
A Lightweight and Adaptive Cache Allocation Scheme for Content Delivery Networks

Ke Liu†, Hua Wang†⇤, Ke Zhou†,Cong Li‡
†Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China

‡Tencent Technology (Shenzhen) Co., Ltd., Shenzhen, China
(liu ke, hwang, zhke)@hust.edu.com, clusterli@tencent.com, ⇤Corresponding author

Abstract—Content delivery networks (CDNs) caching systems
usually use multi-tenant shared caching due to their operational
simplicity. However, this approach often results in interference
among applications. Dynamic cache allocation schemes based on
miss ratio curve (MRC) could be a good choice except for its high
computational overheads and performance fluctuations. In this
paper, we propose a lightweight and adaptive cache allocation
scheme for CDNs (LACA). Rather than searching near-optimal
configurations for each tenant, LACA detects in real time whether
any tenants are using cache space inefficiently (named abnormal
tenants), and then adjusts space restricted within these abnormal
tenants by constructing their local MRCs instead of the global
ones. We have deployed LACA in Tencent’s CDN system and
LACA can reduce the miss ratio by 27.1% and reduce the average
user access latency by 28.5 ms. Compared with the-state-of-the-
art schemes, LACA also achieves a higher-accuracy local MRC
with marginal overhead.

Index Terms—Content Delivery Networks, Cache Allocation,
Local Miss Ratio Curve

I. INTRODUCTION

A content delivery network (CDN), is a large distributed
system with hundreds of thousands of servers deployed around
the world [5], [13]. The servers are grouped into clusters,
where each cluster is deployed within a data center on the
edge of the Internet. The goal is to provide high availability
and performance by distributing the service spatially relative to
end users. Unlike storage systems, CDN servers do not store
the original content copies, and when a request miss occurs,
the content is retrieved from another CDN cluster or the origin
servers operated by the content provider [20].

In order to facilitate management and make full use of
storage resources and CPU resources, CDNs currently adopt
a multi-tenant hybrid storage model. All tenants use naturally
competing cache spaces for uniform storage. In addition, CDN
clusters use consistent hashing for storage [10], that is, it is
uncertain which cache server in the cluster the data of each
tenant is stored on. However, multi-tenant servers have the
added challenge of ensuring that each tenant cache meets its
performance goals; a range of production and research multi-
tenant caches currently provide different sharing policies, such
as enforcing a limit on the used storage capacity and band-
width [1], guaranteeing a level of quality-of-service (QoS) [2],
and allocating resources proportionately [14], [22].

Unfortunately, existing multi-tenant cache sharing policies
are not readily use to CDNs. On the one hand, static allocating
resources is often suboptimal for the cloud environment and
induces resource wastage, because the cloud I/O workloads
are commonly highly-skewed [3], [7], [9]. On the other hand,
consistent hashing storage and multi-tenant cache mode in-

crease the operational complexity of a customized allocation
scheme (the more machines in the cluster, the more complex
the operation). What’s more, the current cache space allocation
scheme is a time-consuming operation.

In this paper, we aim to address the management of cache
resources shared by multiple instances of a CDN cache system.
We propose LACA: a lightweight dynamic cache allocation
model with local miss ration curves (MRC). LACA does not
require to construct all tenants MRCs and does not require
to construct a complete MRC. LACA searches for a near-
optimal configuration scheme at a very low complexity and
thus improves the overall effectiveness of the cache server.
Specifically, the core idea of LACA is three-fold. First, only
tenants who are using storage resources inefficiently can be
adjusted. Second, LACA uses a lightweight machine learning
method to construct the local MRCs. Third, LACA searches for
an optimal resize using dynamic programming methods from
the local MRCs.

As the key contribution, unlike the conventional construct-
all-tenants MRCs, LACA simply detects in real time whether
any tenants are using cache space inefficiently on the cache
server and only calculates the elimination of space from the
tenants that are using storage resources inefficiently. In addi-
tion, LACA uses a machine learning method to construct local
MRCs, and compared with previous cache allocation methods,
LACA is more lightweight and we shift the cost of processing
I/O traces to that of using machine learning method to construct
the local MRCs of the inefficient use of storage resource
tenants. Furthermore, local MRC also reduces the search scope
of the dynamic programming method. Experimental results
show that LACA achieves better results in terms of hit rate and
latency. In a real system, LACA can reduce the miss rate by
27.1% and reduce the average user access latency by 28.5ms.
In a simulated environment, tested on different traces, LACA is
more accurate in the majority of cases in the constructed local
MRC.

II. BACKGROUND AND MOTIVATION

A. CDN Architecture and Challenges

(a) Request Distribution (b) Miss Ratio Carves

Fig. 1. (a) The request frequencies of top 10 tenants in CDN. (b) Miss Ratio
Carve (MRC) of ten 1, ten 2 and ten other. The ten other includes other 8
tenants and their requests are executed as if they were a tenant.

2023 Design, Automation & Test in Europe Conference (DATE 2023)

978-3-9819263-7-8/DATE23/© 2023 EDAA



TABLE I
EXISTING WELL-KNOWN CACHE ALLOCATION SCHEMES AND OUR

SCHEME. N DENOTES THE NUMBER OF TENANTS. C REPRESENTS THE SIZE
OF THE WHOLE CACHE. THE DATA OF OURS ARE FROM OUR PROPOSED

SCHEME.

Method Criteria Memory
Overhead Runtime Improvement

Original sharing cache - - -
ORPS [17] sharing cache N 0.1ms -4%-2%
PriSM [11] static allocation N ⇥ C 1ms -2%-3%
Pelikan [2] static allocation N ⇥ C 5ms -7%-6%

SHARDS [19] dynamic allocation N ⇥ C 90s -1%-9%
Mini-Sim [18] dynamic allocation N ⇥ C 300s -1%-11%

OSCA [22] dynamic allocation N ⇥ C 40s 1%-12%
APAC [8] dynamic allocation N ⇥ C 37s 1%-13%

Ours Combination of the
three (N ⇥ C) 73ms 6%-27%

Content Delivery Network (CDN) Architecture. A CDN is
a large distributed system with hundreds of thousands of servers
deployed around the world [5], [13]. The servers are grouped
into clusters, where each cluster is deployed within a data center
on the edge of the Internet. When a user requests an object, the
global load balancer of the CDN routes the request to a cluster
that is proximal to the user [4]. Next, the local load balancer
within the cluster routes the request to one or more servers
within the chosen cluster that can serve the requested object.
A consistent hash algorithm is used to store data within the
cluster [10] and for better system utilization and easy to operate,
CDN providers are not differentiated by tenant, all tenants
are stored according to a uniform hash algorithm. Each server
performs cache replacement individually, and each server has
relatively limited storage resources. When the cache space of a
sever is full, the cache of this sever needs to be replaced. This
type of storage allows each tenant to have different occupancy
on different servers, and there is no way to predict in advance
how many files a tenant will need to store on a particular server.

Why cache allocation in CDNs? A CDN aims to serve
content faster than a tenant’s origin by a specified speedup
factor. The operating cost of CDN mainly includes bandwidth
and hardware replacements and the hardware replacements cost
mainly driven by SSDs replacement [20]. The CDN providers
charge for access bandwidth, so some tenants use the CDN
nodes as storage nodes to save costs, storing some files that
do not have much traffic but need a lot of storage space
(for example, some files have a certain access cycle rule).
Furthermore, large traffic tenants compete for too much space,
resulting in a portion of the cache space being used inefficiently,
and small traffic tenants fail to compete for space, resulting in
a high miss rate. It makes the overall hit rate and latency not
optimal. We display the requests distribution and Miss Ratio
Carve (MRC) from Tencent’s CDN using the LRU algorithm
in Fig 1. As shown in Fig 1(a), the requests of ten 1 and ten 2
far exceed the counterparts of other tenants. It means that most
of the cache will be filled with the content of ten 1 and ten 2,
and other tenants will compete for the little space available.
As shown in the MRC of Fig 1(b), ten 1 can only fully utilize
80G of cache resources and there are more overall benefits at
a bigger cache size when only other tenants share the cache.

Therefore, it is necessary to include cache allocation strategies
both from the user experience and cost-saving perspective.

B. Cache Allocation Scheme

The current cache space allocation schemes mainly include
global sharing policy, static allocation policy and dynamic
allocation policy. The sharing policy is currently used by
CDN because it is simple to operate and easy to deploy.
However, some aggressive data streams may exhaust most of
the cache space, making shared policies potentially disruptive
to performance [12], [17]. The static allocation policy statically
divides cache resource across streams to deal with performance
interference problem. Static allocation policy statically allocates
cache resources to different data streams according to certain
rules (e.g. QoS, bandwidth) to handle performance interference.
However, this statically partitioning policy may underutilize the
valuable cache resources, because the access patterns of work-
loads keep changing during runtime [9], [21]. The mainstream
dynamic cache allocation schemes are based on MRC to obtain
the near-optimal cache space allocation. However, constructing
the MRC and obtaining a near-optimal configuration is a very
time-consuming operation, and it is impossible to adjust the
cache space in real time. A more comprehensive comparison
is shown in Table I, including the memory overhead, time
cost and hit rate improvement on the Original basis(values are
the average of the CDN-A1 traces (mentioned in Sec IV-A)).
Original represents a natural competitive cache without any
restrictions. Note that this is the time it takes to generate an
MRC for a tenant, and the more tenants, the longer it takes.

In this paper, based on the above three schemes, we propose
a rule-based dynamic space adjustment strategy for shared
caches. This scheme can be quickly deployed on CDN cache
servers and can dynamically adjust the cache space in real
time. This is done by not changing the CDN’s shared caching
approach and determining whether a tenant is ”overloading” the
cache space based on the collected workload and the current
access patterns of each tenant. If the tenant is ”over” occupying
cache space, we construct a local MRC for the tenant and then
calculate how much cache space the tenant needs to replace
over time. Through extensive experiments, we found that the
frequent space adjustments are basically in the top 10 tenants,
so the memory overhead and time cost are reduced significantly.
In addition, our scheme searches for the required adjustment
space only on the local MRCs, so the time cost is significantly
reduced.

III. LACA DESIGN AND IMPLEMENTATION

A. Design Overview

As shown in Fig 2, LACA performs four steps: informa-
tion collector (cluster information collector), anomaly detector,
model generator, and spatial scheduler. The cluster information
collector mainly collects the status information of each server
in the cluster. Based on the status information collected, the
anomaly detector determines whether each server has tenants
that are occupying space abnormally(mentioned in Sec III-B)
and gives an indication of which tenants need to be adjusted,



Client

B4

B1
B2

B3

B5

Status detection server

Infromation Collector

Anomaly Detector

Server

Model Generator

Spatial Schedule

x.jpg

hash

Buckets ···

Cache 
Detail

CDN Cluster

Local MRCs

Fig. 2. LACA Architecture. An simple architecture of CDN system and cache
allocation system. Information collector mainly collects the status information
of each server in the cluster. Anomaly Detector detects if there are tenant
status anomalies, then Model Generator generates local MRCs for anomalous
tenants. Finally, Spatial Scheduler calculates the space to be adjusted from the
exception tenant. The blue part on each bucket represents the distribution of a
particular tenant in the cluster.

TABLE II
INFORMATION COLLECTED BY THE INFORMATION COLLECTOR. ALL

INFORMATION IS OVER A PERIOD OF TIME.

Symbol Definition
As total accesses of the server
At total accesses of the tenant
Hs the hit rate of the server
Ht the hit rate of the tenant
St cache space occupied by the tenant
Sn the size of objects written to the cache over a period of time
S9 space occupied by 90% of the tenant’s accesses
Ot the number of objects of the tenant
Tt the access traffic of the tenant
Ut unique objects of the tenant

with the results returned to that server. After the server receives
the exception results, the model generator generates the local
MRCs of the space tenants to be adjusted according to the
feedback information, and the spatial scheduler adjusts the
corresponding space according to the local MRCs and then
prioritizes the replacement of these tenants when there are new
objects to be stored. Next, we introduce the four components
in detail.

Information Collector. The information collector is collect-
ing information from each tenant in the cluster on each cache
server. Each server needs to report the information collected at
intervals to provide the anomaly detector to analyze whether
the space occupation is abnormal. The interval time can be
freely set, the fastest setting can be 1 minute and we used it in
our experiments to collect information every ten minutes. The
information collected is presented in TABLE II.

Anomaly Detector. The anomaly detector is to detect if
a tenant is overusing storage space, and we use a decision
tree to intelligently detect if a tenant is overusing. Compared
with static allocation policy, Anomaly Detector can determine
whether a tenant is over-occupying cache space based on real-
time load information. Moreover, Anomaly Detector integrates
the state information used in the existing static allocation policy
study, and the accuracy of the determination is higher.

Model Generator. The model generator mainly generates
local MRCs for anomalous tenants. The space size setting of
the local MRC is determined by the time between information
collection. The space size of the local MRC is set to [c-x, c],

Information Feature

As At Hs ··· Ut

Labeled dataset

Labeling with MRC

Offline
Training

Classifier

Features
Now

Abnormal?

Fig. 3. Anomaly Detector Architecture.

c represents the cache space currently occupied by the tenant
and x represents the amount of data written to the cache by
the cache server over a period of time. Local MRC generation
using Gradient Boosting Machines [6] (GBM) method.

Spatial Scheduler. The spatial scheduler adjusts the size of
the space (x) occupied by the newly generated objects over
a period of time according to the local MRC. We define the
space size for each exception tenant adjustment as (C1, C2...Ci),
i is the number of abnormal tenants. The adjusted hit rate
for these tenants is reduced by (R1, R2...Ri) respectively. In
order to achieve the optimal adjustment effect, a minimum hit
rate reduction is required after the adjustment. Equation (1))
represents the target of adjustment. Equation (2)) represents the
limit of the space adjusted by each abnormal tenant. Finally, we
use dynamic programming to find the size of the space to be
adjusted for each anomalous tenant from the local MRC. When
there are new objects to be written to the cache, replacement
operations from these tenants are given priority.

min(
iX

j=0

Rj) (1)

Cx =
iX

j=0

Cj (2)

B. Abnormal State Detection
The most critical step in the effectiveness of LACA is the

ability to accurately find tenants who are over-occupying cache
space. The traditional approach is to construct an MRC for
each tenant and then see if the tenant is overusing cache space.
Obviously this approach is costly and not suitable for real-time
detection. There are also heuristics to detect tenants inefficient
use of resources, but these methods are only very accurate for
certain workload scenarios and are not applicable to dynamic
and variable workloads. By analyzing the construct MRC meth-
ods and heuristic methods, we find that determining whether a
tenant is over-occupying space is primarily determined by the
information in TABLE II, and as the workload changes, it is
only necessary to adjust the importance of these characteristics
to accurately analyze whether the tenant is using storage space
inefficiently. Recall1 is an important metric in our design, i.e.,

1Recall refers to the proportion of correct predictions that are positive to all
actuals that are positive.



15ms 310ms

Fig. 4. The MAE distribution of different models. Model Generator chooses
GBM as it robustly achieves low MAE on all traces. 15ms and 310ms represent
the time spent using GBM and NN respectively.

it is desirable that all anomalous tenants are detected, even if
some tenants that are not anomalous are detected by mistake,
which will not have a significant impact on the final allocation
scheme (it just increases the computational overhead). Through
testing we found that the recall rates using decision trees on the
Akamai, Wikipedia, Trace-A traces (mentioned in Sec IV-A)
reached 98.6%, 99.1% and 100% respectively. Therefore, we
use decision trees to analyze in real time whether a tenant is
over-occupying storage space.

Fig 3 shows the architecture of the anomaly detector. The
architecture includes offline training and online prediction. The
most important aspect of offline training is labeling the dataset.
We use the MRC to label the dataset. Whether a sample
overuses the cache space or not is mainly determined by the
threshold value of the MRC slope. The threshold value can be
freely adjusted according to the actual situation. If the total
cache space is large and the number of tenants is relatively
small, the threshold value can be set higher accordingly. In our
experiments, the threshold is set to - 0.02C , C denotes the current
cache size. The threshold value indicates that reducing the miss
rate by 1% requires 1

2 of the current cache space.

C. Construct Local MRCs
To construct a local MRC, in addition to some basic infor-

mation of tenants in TABLE II, some special features need
to be used. By analyzing the features used in the previous
construction of MRCs and the features used in the caching
algorithm, we extracted 5 special features which are described
as follows:

• Frequency. The number of total accesses to a same piece
of object in the full trace.

• Reuse time (RT). The amount of requests between two
consecutive references to the same object.

• Once-Access Traffic Ratio. The ratio of the size of
objects that have been accessed only once to the total
traffic.

• Once-Access Object Ratio. The ratio of the number of
objects that have been accessed only once to the total
number of objects.

req req req ··· req

Trace

Feature Extration Construct MRC

Replay

+···+
GBM

Training Sets

Training

req req req ··· req

Trace

Feature Extration

Predicted Local MRC

Local MRC
xx-c

Fig. 5. Model Generator Architecture. The final generation is a local MRC
(solid line box part). Note that the model training is to train a set of regression
model parameters for each spatial point, while the prediction is only loaded
with the parameters of the desired point location for prediction.

• Local Re-Accesses. The number of remaining identical
objects between two consecutive references to the same
object.

The accuracy of constructing a local MRC is the guarantee
that determines the validity of the final adjustment space.
Model Generator uses GBM to construct the local MRCs,
which outperform all other models we explored and are highly
efficient on CPUs. We also explored linear regression, logis-
tic regression, support-vector machines, and a shallow neural
network with 2 layers and 125 hidden nodes. Fig 4 shows
the mean absolute error (MAE) between the approximate and
exact MRCs of the different models on three traces across
several different cache sizes. Results on the other traces are
similar and not shown. GBM robustly achieve low MAE.
Additionally, GBM do not require feature normalization and
can handle missing values efficiently. In addition, GBM are
highly efficient to train and use for prediction. On typical CDN
server hardware, we can train our model in 10s. And, we can
run prediction on 10 cache value points in 3ms.

As shown in Fig 5, the Model Generator uses GBM to
generate local MRCs. To reduce the computational overhead
and narrow down the exploration, we end up generating a local
MRC (solid line box part). The miss rates under different cache
spaces are predicted by a series of feature information, and
then the local MRC is fitted by these miss rates. Therefore, the
most critical aspect of constructing a local MRC is not only the
choice of the expected prediction model but also the selection
of the cache space values.

The MRC is constructed by fitting the miss rate to different
cache space points. Therefore, it is important for the selection
of cache space values, especially for the construction of local
MRCs (the small range of cache space values can easily lead to
fewer or even no selected points). Therefore, to ensure that there
are 10 optional values in the interval time period (mentioned
in Sec III-A), we finally use Ct

10 as the interval value for cache
space selection in the training model. Ct represents the amount
of cache writes during the selected interval.

D. Spatial Scheduler

Finding a near-optimal configuration from the MRCs in
cache space allocation is also a more time-consuming oper-
ation, especially when there are many tenants. LACA reduces



TABLE III
SUMMARY OF THE THREE TRACES THAT ARE USED THROUGHOUT OUR

EVALUATION

Trace-Akamai Wikipedia Trace-A
Duration (Day) 3 15 7

Total Requests (Million) 81.04 2800 1200
Bytes Requested (TB) 71.6 31 14

Unique Objects
Requested (Million) 17.18 37.53 170

Unique Bytes
Requested (TB) 5 9 1.5

Mean Requested
Object Size(KB) 6 54 13

Max Requested
Object Size(MB) 79 127 29

Number of Tenants 96 178 112

Fig. 6. Local MRCs. The cache space requirements vary among tenants and
the curves of LACA are closer to the curves of the exact simulation than other
methods in most cases.

the search space in two ways, by reducing the number of tenants
searched and by reducing the scope of the search. Spatial
Scheduler only adjusts space for tenants that use cache space
inefficiently, and searches for configurations on local MRCs,
so it can find the space to adjust at 1ms. After the Spatial
Scheduler calculates the space that needs to be adjusted from
tenants that are using cache space inefficiently, the objects that
need to be written to the cache in the next period will replace
those tenants’ objects.

IV. EVALUATION

In this section, we provide comprehensive experiments to
evaluate the effectiveness of the LACA. First, we describe the
experimental setup used in this paper. Next, we evaluated the
accuracy of the learned Local MRCs. Finally, we compare
the overall efficacy of LACA in terms of hit ratio and miss
reduction.

A. Experimental Settings
Traces. We use three CDN traces, including traces, i.e.,

Trace-Akamai [15], Wikipedia [16] and a real-world trace
Trace-A that is collected from a commercial CDN system of
Company-T. Their detailed information is shown in Table III.
Note that the number of tenants represents the number of
applications in Trace-Akamai and the number of services in
Wikipedia. In our experiments, we treat each dataset as an
access to one server in the cluster.

Schemes for comparison. We compare LACA with other
three methods, including classical method SHARDS, OSCA,

TABLE IV
THE MAES OF MRC APPROXIMATION. THE BEST ONES ARE IN BOLD.

RUNTIME IS THE TIME TAKEN FOR OPTIMAL MEA.

trace SHARDS OSCA APAC LACA Runtime
Akamai-1 0.0097 0.0041 0.0049 0.0037 69ms
Akamai-2 0.0088 0.0039 0.0042 0.0036 75ms
Akamai-3 0.0031 0.0035 0.0038 0.0034 81s

Wikipedia-1 0.0071 0.0023 0.0021 0.0019 62ms
Wikipedia-2 0.0064 0.0018 0.002 0.0018 32s / 61ms
Wikipedia-3 0.0073 0.0021 0.002 0.002 39s / 75ms
CDN-A-1 0.0089 0.0027 0.0031 0.0029 91s
CDN-A-2 0.0075 0.0024 0.0022 0.0022 37s / 73ms
CDN-A-3 0.0087 0.0028 0.003 0.0028 42s / 74ms

APAC on MRC approximation. In addition, we also compare
with existing natural competition cache method (Default) in
terms of hit rate and latency.

Simulator design. We have deployed LACA at the company-
T’s CDN system using the C++ library. In addition, for more
comparative experiments, we designed a trace-based simulator
in C++ to perform a quick verification. The cache replacement
algorithm we keep the same as in the real system, using
CLOCK. We set the cache space to 1T (cache size of a cache
server). We are gradually making the simulation code and traces
open source.

B. Results of MRC Approximation

(a) Miss Rate (b) Latency

Fig. 7. Miss rate and latency in the monitoring system for 21 consecutive
days. Note that LACA was deployed online at 24:00 on day-7.

We select three tenants on each of the three datasets to test
the MRC. Our goal is to accurately construct the local MRCs of
the over-occupied cache space tenants, that is, the cache space
is generally larger. So, we set the range of cache size of each
tenants to be between 80G and 120G and the comparison results
are shown in Fig 6. We can see that although the MRCs exhibit
drastically different forms, LACA can always almost accurately
predict them, and in many comparisons its constructed MRC is
closer to the real MRC than OSCA and APAC. In addition, in
TABLE IV, we present the mean values of the Mean Absolute
Error (MAE) distribution for each tenant. The main reason for
this result is that our solution contains all the useful features
used in the previous studies (e.g., reuse time for OSCA, local
re-access for APAC) and the computation is done automatically
using machine learning method. The runtime shows that our
solution can make predictions at the millisecond level and is
more lightweight.

C. Performance Comparison
Through the monitoring system, we gathered the metrics

(miss rate and latency) for 21 days, where the 21-day time span
included one week before the deployment of LACA and two
weeks after the completion of the deployment. Fig 7 shows



Original Our

(a) Hit Rate (b) Adjustment Time

Fig. 8. (a) Object hit rate for cache servers. The upper and lower lines represent
the maximum and minimum values of the object hit rate of the cache server.
The middle lines in boxes indicate the middle values. The bottom and top side
of the box represent the quartiles. The red dot represents the overall hit rate
of the cache server. (b) Comparison of the time used to adjust the space once
as the number of tenants increases.

the change in miss rate and average access latency for 21
days, where the daily average miss rate and access latency
are calculated at a granularity of one day from the monitoring
system. We can see that the miss rate of the server reduce
by 27.1% on average, and the average access latency dropped
by 28.5ms, albeit these results may be biased due to some
errors in the monitoring system. Sincerely, LACA improved
the performance of the CDN cache system across the board. In
order to show the effect of LACA, we collected traces from 5
cache servers in the cluster, and then compared the hit rate of
each tenant after adding LACA. As shown in Fig 8(a), LACA
only slightly reduces the hit rate of the highest hitting tenant,
but greatly improves the hit rate of the lowest hitting tenant,
and makes a significant improvement in the overall hit rate of
the cache server. What’s more, Fig 8(b) shows the comparison
of the time required to adjust the space once, and it can be seen
that LACA takes significantly less time than the other solutions
due to its more lightweight design.

V. CONCLUSION

LACA solves the problem of uneven allocation of cache
resources in CDNs, and is a lightweight dynamic space allo-
cation strategy. By adjusting the tenants that inefficient use of
cache resources step by step, cache resources can be more fully
allocated to the tenants that need them more. In addition, LACA
reduces the load overhead not only by reducing the number of
MRCs built, but also by reducing the search range of the cache
space. Therefore, LACA can make a spatially adjusted strategy
within 15ms. Experimental results demonstrate that LACA can
reduce the miss ratio by 27.1% and reduce the average user
access latency by 28.5ms.

ACKNOWLEDGMENT

We thank the anonymous reviewers for all their helpful com-
ments and suggestions. This work is supported by the National
Natural Science Foundation of China (Grant No.62172180,
No.62232007, No.61821003).

REFERENCES

[1] Google memcache resource limit. https://cloud.google.com/appengine/
docs/standard/python/memcache.

[2] Pelikan cache - taming tail latency and achieving predictability. https:
//twitter.github.io/pelikan/2020/benchmark-adq.html.

[3] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike
Paleczny. Workload analysis of a large-scale key-value store. In Proceed-
ings of the 12th ACM SIGMETRICS/PERFORMANCE joint international
conference on Measurement and Modeling of Computer Systems, pages
53–64, 2012.

[4] Fangfei Chen, Ramesh K Sitaraman, and Marcelo Torres. End-user
mapping: Next generation request routing for content delivery. ACM
SIGCOMM Computer Communication Review, 45(4):167–181, 2015.

[5] John Dilley, Bruce Maggs, Jay Parikh, Harald Prokop, Ramesh Sitaraman,
and Bill Weihl. Globally distributed content delivery. IEEE Internet
Computing, 6(5):50–58, 2002.

[6] Jerome H Friedman. Greedy function approximation: a gradient boosting
machine. Annals of statistics, pages 1189–1232, 2001.

[7] Qi Huang, Helga Gudmundsdottir, Ymir Vigfusson, Daniel A Freedman,
Ken Birman, and Robbert van Renesse. Characterizing load imbalance in
real-world networked caches. In Proceedings of the 13th ACM Workshop
on Hot Topics in Networks, pages 1–7, 2014.

[8] Rongshang Li, Yingtian Tang, Qiquan Shi, Hui Mao, Lei Chen, Jikun
Jin, Peng Lu, and Zhuo Cheng. Accurate probabilistic miss ratio curve
approximation for adaptive cache allocation in block storage systems.
In 2022 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 1197–1202. IEEE, 2022.

[9] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li, Changhoon Kim,
Vladimir Braverman, Xin Jin, and Ion Stoica. Distcache: Provable load
balancing for large-scale storage systems with distributed caching. In
17th USENIX Conference on File and Storage Technologies (FAST 19),
pages 143–157, 2019.

[10] Bruce M Maggs and Ramesh K Sitaraman. Algorithmic nuggets in
content delivery. ACM SIGCOMM Computer Communication Review,
45(3):52–66, 2015.

[11] Raman Manikantan, Kaushik Rajan, and Ramaswamy Govindarajan.
Probabilistic shared cache management (prism). In 2012 39th Annual
International Symposium on Computer Architecture (ISCA), pages 428–
439. IEEE, 2012.

[12] Sparsh Mittal. A survey of techniques for cache partitioning in multicore
processors. ACM Computing Surveys (CSUR), 50(2):1–39, 2017.

[13] Erik Nygren, Ramesh K Sitaraman, and Jennifer Sun. The akamai
network: a platform for high-performance internet applications. ACM
SIGOPS Operating Systems Review, 44(3):2–19, 2010.

[14] Qifan Pu, Haoyuan Li, Matei Zaharia, Ali Ghodsi, and Ion Stoica.
Fairride:near-optimal, fair cache sharing. In 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 16), pages 393–
406, 2016.

[15] Anirudh Sabnis and Ramesh K Sitaraman. Tragen: a synthetic trace
generator for realistic cache simulations. In Proceedings of the 21st ACM
Internet Measurement Conference, pages 366–379, 2021.

[16] Zhenyu Song, Daniel S Berger, Kai Li, Anees Shaikh, Wyatt Lloyd,
Soudeh Ghorbani, Changhoon Kim, Aditya Akella, Arvind Krishna-
murthy, Emmett Witchel, et al. Learning relaxed belady for content
distribution network caching. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages 529–544, 2020.

[17] Jian Tan, Guocong Quan, Kaiyi Ji, and Ness Shroff. On resource pooling
and separation for lru caching. Proceedings of the ACM on Measurement
and Analysis of Computing Systems, 2(1):1–31, 2018.

[18] Carl Waldspurger, Trausti Saemundsson, Irfan Ahmad, and Nohhyun
Park. Cache modeling and optimization using miniature simulations. In
2017 USENIX Annual Technical Conference (USENIX ATC 17), pages
487–498, 2017.

[19] Carl A Waldspurger, Nohhyun Park, Alexander Garthwaite, and Irfan
Ahmad. Efficient mrc construction with shards. In 13th USENIX
Conference on File and Storage Technologies (FAST 15), pages 95–110,
2015.

[20] Juncheng Yang, Anirudh Sabnis, Daniel S Berger, KV Rashmi, and
Ramesh K Sitaraman. C2dn: How to harness erasure codes at the edge
for efficient content delivery. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), pages 1159–1177, 2022.

[21] Juncheng Yang, Yao Yue, and KV Rashmi. A large scale analysis
of hundreds of in-memory cache clusters at twitter. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20),
pages 191–208, 2020.

[22] Yu Zhang, Ping Huang, Ke Zhou, Hua Wang, Jianying Hu, Yongguang Ji,
and Bin Cheng. Osca: An online-model based cache allocation scheme
in cloud block storage systems. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20), pages 785–798, 2020.


