
SERICO: Scheduling Real-Time I/O Requests in
Computational Storage Drives

1st Yun Huang
City University of Hong Kong

2nd Nan Guan
City University of Hong Kong

3rd Shuhan Bai
City University of Hong Kong

Huazhong University of Science and Technology
4th Tei-wei Kuo

National Taiwan University
5th Chun Jason Xue

City University of Hong Kong

Abstract—The latency and energy consumption incurred by
I/O accesses are significant in data-centric computing systems.
Computational Storage Drive (CSD) can largely reduce data
movement, and thus reduce I/O latency and energy consumption
by offloading data-intensive processing to processors inside the
storage device. In this paper, we study the problem of how to
efficiently utilize the limited processing and memory resources of
CSD to simultaneously serve multiple I/O requests from various
applications with different real-time requirements. We proposed
SERICO, a system of scheduling computational I/O requests in
CSD. The key idea of SERICO is to perform admission control
of real-time computational I/O requests by online schedulability
analysis, to avoid wasting the processing resources and memory
capacity of CSD in doing meaningless work for those requests
deemed to violate the timing constraints. Each admitted compu-
tational I/O request is served in a controlled manner with carefully
designed parameters, to meet its timing constraint with minimal
memory cost. We evaluate SERICO with both synthetic workloads
on simulators and representative applications on realistic CSD
hardware. Experiment results show that SERICO significantly
outperforms the default method used in the CSD device and the
standard deadline-driven scheduling approach.

I. INTRODUCTION

Data need to be transferred from the storage to main memory
for processing, which incurs large time delay and energy con-
sumption. Although the bandwidth of SSD and PCIe interface
has increased a lot in recent years, the I/O stack latency is still
significant in data-intensive applications. Data transfer between
the storage and main memory is often the critical performance
bottleneck of data-centric computing systems.

Computational Storage Drive (CSD) can perform near-data
processing on processors inside the storage device. Offloading
some data processing to CSD reduces the amount of data
movement between the storage and main memory, and thus
reduces I/O latency and energy consumption, which is ap-
pealing for data-centric computing systems. Recently, many
researchers studied how to use CSD to accelerate specific
applications, e.g., accelerating SQL [8] and list intersection [19]
in large databases, or developing application-specific hardware
acceleration engines [14], [18].

Besides optimizing the software/hardware design to accel-
erate a specific application, another important aspect to fully
unlocking the capability of CSD is how to manage the limited
processing and memory resources of the CSD to serve the
computational I/O requests of multiple applications simultane-

ously, which has received little attention in existing research.
In reality, many applications have real-time constraints to their
computational I/O requests, i.e., if the CSD cannot finish
fetching and processing of the requested data before a certain
deadline, the result will become useless. Therefore, a good CSD
resource manager should both maximize the general throughput
and meet the specific timing constraint of each individual
request of different applications.

This paper presents SERICO, a framework to schedule
multiple computational I/O requests in CSD. The main idea
of SERICO is to perform admission control of computational
I/O requests by online schedulability analysis, to avoid wasting
the processing resources and memory capacity of CSD in doing
useless work for those requests deemed to violate the timing
constraints, which is supported by several key design points:

• SERICO exploits ping-pong buffers to “desynchronize”
the scheduling and analysis of data fetching and processing
on different cores, which improves the timing predictabil-
ity and facilitates accurate online schedulability analysis
for effective admission control;

• SERICO divides the serving tasks of each request into pe-
riodic jobs, which reduces the memory consumption (since
the jobs of the same task can reuse the same buffer area).
However, while dividing a task into jobs saves memory, it
imposes higher pressure to system schedulability. SERICO
will search for the period setting to minimize memory
consumption while meeting the timing constraints;

• SERICO uses an EDF-based policy to schedule the jobs,
and the online schedulability test guarantees that the ad-
mitted requests can meet their deadlines. The schedulabil-
ity test is based on the classical Demand Bound Function
(DBF) technique [2] while enhanced to handle the special
characteristics of our problem;

• SERICO applies an early-release mechanism to further
improve the chance to admit more requests by utilizing
available resources which cannot be allocated to the peri-
odically executed jobs.

We evaluate SERICO with synthetic workloads on simulators.
Experiment results show that SERICO outperforms the baseline
method currently used by the CSD device and the standard
deadline-driven scheduling approach consistently with different
parameter settings. We also implement SERICO on a realistic

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

CSD

Flash I/O

Core

H
o

s
t

DRAM

Computational

Core

Flash

Chips

Flash

Chips

Flash

Chips

Flash

Chips

P
C

Ie
 I

n
te

rf
a

c
e

Flash

Chips

Flash

Chips

Flash

Chips

Flash

Chips

Figure 1: Hardware platform.

SSD development platform YS9203 [23] and evaluate its per-
formance with real-world applications.

II. RELATED WORK

Previous studies on CSD mainly focus on accelerating
specified applications on dedicated devices and building novel
architectures. CSD has been applied to accelerate data-intensive
database applications [4], [8], [22]. Recently, CSD has also
been applied to accelerating AI applications, e.g., accelerating
both the training [9], [12] and inference [18], [21] of Neural
Networks models, and genome sequence analysis applications
[6]. Some previous work aims at optimizing the programming
model for CSD [7], [10], [15], [17]. In recent years, many
works studied novel hardware architectures for CSD, e.g.,
developing an end-to-end architecture that supports block-
oriented near-data processing [1], supports multiple Storage
drives with different computation kernels [16], provides high-
performance virtualization for CSD by applying hardware-
assisted virtualization and constructing and scheduling virtual
CSD dynamically [11]. To the best of our knowledge, SERICO
is the first work to study how to serve multiple I/O requests of
different applications simultaneously in CSD.

III. SYSTEM MODEL

A. Hardware Platform

Fig. 1 shows the target hardware platform, where the CSD
contains four major components: a computation core Pc, a
Flash I/O core Pf , a set of Flash chips and a DRAM which is
fully shared by Pc and Pf . Pf can address data blocks on the
flash chips in the granularity of 4KB. The transfer of a 4KB
data block is non-preemptive because an addressed 4KB data
block is transferred to a pre-allocated DRAM area by hardware.
We use Tf to denote the time to transfer one 4KB data block
from Flash chips to DRAM. The host interacts with the CSD
via PCIe interface and the command/data sent from the host
can be stored in the DRAM of the CSD.

Although the CSD in Fig. 1 only has one computation core
and one Flash I/O core, it is projected that future CSD may
integrate more cores to provide higher processing capacity. In
the following section, we will present SERICO in the context of
one computation core and one Flash I/O core, but SERICO can
be easily applied to the general case of multiple computation
cores and Flash I/O cores, as will be discussed in Section IV-F.

B. Computational I/O Request

A computational I/O request, called request for short, de-
noted by RQi, is served by CSD with two parts. First, a Flash
I/O task τfi on Pf transfers the needed data from the Flash chips

to DRAM. Second, a computation task τ ci on Pc processes these
data, the result of which will be sent back to the host via PCIe.

A request RQi is characterized by a tuple ⟨ri, di, bi, ni, ci⟩.
ri is the arrival time and di is the absolute deadline of the
request, i.e., RQi arrives (via PCIe) at time ri, and the CSD
should fetch the needed data and finish the required processing
by time di. Otherwise, the request misses its deadline and the
result returned after the deadline, if any, is useless. We define
Di = di − ri as the relative deadline of RQi.

A request may need to fetch and process a large amount of
data. However, it is not necessary to transfer all the needed
data from Flash to DRAM and process them at once. Instead,
the data to be transferred and processed can be divided into
basic blocks. The data processing must be performed with the
granularity of basic blocks. We use bi to denote the basic
block size of RQi. Different requests have different basic block
sizes. As the minimal granularity to transfer data from Flash to
DRAM is 4KB, we assume that for any request RQi, bi must
be an integral multiple of 4KB. ni denotes the total number of
basic blocks needed by request RQi. For example, suppose a
request RQi has bi = 12KB and ni = 10, then each time the
processing algorithm is executed, the input data size (i.e., the
basic block size) is bi = 12KB, and in total this request needs
to transfer and process ni × bi = 120KB data.

We use cci to denote the worst-case execution time (WCET)
for τ ci to process one basic block of RQi, and cfi denotes
the worst-case execution time (WCET) for τfi to fetch one
basic block from Flash to DRAM. We assume cci is a known
parameter which can be obtained by dynamic or static WCET
analysis techniques [20]. As the time to transfer a 4KB data
block is always Tf , we know cfi =

biTf

4KB .
At runtime, infinitely many requests, each characterized by

the above parameters, arrive at the CSD at any time. Our target
is to serve as many requests in time (i.e., meeting their absolute
deadlines) as possible.

IV. DESIGN OF SERICO

A. Overview

Fig. 2 shows the overall architecture of SERICO. The task
admission module receives requests from the host, decides
whether to admit it or not and, if admitted, dispatches the
corresponding computation task τ ci to Pc and Flash I/O task
τfi to Pf . The computation task scheduler and the Flash I/O
task scheduler manage the computation and Flash I/O tasks
on Pc and Pf , respectively.

Both the processing and memory capacity of the CSD are
limited. A request will be admitted only if (1) there is enough
space on DRAM to be allocated by the admission module
and (2) it is assured that the request can meet its deadline.
Otherwise, the request is rejected. If a request is rejected, the
host will be notified via the returned completion, and then may
either cancel this I/O request or resend it later with new timing
constraints, depending on the application’s requirement. This
work focuses on scheduling inside the CSD, and how the host
handles the rejected requests is out of the scope of this paper.

!

!

User application

Host
PCIe Interface

Device

CSD APIs

Computation

tasks

Computation

tasks ...

Generated period, and

size of job slice

Dispatch

I/O tasksI/O tasks
...

Dispatch
Flash I/O scheduler

Computation scheduler

Task admission module

Pc

Pf

Figure 2: Architecture of SERICO.

B. Admission Control

Recall that as introduced in Section III-B, although a request
may need to fetch and process a large amount of data, this can
be done in several times instead of all at once. For example,
we can fetch and process 1 basic block each time and repeat
this for ni times, or fetch and process 2 basic blocks each
time and repeat this for

⌈
ni

2

⌉
times. In general, τfi (τ ci) can

be executed via a number of jobs, and each job fetches and
processes several basic blocks.

Definition 1 (Job Granularity ki). The job granularity, de-
note by ki, of request RQi, is the number of basic blocks
fetched/processed by each job of τfi /τ ci .

The jobs will be released periodically with an artificial
period, which is also the relative deadline of a job, i.e., a job
should finish execution before the release of the next job. In
this way, the jobs of a task can reuse the same memory area
as their life window do not overlap with each other in time.
Therefore, to fully utilize the limited memory, it is preferable
to use as-small-as-possible ki i.e., dividing a task into as small
jobs as possible. However, dividing a task into more jobs
leads to a smaller timing window to execute a job and thus
imposes higher pressure to system schedulability. Therefore,
the admission control module will try to find a proper job
granularity ki when requests RQi arrive, so that the resulting
periodic jobs of τfi and τ ci can be assigned to Pf and Pc,
without violating the timing and memory constraints. As will
be introduced in Section IV-C, SERICO uses a ping-pong buffer
for τfi and τ ci to coordinate with each other, the needed buffer
size of RQi is 2kibi given a ki value.

As our target is to find the ki value that minimizes RQi’s
ping-pong buffer size, we will check ki = 1 · · ·ni in the
increasing order, until we find a ki so that the τfi and τ ci can be
divided into smaller periodic jobs and the jobs on Pf and Pc are
still schedulable. If no ki ∈ [1, ni] can pass the schedulability
test, RQi is rejected. We will introduce the schedulability test
in detail in Section IV-D. If we have found the minimal ki that
can pass the schedulability test, we will check whether there is
enough available DRAM space to allocate the ping-pong buffer
of size 2kibi to RQi. If yes, RQi is admitted, otherwise, it is
rejected and larger values for ki won’t be checked.

t

t

CPU0

CPU1

Read Read Read 𝐵1 𝐵1 𝐵2 Read 𝐵2

Write 𝐵1 Write 𝐵1 Write 𝐵2 Write 𝐵2 Write 𝐵1 Write 𝐵1 Write 𝐵2 Write 𝐵2

𝑝𝑖 2𝑝𝑖 3𝑝𝑖 4𝑝𝑖 0

...

Figure 3: Illustration of execution with ping-pong buffer.

C. Scheduling

Once a request RQi is admitted and ki is decided, we
generate ⌈ni

ki
⌉ jobs for τfi and τ ci and schedule them on Pf

and Pc, respectively. A job of τfi and a job τ ci need to be
synchronized to complete the transfer and processing of kibi
data. A job of τfi first transfers data from Flash to DRAM, and
then the job of τ ci can process these data. In other words, a job
of τ ci can start execution only after the corresponding job of τfi
has finished. The synchronization between τ ci and τFi makes the
schedulability less predictable as the “effective release time” of
a job (i.e., the time when its data is ready and thus it is eligible
for execution) depends on the finish time of the corresponding
job on the other core, which relies on the scheduling of all
running tasks on that core. This unpredictability makes the
analysis of system schedulability difficult. Even worse, as the
“effective relative deadline” (the time between its effective
release time and absolute deadline) becomes shorter, it is more
difficult to make the jobs schedulable.

Ping-Pong Buffer. In order to solve the above problem,
SERICO uses a ping-pong buffer to “desynchronize” the ex-
ecution of a pair of jobs of τfi and τ ci . A ping-pong buffer
has two buffer areas (B1 and buffer B2), each of size kibi.
As shown in Fig. 3, the job of τfi fetches data from Flash
and writes them to buffer B1 and B2 alternatively. In every
period in which the job of τfi writes data to B1, the job of τ ci
reads and processes the data in B2, and vice versa. In this way,
the jobs of τfi and τ ci are executed on Pf and Pc as if there
is no data dependency between them, as long as each job is
executed between its release time and absolute deadline, which
greatly improves system predictability and simplifies the online
schedulability analysis.

Job Parameter Calculation. With the ping-pong buffer, a
job of τ ci reads and processes the data fetched by the job of
τfi in the previous period. Therefore, while the first job of τfi
is released immediately at ri, the first job of τ ci is actually
released at ri + pi, where pi is the period of the jobs of τfi
and τ ci . Similarly, while the period of the last job of τ ci ends
at the di (the absolute deadline of the request), the last job of
τfi has its period ending at di − pi. Therefore, the period pi is
calculated by

pi =
Di

⌈ni

ki
⌉+ 1

The worst-case execution time (WCET) of each job of τfi and
τ ci are calculated by

efi = Tfkibi/4KB, eci = kici

EDF-based Scheduling. Thanks to the ping-pong buffers, τfi
and τ ci behave as independent periodic real-time tasks. SERICO

!

!

adopts EDF-based scheduling to schedule both computation
tasks on Pc and Flash I/O tasks on Pf , since EDF is the optimal
single-processor scheduling policy for periodic real-time tasks
[13]. However, while EDF is a fully-preemptive scheduling
policy (i.e., a job with the earliest deadline can preempt others
immediately), in SERICO the scheduling policy used on both
Pf and Pc are limited-preemptive EDF (lp-EDF) [3]. On Pf ,
since the minimal granularity of data transfer is 4KB, the
preemption can only take place at the boundaries of transfer
of 4KB data blocks. On Pc, we enforce that preemption only
happens at the boundary of processing of basic blocks. This
is because allowing preemption within a basic block generally
leads to higher memory consumption for context saving. As the
nested preemption requires to store the context for many tasks
at the same time, this will lead to high memory consumption.

D. Schedulability Analysis

As introduced above, using the ping-pong buffer, τfi and τ ci
can correctly exchange data as long as each job is finished
before the next release time. Therefore, the schedulability on
Pf and Pc can be analyzed independently. In the following, we
first present the schedulability analysis for Pf , and later explain
how it can be applied to Pc with slight modification.

Suppose the current time is t0, at which a new request RQi

arrives, and currently, we are analyzing whether all jobs can still
meet their deadline if the periodic jobs of RQi can be admitted
so that all jobs are guaranteed to meet their deadlines. Suppose
there are deadline misses after t0, and the first deadline miss
happens at time td. There are two possible cases:

1) The core is idle at some point between t0 and td.
2) The core is continuously busy between t0 and td.
In the following, we will derive sufficient conditions to

guarantee that there is not enough workload to cause a deadline
miss in each of the above two cases.

We start with case 1). Let ts denote the first time point before
td so that Pf is continuously busy between ts and td. In other
words, ts is the starting time of the busy period [2] containing
td. To analyze the schedulability in this busy period, we can
use the well-known demand bound functions (DBF) [2]:

DBFi(∆) =

(⌊
∆− pi

pi

⌋
+ 1

)
efi (1)

which represents the workload of jobs of task τfi with both
release times and absolute deadlines within a time interval of
length ∆. Note we replace the relative deadline by period in the
definition DBFi(∆) as in our problem a job’s relative deadline
equals to its period. A periodic task system is schedulable under
lp-EDF with non-preemptive blocking time Bi if:

∀∆ :

n∑
all τi

DBFi(∆) +Bi ≤ ∆

In our problem, since τfi only releases ⌈ni

ki
⌉ jobs, rather than

infinitely many jobs as in the standard periodic task model, we
should refine DBF to fit our problem:

DBF∗
i (∆) = min

(⌈
ni

ki

⌉
efi , DBFi(∆)

)
(2)

𝑡0

...

𝑡0 + ∆

...

∆

𝑒𝑖 ‘

...

t

𝑧𝑗 − 𝑡0
∆ − (𝑧𝑗 − 𝑡0)

𝑧𝑗

Figure 4: Illustration of the intuition of (4).

and obtain a sufficient condition to guarantee that a deadline
miss at td is impossible in case 1):

∀∆ :
∑

all RQi

DBF∗
i (∆) +Bi ≤ ∆

where Bi equals Tf on Pf .
Then we consider case 2). For this case, we want to derive an

upper bound for the total demand in [t0, td]. We first consider
the newly arrive request RQi. The first job of τfi is immediately
released at t0, so the demand of jobs of τfi in time interval
[t0, t0 +∆) is calculated by

W f
i (∆) =

⌊
∆

pi

⌋
efi (3)

Then we consider existing requests that are already admitted to
the system. For each existing request RQj , we use e′j to denote
the maximal remaining execution time of the current job, and zj
the next job release time, and xj the number of unreleased jobs
of this task, which are all available information at the current
time point. In particular, we can estimate e′j by counting the
amount of data to be finished, instead of using timers to keep
track of the actual executed time of each running job. Then
we can compute the total amount of workload in time interval
[t0, t0 +∆):

Wj(∆) = e′j +min

(
xj ,max

(
0,

⌊
∆−(zj−t0)

pj

⌋))
efj (4)

The intuition of (4) is shown in Fig. 4.
Therefore, a sufficient condition to guarantee that a deadline

miss at td is impossible in case 2) for Pf is

∀∆ :
∑

RQj∈S

Wj(∆) +W f
i (∆) ≤ ∆ (5)

where S denotes the set of requests currently being served.
Putting the above discussions together, the following theorem

summarizes the schedulability test condition for Pf :

Theorem 1. All the jobs on Pf can meet their deadlines if the
newly arrived request is admitted with ki (based on which pi,
efi and eci are determined) if ∀∆:∑

all RQi

DBF∗
i (∆)+Bf

i ≤∆ ∧
∑

RQj∈S

Wj(∆)+W f
i (∆)≤∆ (6)

The schedulability condition for Pc can be derived similarly,
with several differences. First, efi in (1), (2) and (4) should be
replaced by eci . Second, the non-preemptive blocking time on
Pc is the maximal ci among all τ ci currently running on Pc, as
on Pc the preemption happens at the boundary of processing
basic blocks. Third, the calculation of the demand of τ ci is

!

!

different from (3). Recall that, since τfi and τ ci exchanges data
with a ping-pong buffer, and thus the first job of τ ci is actually
released at t0 + pi. Therefore, we should replace W f

i (∆) by
W c

i (∆), which is calculated by

W c
i (∆) = max

(
0,

⌊
∆− pi

pi

⌋
eci

)
Note that (6) only needs to be checked for ∆ up to a certain
upper bound, which can be derived by the standard technique in
real-time scheduling: we over-approximate DBF′

i(∆), Wj(∆),
W f

i (∆) and W c
i (∆) by, e.g., linear functions with respect to ∆

and compute the smallest values of ∆ at which the sum of these
over-approximated functions intersect with the diagonal, which
can be used as the upper bound of ∆ values to be checked.
The details are omitted due to the page limit.

E. Early Release Mechanism

The jobs of τfi and τ ci are released periodically since the
schedulability of periodic release patterns is relatively easier to
analyze. At runtime, it is possible that the core is temporally
idle while the next job of each task isn’t released yet due
to the periodic release pattern. SERICO uses an early release
mechanism to reclaim such idle time so that the current tasks
can finish sooner, which increases the chance of admitting more
requests in the future.

The early release mechanism allows a job to be released
before its original scheduled release time, while still using its
original deadline. However, early releasing a job may cause
problems in data exchange between τ ci and τfi with the ping-
pong buffer. Recall that, with the ping-pong buffer, a job of τ ci
reads the data fetched by the job of τfi in the previous period.
If a job of τ ci is released and starts to execute early, and its
needed data may not have been ready since the job of τfi in
the last period may not have finished. Similarly, if a job of τfi
is released and starts to execute early, its target buffer may not
be available for it to write since the job of τfi in the last period
may not have finished.

To solve the above problem, when a core is idle, SERICO
will select a job to be early-released only if the job of its
counterpart in the other core in the previous period has finished.
If multiple jobs can be early released, SERICO selects the one
with the earliest deadline. Note that each early-released job still
uses its original deadline. Thus the early-release mechanism
does not invalidate the schedulability guarantee present in the
last subsection since it simply reclaims the idle time without
introducing extra interference or blocking to any job.

F. Further Remarks

For simplicity of presentation, we did not consider the
memory requirement to store the results of τ ci in our problem
model. In reality, the memory requirement to store the results
of τ ci s is usually much smaller than the raw data, which can be
easily taken into account by SERICO when admitting a request.

So far we have introduced the design of SERICO assuming
only one computation core and one Flash I/O core. However,
SERICO can be easily extended to the case of multiple compu-
tation cores and/or multiple Flash I/O cores, by adding a policy

to decide which computation core and Flash I/O core to be used
to execute the τ ci and τfi , e.g., using real-time task partitioning
heuristics [5]. After the tasks are allocated, the scheduling and
analysis of jobs on each core are independent from other cores.

Although this paper only considers real-time requests,
SERICO can also be extended to handle non-real-time requests.
We can serve these non-real-time requests with lower priority
than real-time tasks, i.e., only when currently there is no
workload for serving real-time requests.

V. EVALUATION

We conduct experiments with both synthetic workloads on
a simulator and a couple of applications on a realistic CSD
hardware platform with an SSD controller YS9203 [23].

A. Evaluation with Simulation

We developed an event-triggered simulator to simulate the
high-level scheduling behavior on CSD, then conduct experi-
ments with synthetic workloads with various parameter settings.
SERICO is compared with following baseline methods:

• FCFS (First-Come-First-Served): The system maintains a
list of all arrived requests and serves them in the order
of their arrival times. This is the method in the default
system software with YS9203 platform;

• Simple-EDF: The system maintains a list of all arrived
requests and serve them in the order of their absolute
deadlines. It will drop the requests once the request
exceeds its deadline.

We generate requests with parameters randomly distributed in
the following ranges: ri ∈ [0, 150000], Di ∈ [1000, 150000],
bi ∈ [1, 10] and ni ∈ [10, 400]. We change the range of ci
for the x-axis in Figure 5, where with a certain x value, ci is
randomly distributed in [5, x]. The y-axis represents the value
of Tf . The z-axis is the reject ratio, which is the ratio between
the number of requests that are rejected (with SERICO) or
miss their deadlines (with FCFS and Simple-EDF), and the
total number of requests. The experimental results in Figure 5
show that, as ci and Tf increase, the reject ratio of all the 3
methods in comparison increase. Overall, SERICO has a much
lower reject ratio than FCFS and simple-EDF.

Figure 5: Reject ratio in
simulation (lower is better).

WCET = 10
WCET = 30
WCET = 20

R
ej

ec
t R

at
io

0

0.1

0.2

0.3

0.4

0.5

Normalized DRAM Size
5 10

Figure 6: Impact of DRAM
size on reject ratio.

Figure 6 shows the reject ratio with different normalized
DRAM sizes, which is defined as the total buffer size divided

!

!

by the maximum bi of all requests. For each curve, ci is
randomly generated in [5,WCET]. For this setting, the reject
ratio decreases as the available buffer size increase in the CSD.

B. Evaluation on Realistic Hardware

We implement SERICO on CSD platform with an SSD
controller YS9203 [23] equipped with 2 Cortex-R4 cores (one
computation core and one Flash I/O core), both with 600MHz
frequency. The available DRAM size is 1GB. Each experiment
has 10 applications, and each application executes either the
SQL query function or the statistic analysis function as the
computational task for each I/O request in CSD. Each appli-
cation generates requests periodically with a period of 100ms.
The amount of data to be fetched and processed by each request
is randomly chosen between 70MB and 1GB. The deadline
of each request is randomly distributed in [5000, 50000]ms.
We assume both functions have a basic block size of 512KB.
The WCET for processing one basic block, i.e., ci, is 12ms
for the SQL query function and 8ms for the statistic analysis
function. Figure 7 shows the reject ratio of the three methods
with X applications executing the SQL query function and Y
applications executing the statistic analysis function, where X:Y
are set to be 3:7, 5:5 and 7:3, respectively.

SERICO
simple-EDF

FCFS

R
ej

ec
t r

at
io

0

0.1

0.2

0.3

0.4

SQL: Stat
3:7 5:5 7:3

Figure 7: Reject ratio of real
workloads (lower is better).

We measure the memory and
time overhead of SERICO on
YS9203. The memory overhead
for maintaining the 4KB data
blocks on DRAM is 655KB,
about 0.06% of the total avail-
able DRAM on YS9203. The
time overhead of SERICO in-
cludes the admission control
and timer updating to keep track
of the job periods. The total
time overhead is 4.12% of the
total execution time in the above
experiments with 10 applica-

tions. Note that the significant improvement by SERICO shown
in Figure 7 already includes these timing overheads. Although
we do not include the time to transfer the results back to
the host in our problem model, we also measure this time
cost in our experiments. The speed of transferring results from
the CSD to host via PCIe is 10us/32KB, which is negligible
compared with the time to fetch and process data in the CSD.

VI. CONCLUSION

This paper studies how to manage the limited processing
and memory resources in CSD to serve real-time I/O requests
of multiple applications. We present SERICO, a system of
scheduling computational I/O requests in CSD. SERICO per-
forms online admission control to avoid wasting the processing
resources and memory capacity of CSD in handling the requests
that cannot meet their deadlines anyway. The Flash I/O and
computation workloads of a request is divided into periodic
jobs to meet its timing constraint while minimizing mem-
ory consumption. We evaluate SERICO with both synthetic
workloads on the simulator and representative applications on

realistic CSD hardware. Experiment results show that SERICO
significantly outperforms the default method used in the CSD
device and the standard deadline-driven scheduling approach.

ACKNOWLEDGEMENT

We sincerely thank anonymous reviewers for their feedback.
This work is partially supported by the Research Grants Council
of Hong Kong, China, under Grant CityU 11219319.

REFERENCES

[1] Antonio Barbalace, Martin Decky, Javier Picorel, and Pramod Bhatotia.
BlockNDP: Block-Storage Near Data Processing. In Middleware ’20.

[2] Sanjoy K Baruah, Aloysius K Mok, and Louis E Rosier. Preemptively
scheduling hard-real-time sporadic tasks on one processor. In RTSS,1990.

[3] Marko Bertogna and Sanjoy Baruah. Limited preemption EDF scheduling
of sporadic task systems. IEEE Trans. on Industrial Informatics, 2010.

[4] Zhichao Cao, Huibing Dong, Yixun Wei, Shiyong Liu, and David H. C.
Du. IS-HBase: An In-Storage Computing Optimized HBase with I/O
Offloading and Self-Adaptive Caching in Compute-Storage Disaggregated
Infrastructure. ACM Trans. Storage, 2022.

[5] Robert I. Davis and Alan Burns. A Survey of Hard Real-Time Scheduling
for Multiprocessor Systems. ACM Comput. Surv.

[6] Mansouri Ghiasi et al. GenStore: A High-Performance in-Storage
Processing System for Genome Sequence Analysis. In ASPLOS ’22.

[7] Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo, Jinyoung
Lee, Jonghyun Yoon, Jeong-Uk Kang, Moonsang Kwon, Chanho Yoon,
Sangyeun Cho, Jaeheon Jeong, and Duckhyun Chang. Biscuit: A
framework for near-data processing of big data workloads. In ISCA ’16.

[8] Insoon Jo, Duck-Ho Bae, Andre S. Yoon, Jeong-Uk Kang, Sangyeun Cho,
Daniel D. G. Lee, and Jaeheon Jeong. YourSQL: A High-Performance
Database System Leveraging in-Storage Computing. Proc. VLDB Endow.

[9] Shine Kim, Yunho Jin, Gina Sohn, Jonghyun Bae, Tae Jun Ham, and
Jae W Lee. Behemoth: A Flash-centric Training Accelerator for Extreme-
scale DNNs. In USENIX FAST ’21.

[10] Gunjae Koo, Kiran Kumar Matam, Te I., H.V. Krishna Giri Narra, Jing Li,
Hung-Wei Tseng, Steven Swanson, and Murali Annavaram. Summarizer:
Trading Communication with Computing Near Storage. In MICRO ’17.

[11] Dongup Kwon, Dongryeong Kim, Junehyuk Boo, Wonsik Lee, and
Jangwoo Kim. A Fast and Flexible Hardware-based Virtualization
Mechanism for Computational Storage Devices. In USENIX ATC ’21.

[12] Yunjae Lee, Jinha Chung, and Minsoo Rhu. SmartSAGE: Training Large-
Scale Graph Neural Networks Using in-Storage Processing Architectures.
ISCA ’22.

[13] C. L. Liu and James W. Layland. Scheduling Algorithms for Multipro-
gramming in a Hard-Real-Time Environment. J. ACM, 1973.

[14] Shuyi Pei, Jing Yang, and Qing Yang. REGISTOR: A Platform for
Unstructured Data Processing Inside SSD Storage. ACM Trans. Storage,
2019.

[15] Zhenyuan Ruan, Tong He, and Jason Cong. INSIDER: Designing In-
Storage computing system for emerging High-Performance drive. In
USENIX ATC ’19.

[16] Sahand Salamat, Armin Haj Aboutalebi, Behnam Khaleghi, Joo Hwan
Lee, Yang Seok Ki, and Tajana Rosing. NASCENT: Near-Storage
Acceleration of Database Sort on SmartSSD. FPGA ’21.

[17] Sudharsan Seshadri, Mark Gahagan, Sundaram Bhaskaran, Trevor
Bunker, Arup De, Yanqin Jin, Yang Liu, and Steven Swanson. Willow:
A User-Programmable SSD. In USENIX OSDI ’14.

[18] Xuan Sun, Hu Wan, Qiao Li, Chia-Lin Yang, Tei-Wei Kuo, and Chun Ja-
son Xue. RM-SSD: In-Storage Computing for Large-Scale Recommen-
dation Inference. In HPCA ’22.

[19] Jianguo Wang, Dongchul Park, Yang-Suk Kee, Yannis Papakonstantinou,
and Steven Swanson. SSD In-Storage Computing for List Intersection.
In DaMoN ’16.

[20] Wilhelm et al. The Worst-Case Execution-Time Problem—Overview of
Methods and Survey of Tools. ACM Trans. Embed. Comput. Syst.

[21] Mark Wilkening, Udit Gupta, Samuel Hsia, Caroline Trippel, Carole-Jean
Wu, David Brooks, and Gu-Yeon Wei. RecSSD: near data processing for
solid state drive based recommendation inference. In ASPLOS ’21.

[22] Zsolt Woods, Louis István and Gustavo Alonso. Ibex: An Intelligent
Storage Engine with Support for Advanced SQL Offloading. Proc. VLDB
Endow.

[23] YEESTOR. Yeestor YS9203 PCIe SSD Memory Controller, 11 2021.

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

