
SPOILER-ALERT: Detecting Spoiler Attacks
Using a Cuckoo Filter

Jinhua Cui
Hunan University
Changsha, China

jhcui@hnu.edu.cn

Yiyun Yin
Hunan University
Changsha, China

yiyun@hnu.edu.cn

Congcong Chen
Hunan University
Changsha, China

chencongcong@hnu.edu.cn

Jiliang Zhang∗
Hunan University
Changsha, China

zhangjiliang@hnu.edu.cn

Abstract—Spoiler attacks leak physical address information,
which is exploited to accelerate reverse engineering of virtual-
to-physical address mapping, thus greatly boosting Rowhammer
and cache attacks. However, existing approaches that detect data-
leakage attacks no longer suit the requirements of identifying
Spoiler. This paper proposes SPOILER-ALERT, the first hardware-
level mechanism to detect the address-leakage Spoiler attacks
in real time. It leverages a cuckoo filter module embedded into
Memory Order Buffer component to screen buffer addresses on-
the-fly. We further optimise the filtering algorithm to reduce
false positives. We assess the effectiveness and performance based
on prototype implementations, which achieve a detection rate
of 99.99% and negligible performance loss. Finally, we discuss
potential reactions of our detection mechanism after a Spoiler
attack was discovered.

Index Terms—detection mechanism, information leakage,
cuckoo filter, transient execution attack

I. INTRODUCTION

Microarchitectural vulnerabilities are unintended design

flaws in hardware and could be exploited to compromise an

operating system (OS) and steal confidential data. Worse yet,

discovering such vulnerabilities is much more difficult, and the

software-level patches may not work well on current CPU gen-

erations. Instead, CPU vendors may need to redesign hardware

components. A typical example of such a microarchitecture

design is transient execution, an optimization technique avail-

able on modern processors. By virtue of transient execution,

application code can gain better performance and efficiency

during computation. However, some well-known attacks that

exploit this optimization technique, such as Meltdown [1] and

Spectre [2], have caused breaches of data confidentiality in a

benign OS and even a trusted execution environment (TEE).
Spoiler [3] as a special transient execution attack only targets

the address information of a victim application while attacks

like Meltdown directly leak secret data. In particular, Spoiler

offers attackers a way to accelerate reverse engineering of

virtual-to-physical address mapping that may finally lead to

data breaches. Thanks to the way virtual-to-physical address

mappings can be speeded up by 256 times, and the search

of eviction sets can be improved by 4096 times. With efficient

construction of such eviction sets, it has been proven that cache

and Rowhammer [4] attacks can be boosted significantly.
Many hardware- and software-based approaches [5–15] have

been proposed to mitigate transient execution attacks. However,

* Jiliang Zhang is the corresponding author.

most of the approaches are to defend against data-leakage

attacks. Hence, they cannot work on Spoiler that only targets

address information rather than secret data. Typically, defenses

like NDA [15] and SSBD [14] can stop speculative load

behaviors, but they slow down the performance seriously (e.g.,

with up to 125% performance loss by the NDA). Additionally,

the aforementioned approaches are incapable of discovering the

Spoiler attacks. Thus, it highlights the importance of designing

an effective and low-overhead detection mechanism for Spoiler.

However, identifying malicious Spoiler behaviors is non-

trivial as the attacker only leaks indirect information or inter-

mediate state during program execution. In particular, Spoiler

exploits the dependency resolution logic serving the speculative

load, which hence makes users difficult to notice those subtle

changes of microarchitectural state. In addition, constructing a

high-accuracy detection system is challenging, because it needs

to achieve low storage and performance overhead as well as few

false positives and negatives.

In this paper, we propose a detection mechanism named

SPOILER-ALERT that is able to effectively monitor all Spoiler’s

malicious behaviors. To the best of our knowledge, SPOILER-

ALERT is the first approach for Spoiler detection. Our key

observation is that Spoiler needs to fill the store buffer (SB)

with n addresses that have the same offsets. With this feature,

we utilize a cuckoo filter to record the address information, and

warn users of an attack detected once the number of recorded

addresses reaches a threshold. We further inspect the internals

of the cuckoo filtering algorithm, and conduct optimizations

to lower the false positives. We assess SPOILER-ALERT based

on prototype implementation on gem5 platform. Experimental

results demonstrate that SPOILER-ALERT can effectively detect

Spoiler with a 99.9% detection rate and 0.24% performance

overhead on average. Therefore, the proposed mechanism gains

good capability of being able to know Spoiler attacks in real

time to some extent while benign applications are not affected.

In short, this paper has three major contributions:

• We propose a detection mechanism, SPOILER-ALERT, to

successfully detect the microarchitectural Spoiler attacks

with the assistance of a cuckoo filter module. We also

summarize three key traits used for our detection approach

after analyzing the internals of Spoiler.

• We design and implement the first Spoiler detection mech-

anism on the gem5 simulator, and assess the effectiveness

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA 

	



and performance of SPOILER-ALERT using applications

from SPEC 2006.

• We discuss potential countermeasures to prevent Spoiler

attacks discovered at runtime from two perspectives:

adding noises, and flushing the SB.

II. THREAT MODEL AND DESIGN GOALS

We assume that Spoiler can be launched smoothly on a

target system. This attack needs a precalculated number of store

instructions to fill the store buffer (SB). These store instructions

compete for resources and are blocked in hardware pipeline, so

that the subsequent load instructions in Memory Order Buffer

(MOB) can bypass them and be executed in advance. The

attacker can infer the physical address information by means

of the generation of wrong address dependency during the

speculative execution. Therefore, we assume that the attacker

and the victim are located on the same physical core. The

malicious process runs on the target system with only user

privilege, so it cannot execute privileged code and access

virtual-to-physical address mappings (e.g., page mappings for

a file). Furthermore, we assume that the target system does not

deploy any security mechanisms to prevent speculative load

execution (e.g., setting SSBD).

Our goal in this paper is to propose a practical detection

approach to discover potential Spoiler attacks at runtime. This

approach achieves: (1) high detection rates; (2) negligible

runtime performance overhead and storage overhead; (3) zero

modifications to the OS.

III. SPOILER ANALYSIS

A. Key traits of Spoiler Attacks

Spoiler [3] is a particular type of transient execution attack.

It exploits advanced microarchitecture techniques available in

modern processors, i.e., speculative load and the dependency

resolution logic, to leak the mapping information of physical

addresses. In fact, Spoiler only reveals the 12th to 19th signif-

icant bits of a physical address.

In Spoiler attacks, the Memory Order Buffer (MOB) is

a key component to manage data access operations. Load

instructions can be executed ahead of time and reordered by

the MOB. Spoiler first makes the store buffer (SB) blocked

through execution of plenty of store instructions. It then runs

a speculative load instruction. During committing the load

instruction, the MOB will sort all instructions and check the ad-

dress dependency. When the check for an address dependency

fails, the execution of the load instruction will be blocked,

thus causing a high delay. Finally, the attacker can get a set

of virtual addresses mapped to the same physical address (at

least the lowest 20 bits are consistent). With the assistance of

Spoiler, Rowhammer and cache side-channel attacks can be

boosted significantly. For instance, Prime+Probe’s construction

of eviction sets can be accelerated by 4096 times.

Three key traits. According to the attack procedures of

Spoiler, we observed three key traits summarized as follows:

T1. The attacker depends on large numbers of store in-

structions and one load instruction, and the offsets of these

instruction addresses are identical.

T2. The store buffer is filled up with the store instructions.

T3. The store instructions on each sequential page are

forwarded to the CPU iteratively.

The three traits stemmed from Spoiler are the basis for the

detection mechanism. In the next section, we utilize them to

achieve our goals.

B. Why is the Cuckoo Filter able to Identify Spoiler?

A filter is usually used to test whether an element belongs

to a large data set. A prime example of such a filter is cuckoo

filter [16], a space-efficient probabilistic data structure. In our

scenario, to determine the Spoiler behaviors, plenty of CPU

store instructions and their related data have to be monitored

and recorded on-the-fly. Fortunately, a cuckoo filter allows

defining our private variables (e.g., for the numbers of Spoiler’s

traits), so the storage overhead could be reduced greatly due to

no involvement of another filter. On the other hand, the cuckoo

filter supports dynamic deletion to existing elements. This

feature can be used to optimize our detection mechanism to

further reduce false positives. In contrast, the bloom filter [17]

never embraces the aforementioned advantages, while other

filter variants offering dynamic deletion and duplicate insertion

also suffer from varying storage and performance overhead.

Hence, we choose the cuckoo filter and retrofit it to achieve a

high-accuracy and lower-overhead detection approach.

IV. SPOILER-ALERT

A. Overview

An attacker requires a large number of store instructions to

launch Spoiler. In the process of such attacks, the store buffer

(SB) is filled up, and a subsequent load will be blocked because

of incorrect address dependency found. Our proposed approach,

SPOILER-ALERT, attempts to determine whether the store in

the SB matches the three attacking traits (see Section III).

We deploy the detection mechanism in the processor’s Mem-

ory Order Buffer (MOB). An overview of microarchitecture

design of SPOILER-ALERT is shown in Fig. 1. The CPU fetches

instructions from L1 i-cache in order and then forwards them to

the instruction queue. Once done, the instructions are decoded

into micro operations during the decode stage. After an access

instruction is executed, the results are submitted to L1 d-

cache. Because the SB in the MOB can monitor each store

instruction executed by the CPU, our detection mechanism can

be embedded into it to track and record the address of each

store. It further counts the store instructions with Spoiler’s

traits. If the value of the counter reaches a specified threshold,

which means the system may be under the Spoiler attack.

B. Design Challenges and Solutions

Low overhead. Spoiler attacks rely on considerable store in-

structions with same offsets. SPOILER-ALERT has to take time

to find such instructions and keep a record of them in an extra

storage region. Naively, we can utilize two filters to accomplish

our detection. The first records the fingerprint derived from the

store instructions and the corresponding offsets, which in turn

is used to match the fingerprint of instructions performed by

Spoiler attacks. The other records the number of occurrences of

!

!



Instruction 
Queue

μOP

Memory Order 
Buffer

Memory Order 
Buffer

Cuckoo 
Filter

Response

Counter
[Time Limit]

Counter
[Time Limit]

L2 Cache

L2 
TLB

L1 
D-Cache

L1 
D-TLB

L1 
D-Cache

L1 
D-TLB

Decoder

Instruc-
tions

Instruc-
tions Store Adress x

h1(x)h2(x)

f(x)

Fig. 1: Overview of SPOILER-ALERT

those matched fingerprints, which is used to count how many

times the attack happens. However, this method surely incurs

more performance and storage overhead.

Alternatively, we make use of a feature of the cuckoo filter,

which allows acquiring two types of data (e.g., the fingerprint

and the number) by only a single filter. Comparing with

multiple filters, the unique filter in SPOILER-ALERT has less

resource usage, which in turn brings significant decrease of the

runtime cost and complexity.

False positives. The detection mechanism must be able to

distinguish the attacker’s store instructions and those of benign

applications. The detection rate and false positives, thereby, can

be guaranteed with little side effects to the normal programs.

The same-offset store instructions that are not controlled by

attackers may also be accumulated over time, even in a benign

program. As a result, the filter may gradually be filled up and

the threshold is eventually hit, leading to false positives. In

SPOILER-ALERT, we utilize two-step checks to assert whether

the identified behaviors are genuinely from attackers. We first

perform a coarse-grained detection where it compares the off-

sets for equivalence. Then it determines whether the deference

of address of consecutive stores satisfies the attacker’s traits.

When both conditions above are true, it starts counting and

checks if the counter hits the threshold pre-specified. If it is

the case, the attacks were happening. Otherwise, it may be a

false positive. Furthermore, we periodically reset the counters

and clean the recorded data to reduce such false positives.

C. Cuckoo Filter

Cuckoo filters [16] offer the ability to dynamically add and

remove elements to / from a hash table. The table is composed

of a bucket array where each row is called a bucket. The

bucket is used to store fingerprint information associated with

the inserted element x. The fingerprint can be denoted as xf ,

which is derived from a function of fingerprint f . Cuckoo

filters provide a configurable length for the fingerprint xf , for

instance, which can be set to 2, 4, and 8 bits. Thus, the filters

do not incur noticeable storage overhead. For each inserted

element x, there are two hash functions used to derive the

bucket indexes (h1(x) and h2(x)) respectively, as shown in

formula (1) and (2). Besides, the two functions expose an

important property, i.e., one bucket index idx2 can be derived

by idx1 and its hashed fingerprint, no matter if idx2 is h1(x)
or h2(x). The logic above can be expressed in the formula (3).

h1(x) = hash(x) (1)

h2(x) = h1(x)⊕ hash(xf ) (2)

idx2 = idx1 ⊕ hash(xf ) (3)

During insertion of element x in the cuckoo filter, if a

free slot is found in different buckets h1(x) and h2(x), the

fingerprint of x will be placed in h1(x) first. If the two buckets

are filled up, the cuckoo filter has to pick the spare bucket

h2(x) and randomly remove the corresponding element (e.g.,
a) from it. So the previous a can be substituted with x. With the

formula (3), a can also obtain the spare bucket index. This is a

process of relocation of the element a, which may be repeated

many times until a slot is available.

If the same element is inserted k ∗p times, the next insertion

will fail, i.e., the cuckoo filter can only insert the same element

at most k∗p times. The k refers to the number of hash functions,

and the p refers to the number of elements in one bucket.

D. Microarchitectural Implementation

Our detection mechanism identifies the store addresses with

Spoiler’s traits and reminds the users that the system was

being under the risks. The mechanism is embedded into the

store buffer (SB) and consists of four pieces: the cuckoo filter,

the filtering algorithm, the counter, and controlling of the

maximum time. These four parts are designed to implement

SPOILER-ALERT according to the three traits. Fig. 2 describes

the important microarchitecture details.

Adapting the cuckoo filter. We adapt the cuckoo filter to

enable our detection approach. In the light of the T1, SPOILER-

ALERT needs recording the number of store addresses that have

same offsets to conduct the runtime detection. Normally, only

one type of fingerprint, either the addresses of store instructions

or the numbers of store addresses, can be held in a cuckoo

filter. However, as discussed in Section IV-B, we utilize an

advanced feature of cuckoo filters, which allows inserting same

elements at most k ∗p times without need for special hardware

or software implementations. Thus, SPOILER-ALERT can make

direct comparisons of the fingerprints of the store addresses and

the corresponding numbers to determine malicious behaviors.

As shown in Fig. 2, SPOILER-ALERT takes the offsets of

store addresses as the final input of the cuckoo filter, and

stores their fingerprints into it. With the T1 and the adapted

cuckoo filter, whenever two bucket arrays are filled with the

fingerprint of the same offset, the following new insertion

with the same offset fails and returns NotEnoughSpace. This

clearly reflects malicious Spoiler attacks being against the

system (e.g., stealing secrets).

Filtering algorithm. SPOILER-ALERT further filters the

store addresses to avoid any potential false positives where

the addresses without attack traits may occur many times.

Note that two consecutive store operations executed by the

Spoiler attacker should have different addresses and reside

on sequential pages (e.g., 0x1000, 0x2000), as pointed out in

!

!



Store Address
VA[11:0]

Fingerprint
OK

Last Store Address

NotEnoughSpace

Counter
[Time Limit]
Counter

[Time Limit]0x10000x1000 &&

Hash1

Hash2

f(x)

f(x) f(x) f(x) f(x)

f(x) f(x) f(x)

Fig. 2: The detection mechanism.

the T3. Therefore, SPOILER-ALERT only matches and counts

the desirable store addresses. After the two procedures by the

cuckoo filter and the filtering algorithm, a store address is

considered as meeting the Spoiler’s traits. In this case, we

increase the counter.

In addition, the Spoiler attacker may perform out-of-order

accesses. For instance, she could access pages 1, 3, 2, and 4

in this order to bypass the detection. However, since SPOILER-

ALERT not only asserts whether the access is from sequential

pages (e.g., the difference is equal to 0x1000), but also judges

whether the page difference is a multiple of a single page (e.g.,

0x1000). Thus, simply shuffling of page accesses is incapable

of circumventing SPOILER-ALERT’s detection.

Threshold. The counter for counting the attacking traits

needs to set up a threshold to identify the Spoiler attack at

its earliest time. According to the T2, the malicious store

instructions will fill up the SB, so we can take the SB size

as the threshold. Once the counter reaches the pre-specified

threshold, SPOILER-ALERT warns the users of being under

Spoiler hazards.

Maximum time. In malicious or benign executions, the

counter value may sometimes exceed the threshold. To this

end, SPOILER-ALERT pre-sets a maximum time for both the

cuckoo filter and the counter. When the maximum is capped,

the filter cleans up the recorded data and restarts a new round

of detection. Meanwhile, the counter is reset.

Caveats. The original Spoiler exploits the aliasing effect

available in modern processors, in which the load instructions

are checked with the 12-19 bits of the store buffer entries.

However, such sophisticated mechanisms are not present in the

gem5 simulator. Instead, we could simulate the Spoiler attacks

in a straightforward way. For instance, we obtain the physical

addresses of each store and the load, and check if the 0–19 bits

of both addresses conflicts. If so, it means a high delay occurs.

However, note that Spoiler attacks not only rely on the

dependency resolution logic, but also contain three key traits

summarized in Section III. In particular, the former are mostly

independent of our detection mechanism while the latter is the

key of detecting malicious behaviors. Although it is hard to

reproduce Spoiler perfectly on the gem5, the key traits stemmed

from Spoiler are strictly consistent with those in the simulator

and hardware implementation. Hence, SPOILER-ALERT is able

to identify such attacks accurately and completely.

V. EVALUATION

A. System Settings

We evaluate SPOILER-ALERT on the gem5 simulator [18]

that is an open modular platform for computer system archi-

tecture research. The gem5 is equipped with a 4-core out-of-

order processor with x86 instruction set architecture (ISA).

Each core contains private L1, L2 cache. Table I shows the

specific CPU configuration we used in the experiment. The

detection code is mainly placed in the SB component. Our

detection mechanism is able to identify the malicious attacks

accurately and effectively. We assess SPOILER-ALERT from

aspects of the effectiveness and impact on benign applications

as well as runtime overhead and storage overhead.

We run 15 individual applications of SPEC CPU 2006 in

SPOILER-ALERT to observe the impact (e.g., false positive).

We first perform 100 million instructions (to warm up) before

starting the workloads. We simulate execution of one billion

instructions and count the corresponding execution time. The

baseline in our experiments is the result of native run on the

gem5 with SPOILER-ALERT disabled.

TABLE I: The parameters of the gem5 simulator.

Component Parameter

CPU 4cores, 2.6GHz
Consistency strategy MESI

Instruction queue 8-width, 64-entry
Load buffer/store buffer 8-width, 56-entry

Re-order buffer 8-width, 192-entry
L1 instruction/data cache 32KB/48KB, 4-way, 64B cacheline, 2 cycles

L2 cache 512KB, 16-way, 64B cacheline, 20 cycles
DRAM 4096MB DDR3 1600 8x8

B. Detection Results

We implement Spoiler attacks on the modified gem5 sim-

ulator, and observe the malicious behaviors when SPOILER-

ALERT is disabled and enabled, respectively. The result shows

that SPOILER-ALERT is able to successfully detect Spoiler

attacks before the conflict comes up. Once detected, SPOILER-

ALERT sends a warning message to the user and can easily

deploy countermeasures discussed in Section VI, which is

able to protect physical address information from leakage.

By conducting real detections to the original Spoiler attacks

[19] (simulated) and CPU-intensive (SPEC 2006) benchmark,

SPOILER-ALERT achieves a detection rate of 99.99% without

any false positives.

C. Counter Resetting

Theoretically, both the cuckoo filter and the counter will

reach the given threshold after going through a long time of

execution. Such a case finally causes a false positive. For this

reason, we reset the counter and erase the recording data in the

cuckoo filter periodically not to exceed the threshold.

To determine the time to reset, we run the Spoiler attack

and SPEC CPU 2006 benchmark, and measure the average and

the maximum time of hitting the threshold of each application

workload, respectively. The results are shown in Table II. We

!

!



can clearly see that the average time of reaching the threshold

shows huge time differences between Spoiler and individual

benign applications. The differences in the maximum time

(column 3) are further enlarged. So, in our experiment, we

choose the value of 0.0115 seconds as the time interval to reset

the cuckoo filter and the counter. The interval chosen is slightly

greater than the Spoiler’s maximum to ensure the accuracy of

the detection and reduce false positives.

TABLE II: The average and maximum time to reach the threshold.

Application Average time (s) Maximum time (s)

Spoiler 0.0048 0.0113
bzip2 3142.1946 7537.1262
gcc 16662.7933 109609.9273
mcf 19063.6319 20778.4408

perlbench - -
milc - -

leslie3d - -
soplex - -
povray - -
hmmer - -

lbm - -
sjeng - -

specrand f - -
specrand i - -
xalancbmk - -

gobmk - -

D. Impact on Benign Applications

SPOILER-ALERT must have a low false positive in any

detection task. We run 15 benign applications in SPEC CPU

2006 along with SPOILER-ALERT to test the potential impact.

Experimental results show that our detection mechanism does

not cause any false positives for these applications. As men-

tioned in Section V-C, a pre-specified time interval is used to

reset the cuckoo filter and the counter. This operation gets rid

of some false positives.

E. Overhead Evaluation

Performance overhead. We utilize SPEC CPU 2006

benchmark to evaluate the runtime performance overhead of

SPOILER-ALERT. The average overhead incurred is 0.24%

compared with the baseline where the detection is disabled.

As shown in Fig. 3, the maximum overhead is 0.55% while

the minimum is only 0.03%.

Storage overhead. The storage overhead mainly stems from

the implemented cuckoo filter module that is embedded into

the store buffer (SB). We allocate 4 × 4096 = 16384 entries,

in each of which a 12-bit fingerprint is placed. In total, our

SPOILER-ALERT requires an additional 24 KB of storage space

(4.6% compared with the L2 cache size).

VI. DISCUSSION

A. Countermeasures against the Detected Attacks

Adding store/load noises. Spoiler needs to continuously

execute a certain number of store instructions and a subsequent

load instruction in a moving time window. To ensure the

accuracy of the obtained physical address information, the

attacker must make the number of store instructions in each

0.00%

0.20%

0.40%

0.60%

Pe
rf

or
m

an
ce

 O
ve

rh
ea

d

Fig. 3: The performance overhead of SPOILER-ALERT.

window sufficient to fill the SB, that is, assuring that the store

instructions are owned by the attacker process only.

Therefore, we can prevent the attacker from obtaining the

correct physical address information by destroying the at-

tacker’s store instructions in the moving window, or causing

much high latency. Specifically, after a Spoiler attack is de-

tected, we can execute some additional store instructions to fill

the SB. Assuming that the attacker’s load instruction collides

with the additional store instructions, the attacker could only

get incorrect physical address information. Besides, we can add

speculative load instructions to generate much high latency,

making it difficult for the attacker to identify the one generated

by the attacker’s load.

Flushing the SB. Spoiler needs store instructions to be

wholly resident in the SB. If we change the condition, i.e.,

flushing some filled store instructions, the attacker cannot

infer the correct physical address information from the timing

observation. Therefore, after finding Spoiler attacks, we can

clean the SB or selectively replace some entries to break this

fixed moving window, thus invalidating Spoiler.

B. Limitation

There perhaps exists a corner case that SPOILER-ALERT may

fail to identify Spoiler attacks in the first place when the counter

is maliciously reset in the middle of an attack. This means that

an attack could be reported with delays. However, our detection

approach never misses out a real attack (false negative). Since

the attacker has to continue accessing the following pages to

achieve its goals, the threshold will eventually be capped in the

subsequent time windows. Thus, SPOILER-ALERT is capable

of discovering the attack behaviors during runtime.

VII. RELATED WORK

Transient-execution defenses. Multiple defenses have

shown that transient execution attacks can be alleviated by (1)

preventing transient instructions from accessing secret data; (2)

protecting the microarchitecture state during transient execu-

tion; (3) disrupting the leakage channel [20]. OO7 [5] detects

the vulnerable code locations through static analysis and then

inserts a small number of fences to force code instructions

to be executed in sequence. SafeSpec [8] and InvisiSpec [9]

separate instructions’ speculative state and committable state.

The data generated by the speculative instruction is stored

!

!



in a temporary structure and will be transferred to the cache

when the speculation is checked correctly. In addition, adding

noises into attacker’s side channels used for data transmission is

possible. For example, it can randomize the cache access time

[12] or disable the read time stamp counter (RDTSC). Thus, it

is difficult for attackers to acquire the real data.

Comparing with the data-leakage defenses above, there are

only a few defense strategies that can alleviate address-leakage

attacks, i.e., Spoiler attacks studied in this work. Intel releases

SSBD microcode update [14] to resist Spectre V4 [13]. It in-

serts a fence between the store and load instructions to disable

speculative execution. Since Spoiler relies on such optimization

(i.e., speculative load), SSBD is effective against Spoiler.

However, enabling the SSBD protection must configure the

BIOS manually. Further, it could bring a serious performance

impact. NDA [15] can defend against all speculative execution

attacks, but it incurs up to 125% performance overhead.

Detection methods. [21] designs a fine-grained non-intrusive

detection system to identify Spectre-type attacks. Impor-

tantly, it tracks the cyclic interference, which is shared by

all known cache side-channel attacks based on competition.

SpecTaint [22] performs dynamic taint analysis to capture

data flow patterns on speculative execution paths. It fi-

nally deploys a semantic-based detector to discover available

Spectre gadgets. Notably, there exists two hardware perfor-

mance counters (HPCs): Cycle Activity:Stalls Ldm Pending

and Ld Blocks Partial:Address Alias. Both have a strong pos-

itive/negative correlation with Spoiler to some extent. Although

it is possible to detect Spoiler by monitoring the two counters,

not all of the CPUs have support for the two HPCs.

Our proposed detection mechanism that focuses on analyzing

instruction addresses is able to accurately detect the address-

leakage Spoiler attacks. The resulting SPOILER-ALERT only

introduces less than 1% performance overhead and low storage

overhead, which makes it more practical for deployment. In

addition, SPOILER-ALERT is a pure hardware design without

modification to the OS/software.

VIII. CONCLUSION

In this work, we highlight the need for accurately identifying

the Spoiler attacks, one popular type of transient execution

attacks. We have proposed a hardware-based detection mech-

anism named SPOILER-ALERT, which introduces a cuckoo

filter module in the Memory Order Buffer to detect malicious

Spoiler’s behaviors dynamically. Our prototype implementa-

tion demonstrates the effectiveness of SPOILER-ALERT, which

gains a high detection rate and only negligible performance

overhead. Moving forward, we hope this work initiates seri-

ous consideration for the deployment of both address-leakage

defense and detection mechanisms in future processor design.

IX. ACKNOWLEDGMENTS

We thank the anonymous DATE reviewers for their con-

structive suggestions. This work is supported by the Na-

tional Natural Science Foundation of China under Grant No.

62122023, U20A20202 and 61874042, the Science and Tech-

nology Innovation Program of Hunan Province under Grant No.

2021RC4019, and the Natural Science Foundation of Fujian

Province under Grant No. 2021J01544.

REFERENCES

[1] P. K. et al., “Spectre attacks: Exploiting speculative execution,”
in IEEE S&P, 2019, pp. 1–19.

[2] V. Kiriansky and C. A. Waldspurger, “Speculative buffer over-
flows: Attacks and defenses,” CoRR, vol. abs/1807.03757, 2018.

[3] S. I. et al., “SPOILER: speculative load hazards boost rowham-
mer and cache attacks,” in USENIX Security Symposium, 2019,
pp. 621–637.

[4] Y. K. et al., “Flipping bits in memory without accessing them:
An experimental study of DRAM disturbance errors,” in ISCA,
vol. 42, 2014, pp. 361–372.

[5] G. Wang, S. Chattopadhyay, I. Gotovchits, T. Mitra, and A. Roy-
choudhury, “oo7: Low-overhead defense against spectre attacks
via program analysis,” IEEE Trans. Software Eng., vol. 47,
no. 11, pp. 2504–2519, 2021.

[6] O. Oleksenko, B. Trach, M. Silberstein, and C. Fetzer, “Specfuzz:
Bringing spectre-type vulnerabilities to the surface,” in USENIX
Security Symposium, 2020, pp. 1481–1498.

[7] E. M. Koruyeh, S. H. A. Shirazi, K. N. Khasawneh, C. Song, and
N. B. Abu-Ghazaleh, “Speccfi: Mitigating spectre attacks using
cfi informed speculation,” in IEEE S&P, 2020, pp. 39–53.

[8] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin,
D. Ponomarev, and N. B. Abu-Ghazaleh, “Safespec: Banishing
the spectre of a meltdown with leakage-free speculation,” in
DAC, 2019, pp. 1–6.

[9] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. W. Fletcher, and
J. Torrellas, “Invisispec: Making speculative execution invisible
in the cache hierarchy,” in MICRO, 2018, pp. 428–441.

[10] S. Ainsworth and T. M. Jones, “Muontrap: Preventing cross-
domain spectre-like attacks by capturing speculative state,” in
ISCA, 2020, pp. 132–144.

[11] J. Fustos, F. Farshchi, and H. Yun, “Spectreguard: An efficient
data-centric defense mechanism against spectre attacks,” in DAC,
2019, pp. 1–6.

[12] D. Trilla, C. Hernández, J. Abella, and F. J. Cazorla, “Cache
side-channel attacks and time-predictability in high-performance
critical real-time systems,” in DAC, 2018, pp. 98:1–98:6.

[13] J. Horn, “Speculative execution, variant 4: speculative store by-
pass,” https://bugs.chromium.org/p/project-zero/issues/detail?id=
1528, 2018.

[14] L. Culbertson, “Addressing new research for side-
channel analysis,” https://newsroom.intel.com/editorials/
addressing-new-research-for-side-channel-analysis/, 2018.

[15] O. Weisse, I. Neal, K. Loughlin, T. F. Wenisch, and B. Kasikci,
“NDA: preventing speculative execution attacks at their source,”
in MICRO, 2019, pp. 572–586.

[16] B. Fan, D. G. Andersen, M. Kaminsky, and M. Mitzenmacher,
“Cuckoo filter: Practically better than bloom,” in CoNEXT, 2014,
pp. 75–88.

[17] B. H. Bloom, “Space/time trade-offs in hash coding with allow-
able errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[18] N. L. B. et al., “The gem5 simulator,” SIGARCH Computer
Architecture News, vol. 39, no. 2, pp. 1–7, 2011.

[19] S. I. et al., “Spoiler,” https://github.com/saadislamm/SPOILER,
2019.

[20] W. Xiao-Hui, H. Ye-Ping, M. Heng-Tai, Z. Qi-Ming, and
L. Shao-Feng, “Microarchitectural transient execution attacks
and defense methods,” Journal of Software, vol. 31, no. 2, pp.
544–563, 2020.

[21] A. Harris, S. Wei, P. Sahu, P. Kumar, T. M. Austin, and M. Ti-
wari, “Cyclone: Detecting contention-based cache information
leaks through cyclic interference,” in MICRO, 2019, pp. 57–72.

[22] Z. Q. et al., “Spectaint: Speculative taint analysis for discovering
spectre gadgets,” in NDSS, 2021, pp. 21–25.

!

!


	Select a link below
	Return to Previous View
	Return to Main Menu


