : 0]="1111"

yes
no

cs<=bs

yes
no

cs<="0"

Fig. 2. Algorithmic flow of sign bit generation of rounded FP output

bit for the range of integers from 128 to 255.

We summarize our basic idea of rounding as follows: (i)

with the help of the exponent field value, we determine the

range of integer part for which the rounding condition is

applied, (ii) with the help of MBI, we determine the condition

of rounding to the nearest integer value for a particular range

of integer part. In the following subsections, we discuss the

proposed algorithm for the FP numbers rounding to the nearest

integer value.

B. Algorithmic Flow for Generating Rounded Floating Point

Output

The proposed idea of rounding FP numbers is divided in two

parts: (i) determination of the sign bit of the rounded output,

(ii) determination of the exponent and mantissa fields.

First, the algorithmic flow chart of generating the sign bit (cs)

of rounded FP output is shown in Fig. 2. As shown, the cs

bit can be determined using bs and be[4 : 0]. Since if a FP

number q is in between the range −0.5 < q < 0.5, it would

be rounded to 0. Hence cs will be zero irrespective of the bs

bit. However for other cases, the cs will remain same as that

of bs.

Next, as discussed in section II.A, the condition for the

rounding can be determined by observing the exponent field

and the MBI of the input FP number. For the MBI being at

nth index of mantissa field (where n varies from 9 down to

0), it can round off the values for total 29−n different integer

values (range) as shown in Table I. In general, the following

steps are performed for the rounding:

• First, be[4 : 0] is concatenated with bm[9 : n], where n is

the index of mantissa acting as MBI. Let us define it as:

B10−n[14− n : 0] = be[4 : 0] ‖ bm[9 : n]
• If the MBI is “0”, ce= B10−n[14 − n : 10 − n] and

cm=B10−n[9− n : 0] || {0}n.

• If the MBI is “1”, the B10−n[14 − n : 0] is incremented

by one and it is denoted using B′

10−n[14− n : 0]. And ce=

B′

10−n[14−n : 10−n] and cm = B′

10−n[9−n : 0] || {0}n.

Special Case: For the numbers that in the range 0 ≤ q < 1,

the exponent part is not constant but varies from “00000”
to “01110”. Therefore, this case is handled as follows. (i)

for 0 ≤ q < 0.5, the output is rounded to 0, and (ii) for

0.5 ≤ q < 1, the ce[4 : 0] is incremented by one and cm[9 : 0]
is made 0 to determine the rounded FP output.

Example: Let us assume an input number is 2.5 whose binary

16-bit FP representation is “0 10000 0100000000”. In this

case, be[4 : 3] = “10” and be[2 : 0] = “000”. Therefore, the

corresponding MBI is bm
8

as per the Table I and the value of n

is 8. Further, according to the proposed algorithm, firstly be[4 :
0] are concatenated with bm[9 : 8] which results in B2[6 : 0].
Secondly, n = 8th bit of mantissa part is checked according

to the algorithm. Since it is ‘1′, B2[6 : 0] is incremented by

one forming B
′

2
[6 : 0]. In order to generate the exponent and

mantissa bits of the rounded output, B
′

2
[6 : 2] is assigned to

ce[4 : 0] and B
′

2
[1 : 0]‖“00000000” is assigned to cm[9 : 0].

Finally, this forms the number “0 10000 1000000000” which

is equivalent to 3.0.

C. Proposed Architecture of FP Rounding Hardware

The proposed basic architecture of 16-bit FP rounding

hardware is shown in Fig. 3. The blocks 1, 2 and 3 show

sign bit, exponent part and mantissa part generation logic

respectively and the hardware works as follows:

• It first divides [14−n : 0] into [14−n : 10−n] and [9−n : 0]
for the exponent and mantissa part respectively of the output

FP number.

• Now, based on the MBI, it chooses either B10−n[14 − n :
10 − n] or B′

10−n[14 − n : 10 − n] for the exponent part.

Similarly, it chooses either B10−n[9−n : 0] or B′

10−n[9−n :
0] for the mantissa part.

However, we explore an interconnect hardware optimization

in order to achieve area and power efficacy. We perform the

optimization by reordering the operations as follows:

• First it makes a decision of choosing either B10−n[14−n : 0]
or B′

10−n[14− n : 0] based on the MBI.

• It then divides the [14 − n : 0] into [14 − n : 10 − n] and

[9− n : 0] for the exponent and mantissa part respectively.

This re-ordering based optimization eliminates the need of

some additional interconnect hardware (Muxes) in the man-

tissa field determination architecture. An excerpt of thus

obtained optimized architecture is shown in Fig. 4.

D. Extension of Proposed Idea of Rounding for Single and

Double Precision Floating Point

The proposed idea of rounding FP numbers to the nearest

integer is also applicable for single (32-bit) and double pre-

cision (64-bit) values. In case of single and double precision,

the mantissa part is 23 and 52 bits long, hence the MBI (the

nth index of mantissa field) is varied for [22 : 0] and [51 : 0]
respectively to apply the condition of rounding. Similar to

the half precision, the following concatenation operation is

performed in case of single precision and double precision.

• In case of single precision, the exponent field be[7 : 0]
of input FP number is concatenated with the mantissa bits

bm[22 : n] to generate B23−n[30− n : 0].
• In case of double precision, the exponent field be[10 : 0] is

concatenated with the mantissa bits bm[51 : n] to generate

B52−n[62− n : 0].

Thus generated concatenated output is divided into two parts

based on the MBI to assign to the exponent and mantissa

filed of output number, as similar to the proposed idea for

half precision.

0
.

.

.

0

bs bs be[4]

be[3:0]

cs

Block-1

.

.

. 00

be[4:0]

be[2:0] be[4:3]

ce[4:0]

be[4:0] || bm[9]

B1[5:0]

+1

B1[5:1]

B1
'[5:1]

bm[9]

be[4:0] || bm[9:8]

+1

B2[6:2]

B2
'[6:2]

bm[8]

B2[6:0]

be[4:0] || bm[9:7]

+1

B3[7:3]

B3
'[7:3]

bm[7]

be[4:0] || bm[9:2]

+1

B8[12:8]

B8
'[12:8]

bm[2]

.

.

.

Block-2

be[2:0]

ce[9:0]

01

10

11

11

01

10

00
"0000000000"

ce[9:0]

be[4:3]

B2[1:0] || {0}8

B2'[1:0] || {0}8

B3[2:0] || {0}7

B3'[2:0] || {0}7

B8[7:0] || {0}2

B8'[7:0] || {0}2

bm[8]

bm[7]

bm[2]

.

.

.

.

.

.

be[2:0]

.

.

.

Block-3

B3[7:0]

B8[12:0]

Fig. 3. Proposed basic architecture of 16-bit FP rounding hardware

E. Integration with the Computing Core of Compression Pro-

cessor

This section discuses the integration flow of the proposed

rounding hardware with the design flow of computing core of

compression processor used in multimedia applications such

as image and video coding. In these applications, the discrete

cosine transform (DCT) computation and quantization are the

computing core of the compression processor [8] and also

computationally intensive processes. In the design process

of the hardware of DCT computation and quantization, their

algorithmic description is represented in terms of mathemat-

ical transfer function. Next, the algorithmic description is

converted into the corresponding RTL description using the

be[4:0] || bm[9:8]

+1

bm[8]

B2[6:0]

be[4:0] || bm[9:2]

+1

D8[12:8]

bm[2]

.

.

.

be[2:0]

D2[1:0] || {0}8

D8[7:0] || {0}2

.

.

.

be[2:0]

Block-3

B3[7:0]

B8[12:0]

B2'[6:0]
D2[6:2]

D2

D8

B8'[12:0]

Block-2

Fig. 4. An excerpt of optimized architecture of 16-bit FP rounding hardware

behavioral synthesis process. Further, the RTL of the proposed

FP rounding hardware can be integrated with the RTL of the

DCT transformation and quantization steps of the compression

process. The proposed rounding hardware takes a FP number

generated from the quantization step as input and generates

the output rounded to the nearest integer value. The integration

flow of the proposed rounding hardware with the computing

core of the compression process is depicted in Fig. 5. Post

integration, logic synthesis step can be performed to generate

a gate level netlist (firm IP core) of the compression processor.

The proposed rounding hardware module can serve as an

application specific add-on to the multimedia accelerators.

Algorithmic description of the
compression core of multimedia

application (image/video)

RTL of compression core
(DCT transformation and

quantization)

Behavioral

synthesis

Integration of proposed
rounding hardware

module

Logic

synthesis

A gate level netlist of the
application specific

compression processor

Fig. 5. The integration flow of proposed FP rounding hardware with the
compression processor design

III. EXPERIMENTAL RESULTS AND ANALYSIS

This section first discusses the area-power-delay analysis

of the proposed rounding hardware using 15 nm technology

based open-cell library [9]. Second, the hardware implementa-

tion and functional validation of the proposed mechanism has

been done in Intel cycloneII FPGA using Quartus-II tool.

The proposed basic (X) and optimized (Y) architecture of

the 16-bit binary FP rounding hardware are analyzed in terms

of area, power and latency as shown in Fig. 6. Clearly, the

optimized design (Y) achieves around 6.7% reduction in the

area and 7.4% reduction in power when compared with basic

design (X). Further, the latency of the proposed architecture

is estimated to be 110 ps, which signifies high performance

feature of the design.
The proposed rounding architecture is implemented for 16-

bit and 32-Bit FP numbers. The resource utilization on the

FPGA are presented in Table II. The resources used, in terms

of look-up-tables (LUTs), by the proposed 16-bit and 32-bit FP

300

310

320

330

340

350

X Y

A
r
e
a

(μ
m

^
2

)

11

11.5

12

12.5

13

X Y

P
o

w
e
r
(n

W
)

0

50

100

150

X Y

L
a

te
n

cy
(p

s)

Fig. 6. Area, power and latency comparison of proposed basic (X) and
optimized (Y) architecture of 16-bit FP rounding hardware

TABLE II
RESOURCE UTILIZATION SUMMARY OF 16-BIT AND 32-BIT FP ROUNDING

HARDWARE DESIGN IMPLEMENTED IN INTEL’S CYCLONE II FPGA

FPGA resources 16-bit FP 32-bit FP

Logic elements usage by
number of LUT inputs

(4 input
functions)

92 378

(3 input
functions)

44 218

(≤ 2 input
functions)

75 392

Dedicated logic registers 0 0

rounding hardware designs are 0.2k and 1k respectively. Fur-

ther, the integration of the proposed 16-bit and 32-bit rounding

hardware modules with the hardware of the computing kernel

of compression mechanism is also implemented on the same

FPGA platform. Table III presents the resource utilization of

the proposed rounding hardware integrated with compression

kernel. Here, we compare the FPGA resource requirement

of the compression kernel hardware implementation with and

without the proposed rounding hardware module integrated.

Further, the comparison is made in terms of the LUTs,

dedicated registers and embedded multipliers. As indicated,

the average resource overhead due to the integration of the

proposed rounding hardware module is less than 1%.

A. Applications

In this section, we discuss the applicability of our proposed

hardware design to improve the overall performance of mul-

timedia accelerators. More specifically, we discuss the JPEG

image compression application evaluated using conventional

JPEG compressor (integrated with proposed hardware design).

Thereafter, we briefly discuss how the proposed work can

benefit in the design of popular machine learning (ML) and

deep learning (DL) accelerators.

1) JPEG Compression: As discussed earlier, JPEG image

compression requires rounding to integers during the quan-

tization step. Therefore, integrating the proposed hardware

of rounding to the nearest integer with the compression

kernel of JPEG compression processor not only facilitates

the performance enhancement but also eliminates the JPEG

dimple artifacts. Also, since the JPEG based lossy image com-

pression method allows a trade-off between storage size and

the adjustable degree of compression. Thereby, we showcase

(depicted in Fig. 7) the original image and the images com-

pressed using the proposed FP rounding hardware for quality

factor (QF) 0, 30, and 60 respectively. For this purpose, we

have taken 256x256 cameraman image from image processing

dataset. Thereafter, the evaluation of images (a), (b) and (c)

(shown in Fig.7) is performed using the popular image quality

evaluation metrics viz. peak signal to noise ratio (PSNR) and

mean square error (MSE) [10] defined as below:

MSE =
1

n ∗m

n
∑

i=1

m
∑

j=1

(xi,j − yi.j)
2 (1)

PSNR = 10log10

[2552

MSE

]

. (2)

Table IV depicts the obtained PSNR and MSE values for

images (b), (c), and (d) shown in Fig.7. We have evaluated

these metrics using MATLAB 2018b running on system with

4GB of RAM. We have also traced the computation time

required to compress the images. Clearly, with change in QF,

the PSNR values improves by 1.2x times and the MSE reduces

by 194.88 times respectively. However, the computation time

remains nearly constant due to the algorithm being the same.

2) Scope for Other Applications: The proposed scheme can

also be used in the design of ML and DL accelerators to

achieve the enhanced performance. For instance, K-Means is a

clustering algorithm used extensively in the machine learning.

The algorithm clusters a given set of data points into k clusters.

In this ML application, we initially quantize any FP number, if

encountered during computation, into its nearest integer using

the proposed rounding module. Thereafter, we use accurate

Integer-ALU to compute euclidean distances. To demonstrate

the application, we have used a data-set containing 150 points

uniformly distributed into 3 clusters. Fig. 8 shows the outcome

of the K-Means algorithm for the following two cases: (i) com-

putation with the conventional FP numbers (the baseline) (ii)

computation with the rounded FP numbers to nearest integer.

We have used a metric called relative accuracy, defined by the

number of data points clustered accurately in comparison to

our baseline. While deploying proposed rounding hardware

module to cater K-Means, we get a relative accuracy of

96.67% when compared with the baseline case. Thus, compu-

tationally expensive yet error-tolerant applications such as ML

and DL can benefit greatly from the suggested hardware by

replacing the resource consuming FP arithmetic with integer

arithmetic respectively.

IV. CONCLUSION

As rounding operation performed during the quantization

step of lossy compression techniques is a data intensive task,

its execution through a dedicated hardware is vital to achieve

enhanced performance. Additionally, performing rounding to

the nearest integer is important to prevent against the po-

tential compression artifacts such as JPEG dimples. Hence,

we present an efficient rounding of binary FP numbers to

the nearest integer value and its hardware design to aid the

multimedia accelerators for the image and video compression

applications. The proposed design offers high performance

and has been optimized for the area and power consumption.

The proposed rounding hardware design has been integrated

TABLE III
RESOURCE UTILIZATION SUMMARY OF PROPOSED ROUNDING HARDWARE INTEGRATED WITH COMPRESSION KERNEL IMPLEMENTED IN INTEL’S

CYCLONE-II FPGA

FPGA resources
Compression kernel without

integration of rounding hardware
Compression kernel with

integration of rounding hardware
Overhead

(16-bit FP)
Overhead

(32-bit FP)
16-bit FP 32-bit FP 16-bit FP 32-bit FP

Logic elements usage
in terms of LUTs

17,409 36,194 17,617 37,184 1.2% 2.7%

Dedicated logic registers 4,096 8192 4,096 8192 0% 0%

Embedded Multipliers
(9-bit)

18 63 18 63 0% 0%

(a) (b) (c) (d)

Fig. 7. JPEG compression perfromed using proposed hardware design. Obtained images: (a) Original Image, (b) Compressed Image (QF = 0), (c) Compressed
Image (QF = 30), (d) Compressed Image (QF = 60)

20 40 60 80 100

20

40

60

80

100

20 40 60 80 100

20

40

60

80

100

Fig. 8. Clustering results using accurate and rounding hardware for 150 data points, where x and y axis denote the coordinates of a particular data point

TABLE IV
ASSESSMENT OF COMPRESSED IMAGES

Image\Metric PSNR (in dB) MSE Time (in sec)

(b) 18.71 877.16 5.62

(c) 28.36 94.85 5.87

(d) 41.62 4.478 6.21

with the compression kernel of the compression processor and

implemented on an FPGA platform for the half and single

precision FP numbers. The proposed FP rounding module

hardware not only finds utility in the multimedia accelerators

but has potential application in the ML and DL accelerators.

REFERENCES

[1] C. Pilato, S. Garg, K. Wu, R. Karri, and F. Regazzoni, “Securing
hardware accelerators: A new challenge for high-level synthesis,” IEEE

Embedded Systems Letters, vol. 10, no. 3, pp. 77–80, 2018.

[2] T. Richter, “Evaluation of floating point image compression,” in Proc.

ICIP, 2009, pp. 1909–1912.

[3] K. A. M Segal, “The opengl graphics system: A specification,” available

at http://www.opengl.org/registry/ doc/glspec30.20080811.pdf, 2008.
[4] R. Mukherjee, K. Debattista, T.-B. Rogers, M. Bessa, and A. Chalmers,

“Uniform color space-based high dynamic range video compression,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 29, no. 7, pp. 2055–2066, 2019.

[5] R. Mantiuk, K. Myszkowski, H.-P. Seidel, B. Rogowitz, T. Pappas, and
S. Daly, “Lossy compression of high dynamic range images and video -
art. no. 60570v,” Human Vision and Electronic Imaging XI, SPIE (2006),
vol. 6057, 02 2006.

[6] S. Agarwal and H. Farid, “Photo forensics from jpeg dimples,” in Proc.

WIFS, 2017, pp. 1–6.
[7] S. Tsen, S. González-Navarro, M. J. Schulte, and K. Compton, “Hard-

ware designs for binary integer decimal-based rounding,” IEEE Trans-

actions on Computers, vol. 60, no. 5, pp. 614–627, 2011.
[8] A. Sengupta, D. Roy, S. P. Mohanty, and P. Corcoran, “Low-cost ob-

fuscated jpeg codec ip core for secure ce hardware,” IEEE Transactions

on Consumer Electronics, vol. 64, no. 3, pp. 365–374, 2018.
[9] “Open cell library 15 nm . [online],” Available: https://si2.org/open-cell-

library/, last accessed on, 2020.
[10] A. Baviskar, S. Ashtekar, and A. Chintawar, “Performance evaluation

of high quality image compression techniques,” in Proc. ICACCI, 2014,
pp. 1986–1990.

	Select a link below
	Return to Previous View
	Return to Main Menu

