2023 Design, Automation & Test in Europe Conference (DATE 2023)

AGDM: An Adaptive Granularity Data Migration
Strategy for Hybrid Memory Systems

Zhouxuan Peng, Dan Feng*, Jianxi Chen*, Jing Hu, Chuang Huang
Wuhan National Laboratory for Optoelectronics, Key Laboratory of Information Storage System of MoE,
School of Computer Science & Technology, Huazhong University of Science & Technology, Wuhan, China
Email:{hustpzx, dfeng, chenjx, hujingreal, huangchuang} @hust.edu.cn

Abstract—Hybrid memory systems show strong potential to
satisfy the growing memory demands of modern applications by
combining different memory technologies. Due to the different
performance characteristics of hybrid memories, a data migration
strategy that migrates hot data to a faster memory is critical to
the overall performance. Prior works have focused on identifying
hot data and migration decisions. However, we find that the
fix-sized global migration granularity in existing data migration
schemes results in suboptimal performance on most workloads.
The key observation is that the optimal migration granularity
varies with access patterns. This paper proposes AGDM, an access-
pattern-aware Adaptive Granularity Data Migration strategy for
hybrid memory systems. AGDM tracks memory access patterns in
runtime and accordingly adopts the most appropriate migration
mode and granularity. The novel remapping-migration decoupled
metadata organization enables AGDM to set local optimal gran-
ularities for memory regions with different access patterns. Our
evaluation shows that, compared to the state-of-the-art scheme,
AGDM gets an average performance improvement of 20.06% with
29.98% energy savings.

I. INTRODUCTION

Nowadays, building hybrid memory systems with different
memory technologies has become mainstream to meet the ever-
increasing memory requirements for modern applications. For
example, combining 3D-Stacked DRAM [1, 2] and off-chip
DRAM provides higher bandwidth, or combining DRAM and
Non-Volatile Memory (e.g., PCM [3], 3D-XPoint [4]) provides
larger capacity. In general, a hybrid memory system consists
of two types of memory technologies: one has the limited
capacity with better performance (higher bandwidth or lower
latency), and the other has larger capacity but relatively poor
performance. In order not to be limited by specific memory
technology in the following discussion, we call the former Near
Memory (NM) and the latter Far Memory (FM) as in previous
works [5, 6].

The hybrid memory is preferred to be configured in a
parallel architecture for larger available capacity and higher
aggregate bandwidth. In this architecture, both NM and FM
are treated as main memory to build a flat address space.
However, using both memories equally results in performance
degradation due to the performance flaws of FM and its large
share of capacity. Therefore, recent works propose various data
migration strategies that dynamically identify and migrate hot
pages into NM to improve the overall performance. While how
to identify hot data and when to trigger migration are widely

* Corresponding author: Dan Feng, Jianxi Chen

B 8 [2566 mm KB I 4KE [16kB e MKE @ 256KE 3 IMB

wrf libquantum bwaves gobmk sieng minife susan wsbench

Fig. 1. The migration granularity sensitivity tests on POM

studied, another important dimension is rarely explored—How
much to migrate?

The amount of data migrated in a single migration, called mi-
gration granularity, strongly impacts performance. For example,
a large migration granularity performs better on workloads with
streaming behaviors since it benefits from prefetching effect and
amortizing migration overhead. However, large migration gran-
ularity results in unnecessary migration traffic and performance
degradation when applied to workloads with random and fine-
grained access behavior. Therefore, it is important to choose
an appropriate migration granularity. A common solution in
previous works is to set a default granularity that achieves
the best geometric mean performance for all workloads [6, 7].
However, a detailed migration granularity sensitivity experi-
ment on POM [7] shows that this simplification often leads
to suboptimal performance on most workloads. As shown in
Figure 1, we can draw three conclusions from the results. First,
the default 2KB migration granularity of POM is not optimal
on most workloads. Second, migration granularity strongly
impacts performance. For libquantum, the speedup at 16KB
migration granularity is 4.69x that of 64B. Third, the optimal
migration granularity that achieves the best overall performance
varies from workload to workload.

A naive improvement is to set granularity individually for
each workload, which requires plenty of sensitivity analysis.
However, the optimal granularity varies with the memory access
patterns. A real-world workload usually has multiple access
patterns and exhibits different behaviors at different running
stages. Furthermore, memory regions may exhibit different
access patterns due to concurrent access from various appli-
cations on a real server. Therefore, a fixed global migration
granularity is almost impossible to achieve optimal performance
for workloads.

An advanced approach should dynamically set migration
granularity for memory regions according to the current access

978-3-9819263-7-8/DATE23/© 2023 EDAA

pattern. To implement the access-pattern-aware adaptive mi-
gration granularity, there are two main challenges: i) Monitor
access patterns of memory regions in runtime, ii) Set local
migration granularity for memory regions with different access
patterns. As a solution, we propose AGDM, an access-pattern-
aware Adaptive Granularity Data Migration strategy for hybrid
memory systems. The contributions of this work are the fol-
lowing:

« We experimentally explore the impact of migration granu-
larity on performance and find that fixed global migration
granularity in existing schemes results in suboptimal per-
formance.

e« We propose AGDM, to the best of our knowledge, the
first access-pattern-aware adaptive granularity scheme for
hybrid memory systems. AGDM tackles the two chal-
lenges with: i) a simple yet efficient runtime access pattern
monitor, and ii) a two-level metadata organization that
decouples migration from remapping.

« We propose three migration modes to deal with different
access patterns. The migration granularity of AGDM can
be continuous or discontinuous to maximize the prefetch-
ing effect.

e Our evaluation shows that AGDM improves performance
by 20.06% and saves energy by 29.98% on average,
compared to the state-of-the-art scheme.

II. CHALLENGES OF AGDM

Memory access patterns are challenging to quantify and
rapidly change with the application running. Moreover, memory
regions may exhibit different access patterns, requiring different
migration granularities. Therefore, the complexity of access
patterns brings the following challenges to AGDM.

Challenge 1: How to monitor access pattern? A naive
method to understand the access pattern of a workload is offline
profiling. However, real-world workloads usually have multi-
ple access patterns, exhibiting different behaviors at different
running stages. Offline profiling is costly and inefficient when
dealing with variable access patterns. Another common method
is application hints. Programmers can mark access patterns by
specific instructions during programming. However, the access
pattern hints of individual applications may be useless since
hundreds of services and applications run on a real server
simultaneously. The access patterns visible on memory may be
inconsistent with application hints due to plenty of concurrent
access.

Challenge 2: How to set migration granularity individ-
ually for memory regions with different access patterns?
In existing schemes, the migration granularity is a global
and one-for-all-workloads parameter. Moreover, the migration
granularity is often bound to the remapping structure, which
records the remappings of migrated pages and provides address
translation. In this case, a migration granularity adjustment
will require rebuilding the entire remapping table. Even if it
is possible to add an additional field to the remapping table for
migration granularity, the global migration granularity can not
satisfy all regions with different access patterns. To support

- Block C) Segment @ CGroup

CGroup-0

CGroup-1

CGroup-K

NM FM

Fig. 2. An example of decoupled two-level organization
the memory-region-customized migration granularity, region-
level access pattern tracking and novel metadata organization
are required.

I1I. AGDM DESIGN

This work aims to provide an access-pattern-aware adaptive
granularity data migration strategy for hybrid memory systems.
To overcome challenges brought by the complexity of access
patterns, we provide AGDM, which can set migration gran-
ularity individually for memory regions with different access
patterns. AGDM consists of three components: i) remapping-
migration decoupled two-level metadata organization, ii) run-
time access pattern monitor(RAPM), and iii) migration decision
logic. The novel metadata organization enables memory-region-
customized access pattern tracking and migration granularity
adjustment. Below, we will introduce each component in detail.

A. Remapping-Migration Decoupled Metadata Organization

AGDM decouples migration from the remapping structure
to support variable and memory-region-customized migration
granularity. Specifically, AGDM manages hybrid memory at
a basic block-level remapping granularity and migrates data
within a larger segment-level memory region. Based on the
experience gained from the sensitivity analysis of POM [7],
AGDM sets the block and segment size to 256B and 16KB,
respectively. An example of the decoupled two-level organiza-
tion is shown in Figure 2.

Block-level remapping A block is the basic granularity at
which AGDM manages the hybrid memory. Theoretically, a
hot (frequently accessed) block of FM can be migrated to any
position of NM. However, maintaining such a full-associative
remapping structure requires a huge metadata space. Therefore,
AGDM adopts the congruence group (CGroup) concept from
previous works [5, 8]. As shown in Figure 2, a CGroup contains
one NM block and several FM blocks. All blocks within a
CGroup have the same logical block number(LBN) offset with
respect to the NM size. If a FM block becomes hot, it will be
migrated to the NM block. In this case, the CGroup follows a
fixed-remapping manner. However, increasing NM blocks of a
CGroup can support remappings of any associativity. An ad-
vantage of fixed-remapping is that it requires less metadata than
others, while AGDM requires extra metadata for migration.

Segment-level migration AGDM abolishes the global mi-
gration granularity since memory regions may have different
access patterns. Instead, AGDM divides the memory logical
address space into segments. Each segment consists of a fixed

number of logically continuous blocks. As shown in Figure 2,
the CGroups and segments are orthogonal in memory logical
space. Therefore, adjusting the migration granularity of a
segment does not require changing the remapping structure
(e.g., changing the block size). AGDM tracks access patterns at
the segment level and sets an appropriate migration granularity
for each segment. The migration granularity of a segment can
be any integer multiple of a block. Moreover, the decoupled
metadata organization enables discontinuous block migration
within a segment, which allows AGDM to support flexible
migration modes.

Although migration granularity is variable at the segment
level, the migration itself is triggered at the block level. All
blocks within a CGroup fairly compete for the sole NM
block. The block with the most accesses will be the winner,
called roken block. The token block changes over time due
to variations in access patterns. AGDM sets a token counter
for electing the token block. If the token block is accessed,
the token counter is increased by 1. Otherwise, the token
counter is decreased by 1. When the token counter drops to
0, the current token block is replaced by the last block which
decreases the token counter. The token counter ensures that
the token block has more access than other blocks. Migration
is triggered when a new token block is generated. The token-
based migration trigger policy has two advantages: i) It does
not rely on thresholds to determine whether a block should be
migrated like in previous works [7, 9]. Instead, the token block
is elected through competition between blocks. ii) It avoids
blindly migrating blocks that may be rarely accessed, compared
to cache-like migration policies [6, 8].

B. Runtime Access Pattern Monitor

As discussed in Section II, it is not easy to define and
quantify a specific access pattern rigorously. However, the goal
of AGDM is to guide migration granularity adjustment based
on access patterns. Therefore, the problem can be simplified
to finding useful access patterns for guiding granularity ad-
justment. There are two intuitive rules: i) Large migration
granularity would benefit from streaming and/or scoped access
patterns due to the prefetching effect, ii) Small granularity
would be suitable for random and/or discrete access patterns
since it avoids unnecessary traffic and long tail latency. The
runtime access pattern monitor (RAPM) simply classify the
access behavior of a segment into two types: scoped and
discrete. The access pattern type is determined according to
the aggregation degree of the accessed blocks. For an open-
ing segment (being accessed), RAPM uses a 64-bit bitmap
to record which blocks are accessed. Then, the number of
accessed blocks (Accessy) and the access distance (Accessp,
the maximum LBN absolute value of accessed blocks) are
extracted from the bitmap. RAPM uses the quotient of Access
divided by Accessp to represent the aggregation degree. If
the aggregation degree exceeds a threshold, the segment is
under scoped access pattern. Otherwise, the segment is under a
discrete access pattern. The threshold is empirically set as 0.8.
Considering concurrent access behaviors in hybrid memory,
RAPM maintains a bitmap of the opening segment for each

memory channel. The current opening segment is closed and
the bitmap will be reset when another segment in the same
channel is accessed.

C. Migration Granularity Decision

Corresponding to the access pattern classification of RAPM,
AGDM enables two unique migration modes: i) fixed-length
adaptive mode, and ii) spatial footprint prediction mode. The
former deals with scoped access patterns, and the latter is
designed for potentially recurring discrete access patterns.

Fixed-length adaptive mode: A large migration granularity
that covers all possibly accessed blocks maximizes prefetch-
ing benefits for a scoped access pattern. Therefore, AGDM
sets a fixed-length and continuous-space migration granularity
for segments with scoped access patterns. Specifically, if the
Accessy is greater than Accessp, it indicates that the segment
has a streaming access behavior. Thus, AGDM sets Accessy
as the migration granularity. Otherwise, if the Accessy is less
than Accessp, but the aggregation degree exceeds the threshold,
all accessed blocks within the segment are tightly clustered in
a range. In this case, AGDM sets Accessp as the migration
granularity.

Spatial footprint prediction mode: In general, a small
migration granularity is better for discrete access patterns. How-
ever, small granularity results in more software overhead, and
it loses the prefetching benefits. Therefore, AGDM enables a
spatial footprint prediction (SFP) mode for potentially recurring
discrete access patterns. The mechanism of SFP is that the two
parameters, PC and request address, have a high correlation
with the access patterns [10]. If a pair of PC and request
address leads to an access pattern, then it is likely that a
similar access pattern will repeat when the same PC and request
address occurs. When a segment is accessed, RAPM records
accessed blocks in a bitmap (also called spatial footprint). Then
AGDM stores the bitmap into a Spatial Footprint History Table
(SFHT). The XOR of the first accessed block address and the
instruction PC is used as the index of SFHT. AGDM tries to
find a corresponding spatial footprint in SFHT for a segment
with the scoped access pattern. If a matching entry is found,
AGDM migrates blocks accordingly. Otherwise, the migration
logic will switch to transparent mode and migrates at block
level like in previous works. The default migration mode of
any segment is transparent.

D. Metadata Optimization

The flexible migration granularity choices come at the price
of more metadata overhead. AGDM has three metadata compo-
nents: block-level remapping table, segment information cache,
and SFHT. We adopt optimizations on each component to
shrink the metadata space and reduce metadata access overhead.

Remapping table: AGDM adopts fixed-remapping in the
CGroup so that each remapping entry only requires two fields:
tokenTag(5 bits) and tokenCntr(3 bits). In the default configu-
ration(capacity ratio of NM:FM=1:8), the tokenTag can mark
the original position of the token block. The 5-bits tokenTag
supports FM capacity expansion up to 31x the NM capacity,
which is enough to verify the capacity scalability of AGDM.

The 3-bits saturation token counter can quickly respond to
the changes in the token block. Although each CGroup only
requires 1B for remapping, the remapping table is too large to
fit on-chip. However, putting the remapping table in NM incurs
extra memory access for each request since the remapping table
is located in the critical path. Therefore, AGDM enables a
small on-chip remapping buffer to cache a few recently used
remapping entries. The remapping buffer fetches cacheline-
sized (64B) remapping entries at once and adopts the LRU
replacement policy. The fetched metadata cacheline contains
precisely all the remapping metadata of a segment, which helps
non-transparent-mode migration.

Segment information cache: The migration mode, granular-
ity, and spatial footprint of a segment are useful for migration.
However, AGDM does not keep them for all segments due to
the timeliness of access patterns and the considerable metadata
overhead. Instead, AGDM only stores migration mode and
granularity of recently accessed segments into an on-chip
hardware structure, segment information cache (segCache). The
segCache is a 4-way set-associative LRU cache. When the
current opening segment is closed (triggered by an access to
another segment), AGDM derives the migration mode and gran-
ularity of the segment from the recorded spatial footprint. Then
if the segment already exists in segCache, the corresponding
entry is updated. Otherwise, a new entry of the segment is
added based on LRU. Each segCache entry is only 8B in size.

Spatial footprint history table: The SFHT records the
spatial footprints of accessed segments. Each SFHT entry
contains an 8B bitmap and a 4B index. To accelerate the
querying, SFHT is a hash table whose hash function is to
take the index modulo the capacity of SFHT. When a collision
occurs, SFHT replaces the old entry with the new one. AGDM
keeps 10K entries for SFHT and stores it in NM. The random
replacement policy is adopted when SFHT is full. When the
spatial pattern of a segment has only very few discrete burst
accesses (e.g., Accessp <35), it will not be recorded into SFHT.

Overall, the metadata memory space required by AGDM is
only about 1/256 of the NM capacity. The 120KB of SFHT is
negligible relative to the GB-level memory capacity. According
to sensitivity tests in Section IV-D, the remapping buffer and
segCache are set to 1KB in size, considering both hit ratios and
hardware costs.

E. Put It Together

The workflow of AGDM is shown in Figure 3. The hardware
structures required by AGDM are marked in blue, and the logic
processes are marked in yellow. All structures on the upper
layer are integrated into the on-chip hardware-based hybrid
memory controller (HMC), which is responsible for address
translation, data migration, and physical-logical isolation. The
access path and migration logic of AGDM are as follows:

When HMC receives a memory request, @ Look up the
remapping buffer. If the corresponding remapping entry is not
found, @ Fetch a new metadata cacheline from the remapping
table. The evicted remapping entries are flushed back to NM.
The actual data address is known after obtaining the remapping
entry. Then, @ Check if the token block has changed. If the

W segCache }&' RAPM ‘

update| fetch N @ update
o [_—ra
Fig. 3. The workflow of AGDM

token does not change, HMC forwards the request to the correct
address and finishes it. Otherwise, the request triggers migration
and activates the migration logic. @ Look up the segCache.
If the accessed segment already exists in segCache, ® HMC
performs migration according to the segCache entry. The SFHT
is queried for a matching entry if it is in SFP mode. If there
is no matching entry in segCache or SFHT, HMC performs
migration at block granularity in transparent mode. Besides,
the RAPM works independently of the migration logic. RAPM
updates the spatial footprint of the opening segment at each
request. When the current opening segment is closed, RAPM
updates segCache and SFHT, respectively.

IV. EVALUATION

Migrate
blocks

A. Methodology

Simulator. We simulate AGDM in the full-system simulator
GEMS [11]. We adopt the same memory configuration and
parameters as HYBRID2 [6], which builds the hybrid memory
system with 3D-Stacked DRAM and DDR4 DRAM. Table 1
summarizes the simulated configuration. The energy evaluation
model is from [12].

Workloads. We simulated 20 workloads from four widely
used benchmark suites: SPEC2006 [13], Mantevo [14],
Mibench [15], and CORAL [16], whose characteristics are
presented in Table II. We simulated 200 million instructions
per application and four applications in a workload. Our
workloads run in a multi-programmed simulation mode, where
each application instance is run on a single core with warmed-
up caches.

Configurations. We compare AGDM to a baseline config-
uration without NM and four state-of-the-art hardware-based
schemes.

o POM [7]: Adopts 2KB migration granularity and a
threshold-based migration policy that periodically adjusts
the global threshold by sampling different areas.

TABLE I
SIMULATION CONFIGURATION

Cores 4 @3.5GHz(each), X86 ISA, out-of-order
L1(I/D) 32KB, 4-way associative, 64B cacheline
L2 256KB(private), 8-way associative, 64B cacheline
LLC 8MB(shared), 16-way associative,

MESI, 64B cacheline

HBM?2 2GHz, 2GB, 8 128-bit channels, 8 banks
Near tCAS-tRCD-tRP:7-7-7
Memory | RD/WR+I/O energy: 6.4pl/bit

ACT/PRE energy:15n]

DDR4-3200, 16GB, 2 64-bit channels, 8 banks
Far tCAS-tRCD-tRP: 22-22-22
Memory | RD/WR+I/O energy: 33pl/bit

ACT/PRE energy:15n]

BN BASE [POM HEEE CAMEO [EHE SILC HYBRID2 @ AGDM

Middle MPKI

High MPKI MIX

Fig. 4. Performance comparison with other schemes

« CAMEO [8]: Adopts 64B cacheline-sized migration gran-
ularity and combines data with the remapping entry to hide
the metadata query latency.

o SILC [5]: Adopts set-associative remapping with 2KB
page and supports 64B sub-block migration granularity
between mapped pages.

« HYBRID?2 [6]: Takes part of NM as a cache for FM and
uses the rest of NM and the whole FM to build a flat
address space. It uses 2KB page granularity for remapping
and migrates FM block at 256B granularity.

All configurations are verified under capacity ratios of 1:4, 1:8,

and 1:16 (NM:FM), respectively. Due to space limitation, we
only show the experimental results of 1:8.

TABLE II
WORKLOAD CHARACTERISTICS.
Suite ‘Workload MPKI Suite Workload MPKI
(x4) (single) (x4) (single)
CORAL | xsbench 2.10 Mantevo | pathfinder 91.45
susan 0.02 wrf 12.62
MiBench | gsm 322 milc 11.64
basicmath 13.89 sjeng 13.90
minixyce 0.01 SPEC bzip2 15.25
Mantevo minighost 0.78 cactusADM 21.32
minife 6.82 leslie3d 31.09
hpceg 10.64 mcf 49.56
gsm minighost
Mix-1 leslie3d NA | Mix3 | S0 N/A
hpccg libquantum
cactusADM mcf
minixyce minife
. milc . bzip2
Mix-2 | | A Mix-4 . N/A
xsbench sjeng

B. Performance Analysis

Figure 4 shows the performance improvement of AGDM
against other schemes. All performance results are normalized
to the baseline configuration without NM. Except for mixed
workloads, workloads are classified according to MPKI. Over-
all, AGDM achieves on average 39.02%, 33.18%, 24.45%, and
20.06% better speedup than POM [7], CAMEO [8], SILC [5],
and HYBRID?2 [6], respectively.

POM obtains an average 2.04x speedup than the baseline
by intelligently selecting hot pages and placing them in NM.
However, the threshold-based decision and long threshold ad-
justment period (10K LLC misses) make POM respond slowly
to access pattern changes. CAMEO adopts a cache-like migra-
tion decision with 64B migration granularity. Once the accessed
block is not in NM, it will be migrated immediately. Although

CAMEDO achieves up to 99.08% of NM utilization, the software
overhead caused by its small migration granularity cannot be
ignored. Besides, the unique hardware structure "LEAD” of
CAMEO leads to a 14B invalid read on every access, severely
wasting bandwidth and energy. SILC enables the on-demand
migration by its sub-block interleaving. Only those accessed
64B sub-blocks of a 2KB remapped page in the FM need to
be migrated to NM. However, the locking-page feature and
long threshold adjustment epoch (1 million memory access)
of SILC results in a slow response to access pattern changes.
Although SILC successfully limits the migration traffic, it also
misses the opportunity to migrate hot data into NM, resulting in
performance degradation. Finally, HYBRID2 takes part of NM
as a cache of the flat address space and uses 256B cacheline-
sized migration granularity. The tag metadata of its small NM
cache is totally loaded on chip, requiring 512KB capacity.
Since the fixed migrating granularity cannot accommodate all
workloads with different access patterns, these schemes show
different performance comparisons in Figure 4.

/1 POM I CAMEO B SILC

9 HYBRID2 @R AGDM

v 0.35

2 0.30

c

S 0.25

g

5 0.20

=

c 015

8

£ 0.10

3

& 0.05
0.00

Low_MPKI

Middle_MPKI High_MPKI

Fig. 5. Geomean of migration traffic

Compared to them, AGDM can match the appropriate mi-
grating mode and granularity for the access pattern, regard-
less of the workload. The token-based migration decision of
AGDM avoids migrating data blindly as cache-like policies
while identifying hot data faster than threshold-based or epoch-
based policies. The on-chip metadata structures ensure low cost
for metadata operations. Therefore, AGDM achieves the best
performance on all evaluated workloads.

C. Traffic and Energy Consumption

The two unique migration modes of AGDM benefit from
migrating blocks to be accessed in advance. However, they
also raise the concern of over-migration. Figure 5 shows the
geometric mean of migration traffic percentage in total traffic.
First, SILC causes the lowest migration traffic of 18.37% due
to its on-demand migration policy. On the contrary, CAMEO

[POM BN CAMEO [SILC [E3 HYBRID2 EE AGDM

Geomean Dynamic Energy

Low_MPKI

Middle_MPKI High_MPKI MIX AVG

Fig. 6. Geomean of dynamic memory energy

leads to the highest migration traffic of 36.29% since it blindly
migrates every accessed FM block. HYBRID?2 has an average
29.51% migration traffic since it needs to evict NM pages to
make room for caching, except for regular migration traffic. The
migration traffic percentage of POM varies widely on different
workloads due to its 2KB migration granularity. The large
migration granularity benefits from workloads with scoped
access patterns. However, it is unsuitable for workloads with
fine-grained random access. Overall, POM leads to an aver-
age 25.82% migration traffic. Finally, AGDM only generates
20.89% migration traffic on average, which is slightly higher
than SILC and lower than other schemes. The migration traffic
of AGDM is controlled for two reasons: i) The token-based
migration decision avoids migrating blocks blindly as CAMEO,
ii)) AGDM chooses a conservative threshold to determine the
scoped access pattern and discards short spatial footprints.

Figure 6 shows the geometric mean of dynamic memory
system energy consumption normalized to the baseline. As
we know in the analysis of the migrating traffic, CAMEO
consumes the most dynamic energy, on average 75.85% of the
baseline. SILC has the lowest energy consumption of 35.13%,
which benefits from its on-demand migration. Although the
migration traffic of AGDM is higher than SILC, AGDM has
a slightly higher NM utilization than SILC. Thus, AGDM
consumes almost the same energy as SILC and 29.98% less
energy than HYBRID2. Overall, the distribution of dynamic
memory energy consumption is consistent with the distribution
of migration traffic.

D. Sensitivity Analysis

We next perform sensitivity studies on two on-chip metadata
structures: segCache and remapping buffer. They are critical
components for AGDM, and their hit ratios directly impact
performance. We vary the capacity of the remapping buffer and
segCache to seek a compromise between hardware overhead
and the hit ratio. Due to space limitation and their experimental
methods being almost the same, we only show the results of
segCache in Figure 7. We vary the segCache capacity from 8
entries to 1024 entries. The growth trend of the hit ratio shows
a turning point at 128. When the capacity exceeds 128, the hit
ratio increases very slowly. Therefore, AGDM sets the default
remapping buffer capacity as 128 entries, which achieves an
average hit ratio of 94.57%. Similarly, the remapping buffer
achieves an average hit ratio of 91.24% with 16 cachelines. A
larger capacity can only bring a slight increase in the hit ratio.

—o— Low MPKI —#— Middle_MPKI ~ —A— High_MPKI MIX —— AVG
2 —— * 3 S
% 0.950 " >
o
o
200925
£ 0.900
S
3
3, 0.875
&
" 0.850
3
2 0.825
& 0.800
8 16 32 64 128 256 512 1024

Fig. 7. Geomean segCache hit ratio
V. CONCLUSION

In this work, we propose AGDM, an access-pattern-aware
adaptive granularity data migration strategy for hybrid memory
systems. AGDM tackles the challenges of adaptive granularity
through novel remapping-migration decoupled metadata organi-
zation and runtime access pattern monitor. We use four widely-
used benchmark suites that contain a variety of workloads
to demonstrate the adaptability of AGDM. The evaluation
shows that, compared to HYBRID?2, one of the state-of-the-art
schemes, AGDM improves performance by 20.06% and saves
dynamic memory energy consumption by 29.98%.

VI. ACKNOWLEDGE

This work was supported by the National Natural Science
Foundation of China No. 61821003 and No. 61832007. This
work was also supported by Engineer Research Center of data
storage systems and Technology, Ministry of Education, China.
We thank Zuoning Chen for her long-term help and support for
our laboratory.

REFERENCES

[1] JEDEC Standard, "High bandwidth memory (hbm) dram.” Jesd235, 2013

[2] J.Jeddeloh and B. Keeth, "Hybrid memory cube new DRAM architecture
increases density and performance,” in VLSIT, 2012, pp. 87-88.

[3] M. K. Qureshi et al., "Phase change memory: From devices to systems.”
Synthesis Lectures on Computer Architecture, 2011, 6(4), 1-134.

[4] E. T. Hady et al., "Platform Storage Performance With 3D XPoint
Technology,” in Proceedings of the IEEE, vol. 105, no. 9, 2017.

[5] J. H. Ryoo et al., ”SILC-FM: Subblocked InterLeaved Cache-Like Flat
Memory Organization,” in HPCA, 2017, pp. 349-360.

[6] E. Vasilakis et al., "Hybrid2: Combining Caching and Migration in Hybrid
Memory Systems,” in HPCA, 2020, pp. 649-662.

[7] J. Sim et al., "Transparent Hardware Management of Stacked DRAM as
Part of Memory,” in MICRO, 2014, pp. 13-24.

[8] C. C. Chou et al., "CAMEO: A Two-Level Memory Organization with
Capacity of Main Memory and Flexibility of Hardware-Managed Cache,”
in MICRO, 2014, pp. 1-12.

[9] Y. Li et al., "Utility-Based Hybrid Memory Management,” in CLUSTER,

2017, pp. 152-165.

C. F. Chen et al., "Accurate and complexity-effective spatial pattern

prediction,” in HPCA, 2004, pp. 276-287.

B. Nathan et al,, ”The gem5 simulator.” ACM SIGARCH computer

architecture news 39.2, 2011: 1-7.

C. W. Smullen et al., "Relaxing non-volatility for fast and energy-efficient

STT-RAM caches,” in HPCA, 2011, pp. 50-61.

L. H. John, ”SPEC CPU2006 benchmark descriptions.” ACM SIGARCH

Computer Architecture News 34.4, 2006: 1-17.

A. H. Michael et al., "Improving performance via mini-applications.” No.

SAND2009-5574. Sandia National Laboratories (SNL), 2009.

M. R. Guthaus et al., "MiBench: A free, commercially representative

embedded benchmark suite,” Proceedings of the Fourth Annual IEEE

International Workshop on Workload Characterization. WWC-4 (Cat.

No.01EX538), 2001, pp. 3-14.

J. R. Tramm et al., ”XSBench-the development and verification of a

performance abstraction for Monte Carlo reactor analysis.” The Role of

Reactor Physics toward a Sustainable Future (PHYSOR), 2014.

[10]
[11]
[12]
[13]
[14]

[15]

[16]

	Select a link below
	Return to Previous View
	Return to Main Menu

