
DeepCAM: A Fully CAM-based Inference
Accelerator with Variable Hash Lengths for

Energy-efficient Deep Neural Networks
Duy-Thanh Nguyen, Abhiroop Bhattacharjee, Abhishek Moitra, and Priyadarshini Panda
{duy-thanh.nguyen, abhiroop.bhattacharjee, abhishek.moitra, priya.panda}@yale.edu

Department of Electrical Engineering, Yale University, USA

Abstract—With ever increasing depth and width in deep neural
networks to achieve state-of-the-art performance, deep learning
computation has significantly grown, and dot-products remain
dominant in overall computation time. Most prior works are built
on conventional dot-product where weighted input summation
is used to represent the neuron operation. However, another
implementation of dot-product based on the notion of angles
and magnitudes in the Euclidean space has attracted limited
attention. This paper proposes DeepCAM, an inference accelerator
built on two critical innovations to alleviate the computation time
bottleneck of convolutional neural networks. The first innovation
is an approximate dot-product built on computations in the
Euclidean space that can replace addition and multiplication with
simple bit-wise operations. The second innovation is a dynamic
size content addressable memory-based (CAM-based) accelerator
to perform bit-wise operations and accelerate the CNNs with a
lower computation time. Our experiments on benchmark image
recognition datasets demonstrate that DeepCAM is up to 523×
and 3498× faster than Eyeriss and traditional CPUs like Intel
Skylake, respectively. Furthermore, the energy consumed by our
DeepCAM approach is 2.16× to 109× less compared to Eyeriss.

I. INTRODUCTION

Deep learning has surpassed humans in various domains,
such as image classification, natural language processing, and
data generation [16]. However, this phenomenal progress has
also led to a significant increase in the parameter size of a deep
neural network (DNN) model in terms of its depth (layers)
and width (filters). Dot-product computations in DNNs are
highly computation-intensive accounting for more than 90%
of the time to process various DNN workloads [12]. There
have been various hardware accelerators for DNN inference
such as Eyeriss [4], TPU [9], Rapid [25] among others to
reduce the dot-product computation time in large-scale DNN
deployment. However, conventional von-Neumann inference
accelerators incur significantly high memory access energy.
Specifically in such architectures, the on-chip memory (SRAM)
and off-chip (DRAM) accesses incur 6× and 200× higher
energy consumption compared to dot-product operation [4].

Typical systolic array-based accelerators with N×N
processing-arrays can achieve a computational time of O(N)
to carry out dot-product operations. To this end, designing an
architecture to further reduce the dot-product computational
time to O(1) in traditional von-Neumann architectures with
higher energy-efficiency has been a challenge for researchers.
Recently, Kai Ni et al. [19] have proposed a sense amplifier
for time sensing using a content addressable memory (CAM)
based architecture to estimate the hamming distance between

a search key and the CAM-data with high parallelism. The
work by Kai Ni et al. [19] opens up doors for us to achieve
O(1) computation time for dot-products with high parallelism.
In this regard, we look into a different kind of dot-product
implementation, called geometric dot-product. Typically, all
DNN systolic array accelerators are designed to implement
algebraic dot-products [22], that essentially involves multiply-
and-accumulate (MAC) operations. We show that for achieving
dot-product computation time of O(1) with a CAM-based
architecture, the geometric implementation comes handy. In
the geometric dot-product, operands are treated as vectors with
magnitudes and directions. The dot-product of two operands
(vectors) can, thus, be computed using their magnitudes
and the angle between them. Based on this definition, the
angle between two vectors can be estimated using our CAM-
based architecture. This crucial concept allows us to achieve
significantly higher throughput and better energy-efficiency
during DNN inference, compared to state-of-the-art Eyeriss
accelerator [4].

In this paper, we propose DeepCAM, a novel Process-In-
Memory (PIM) based inference accelerator architecture using
CAMs, to replace standard algebraic dot-product operations
with approximate dot-products (based on geometric implemen-
tation) to speed up the DNN computation time and reduce the
inference energy. We highlight our key contributions as follows:

• We propose an approximate implementation of dot-
products with variable hash lengths (based on geometric
implementation) for CNN inference on DeepCAM, with-
out significant loss in classification accuracy.

• We propose a dynamic size CAM-based inference acceler-
ator with re-configurable hash lengths for processing dot-
products with O(1) time-complexity.

• We evaluate our DeepCAM accelerator on various CNN
architectures- LeNet5, VGG11, VGG16 and ResNet18,
using benchmark datasets (MNIST, CIFAR10 and CI-
FAR100). We obtain ∼ 523× lower computation time and
∼ 109× better energy-efficiency per inference compared
to the state-of-the-art Eyeriss [4] accelerator.

• We also compare our DeepCAM accelerator against previ-
ously proposed analog PIM-based CNN inference acceler-
ators [20], [24]. For VGG11 CNN inferred with CIFAR10,
DeepCAM is ∼ 71.68× and ∼ 7.27× more energy-
efficient than [20] and [24], respectively.

The remainder of the paper is organized as follows. Firstly,

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA 

	



Fig. 1. a) Block diagram of content addressable memory(CAM) architecture. b)
CMOS and FeFET CAM cells. c) Clocked self-referenced sense amplifier(SA)
for detecting the matching degrees.

we briefly discuss the background on CAMs and dot-product
operations in section II. Secondly, we explain our DeepCAM-
related problem in section III. Thirdly, we provide the evalua-
tion methodology and results in section IV. We further discuss
the related works and comparison in section V. Finally, we will
conclude our work in section VI.

II. BACKGROUND & MOTIVATION

A. CAM/TCAM - beyond CMOS and non-CMOS technology

A content-addressable memory (CAM) shown in Fig 1.a
facilitates parallel searching of a query data with content stored
in the CAM memory. There are two types of CAM: 1) Binary
CAM (or CAM) matching values 0 or 1 only [10], and 2)
Ternary CAM (or TCAM) matching values 0, 1, or X (don’t
care). In the basic CMOS CAM cell design, the CAM cell
includes a storage node (normally SRAM) and a pull-down
CMOS circuit as a peripheral. During the search operation, the
match line (ML) is first pre-charged to Vdd. The ML remains
charged if the query in the search line (SL) and the content
in the memory match and discharged otherwise. Due to the
parallel search capability, CAMs can achieve O(1) computation
time complexity. Besides search operation, CAM can be used
to calculate the hamming distance [19]. Here, the correlation
between the number of bit mismatch and the time to pull
down the ML voltage is leveraged. Based on this observation,
[19] proposed the clocked self-referenced sense amplifiers as
shown in Fig 1.c converting the pulled down time to hamming
distance.

In the CMOS design, CAM and TCAM require 9-10 and
16 transistors, respectively. Because the CMOS memory cell
is usually 2-10× larger than the non-volatile memory cell
[11], the CMOS implementation of CAM/TCAM will incur
significant overhead. However, the implementation of CAM
and TCAM in non-volatile memory technology requires two
transistors and two non-volatile memory nodes, as shown in
Fig 1.b. Thus, non-volatile memory nodes are preferred over
CMOS transistors in implementing CAM/TCAM. As reported
in [27], using FeFETs reduces the cell size to 7.5× with 2.4×
lesser search energy than CMOS. With the premise of both

energy saving and hamming-distance estimation in parallel, it
is possible to build up a fast and energy-efficient deep learning
accelerator. Thus, we consider FeFET CAM in this paper and
the design details are provided in section III.

B. Dot-product and its approximation with random projection

As a fundamental operation for convolution and fully con-
nected layers in CNNs, the algebraic dot-product is computed
by the MAC operation between input activation and weight
vectors. Assuming x and y to be two vectors with N elements,
their algebraic dot-product is defined as follows:

x.y =

N∑
i=1

xiyi (1)

In Euclidean space, vectors are represented with magnitudes
and angular components (directions). The magnitude of a vector
is its L2 norm (∥.∥22), and the angular component is defined as
the cosine of the smallest angle between two vectors. Hence,
we define geometric dot-product as follows:

x.y = ∥x∥22∥y∥22cos(θ) (2)
If x and y are replaced with input activations and weights for

a DNN model, then finding (or estimating) cos(θ) for the com-
putation of geometric dot-product is a tedious task. However,
this problem can be solved by the Johnson-Lindenstrauss(J-L)
lemma [8]. For better understanding, let us define the mapping
of x ∈ Rn to Z ∈ {0, 1}k as a hashing method that maps
the n-dimensional x vector to a k-dimensional Z vector. Say,
the conversion hashing function is a matrix C ∈ Rn×k and C
follows a normal distribution ∼ N(0, 1). Any x vector can be
converted into hyperspace Z by taking the signed bits of the
projection product of x and C matrix: hash(x) = sign(xC).
Because C is a random matrix, we call this operation as random
projection with hash length (k). The angle between two vectors
θ can thus be approximated as the hamming distance (HD)
between two hashed vectors x and y [6]:

θx.y = πPr(hash(x) ̸= hash(y)) ≈ π

k
HD(hash(x), hash(y))

(3)
From eq. 2 & 3, we approximate geometric dot-product as

follows:
x.y ≈ ∥x∥22∥y∥22cos(

π

k
HD(hash(x), hash(y))) (4)

Now, let us consider the following example: If x = [0.6012,
0.8383, 0.6859, 0.5712], y = [0.9044, 0.5352, 0.8110, 0.9243],
the conventional algebraic dot-product will be 2.0765. We find
in Fig. 2 that the dot-product approximation using eq. 4 is
nearly equal to the result of the algebraic dot-product, and
longer hash lengths (k) lead to better approximation. Based
on this approximate geometric dot-product formulation, we
develop the CAM-based accelerator for the CNNs in this paper.
Furthermore, owing to the error-tolerant characteristic of deep
CNNs, we will see that our model’s performance does not
degrade drastically due to the approximation.

III. OVERVIEW OF DEEPCAM ARCHITECTURE

In this section, we describe our DeepCAM architecture,
which is a fully CAM-based PIM accelerator for CNN in-
ference. The design of DeepCAM comprises of three major

!

!



Fig. 2. Plot showing output result comparison between the approximate dot-
product and conventional (algebraic) dot-product.

Fig. 3. Full architecture overview of DeepCAM. 1) Context generator software
for pre-processing the deep learning data. 2) A dynamic size CAM-based accel-
erator for dot-product operations. 3) Post-processing and transformation module
for post dot-product computations and online activation context generation.

components: 1) a context generator software, 2) a dynamic
sized CAM-based accelerator, and 3) a post-processing and
transformation unit. These components are shown in Fig. 3.

A. Context Generator

As discussed in section II-B, the approximate dot-product
requires the magnitude and hashed binary data for each input
activation and weight (see equation 4). The magnitude is a Eu-
clidean norm or L2 norm with 8-bit minifloat representation [7].
The hashed binary data can be generated by multiplying the
activation or weight with a random matrix C. As shown in
Fig 4, the context generator is a software that generates the
two components: 1) the L2 norms and 2) the hashed binary
data, for the input activations and weights. We need to reshape
the weight/activation matrices before computing the L2 norm
and hashed binary vectors. An example is shown in Fig 4 to
describe the process of building a weight context from a kernel
of size 3 × 3. Note that the contexts for the pre-trained CNN
weights and input data can be pre-processed in the software and
thus, cause no impact on the computation time during inference
on hardware. However, the intermediate activations generated
at the end of one CNN layer need to be transformed into the
activation contexts before the computation of the subsequent
layer. Hence, we propose an online transformation technique
(see Post-processing & transformation unit in Fig. 3) for on-
the-fly activation context generation, discussed in section III-C.

From Fig. 2, we determined that the error in the approximate
dot-product operation depends on the hash length (k). We
find that each CNN layer requires a certain minimum hash
length to maintain the overall classification accuracy (referred
to as optimal hash length). Some layers are sensitive to a
smaller hash length, while others are very robust. One way
to maintain the classification accuracy would be to choose the
maximum value out of all optimal hash lengths as the fixed
hash length across all CNN layers. However, this would lead

Fig. 4. An example showing the context generation process.

to hardware over-utilization. As a result, we propose a variable
hash length encoding strategy (i.e., using different hash lengths
corresponding to each CNN layer) that can help maintain the
CNN classification accuracy, as shown in Fig. 5. In order to
have variable hash lengths, the size of the CAM module should
also be varied. To this end, we propose a dynamic size CAM-
based accelerator, described in the next section.

B. Dynamic size CAM-based Accelerator and Dot-product
Computations

As shown in Fig 6, our dynamic size DeepCAM accelerator
comprises of four chunks; the word size for each chunk is
256-bits. Each chunk is connected to its adjacent chunks by
using transmission gates. The maximum word length for the
CAM module can be expanded to 1024-bits. In this design,
we use transmission gates (behaving as switches driven by
an enable signal En) since the combination of both NMOS
& PMOS transistors prevent signal degradation and forward
all the voltages on the bit-line to the next chunk. The sense
amplifier [19] detects the pull-down time of ML to 0-voltage
and specifies the clock cycle time required for ML to attain
0-voltage, where the hamming distance between search data
and row CAM data is computed. By enabling/disabling the
transmission gates, we can dynamically change the word length
(and hence, the hash length) from 256 to 1024 bits in the CAM
module. With this flexibility for choosing the optimal hash
lengths for each CNN layer during dot-product computations,
our CAM can achieve lower access power as well as better
energy efficiency.

In the DeepCAM accelerator, the CAM module helps com-
pute the hamming distances in parallel for multiple input activa-
tions and weight kernels simultaneously. Note, the computation
of hamming distances (needed for approximate dot-products)
occurs in CAMs with O(1) time-complexity, and this manifests
as significant reduction in computation time per inference
compared to Eyeriss [4] as we will see in section IV. However,
two further steps are needed to complete the approximate dot-
product operations as shown in equation 4: 1) calculating the
output of the cosine function, and 2) multiplication of the
cosine output with the L2 norms of the operands. Implementing
cosine functions on hardware can have a significant overhead
as multiple computation cycles or lookup-tables with large
memory sizes are required to calculate the cosine output using
the hamming distance results from the CAM [3]. To minimize
the hardware costs, we apply the approximate cosine function

!

!



Fig. 5. Plot showing that variable hash lengths are required to maintain the Top-1 classification accuracy of LeNet5, VGG11, VGG16 and ResNet18 CNN
models on DeepCAM. Here, BL refers to the % accuracy of baseline software CNN model and DC refers to the % accuracy of CNN on DeepCAM.

Fig. 6. Dynamic size CAM-based accelerator for estimating the hamming
distance between activations and weights in parallel before conducting the final
approximate dot-product in post-processing module.

Fig. 7. The post-processing and transformation module includes- 1) a post-
processing sub-module and 2) an online activation context generator sub-
module

as follows:

cosine(θ) =


−0.96θ + 1.51 π

3 < θ ≤ π
2

1− θ
π 0 < θ ≤ π

3
−cosine(π − θ) θ > π

2

(5)

After obtaining the cosine output, it is multiplied with the
L2 norm of the CNN weights and activations to generate the
final approximate dot-product. Our deep learning accelerator
also supports peripheral operations such as ReLU, pooling,
batchnorm in the digital domain that are carried out in the
Post-processing & transformation module as shown in Fig 7.

C. Activation post-processing and transformation

The output activations of a CNN layer, generated as a result
of approximate dot-product computations, are required to be
converted into activation contexts for computation in the subse-
quent layer. As shown in Fig. 3, we could send the intermediate
activations back to the software to generate the activation
contexts. However, it will lead to significant energy and latency
overhead owing to the data communication. Hence, we propose
the on-the-fly activation context generator in hardware (part of
the Post-processing & transformation module) for converting

the intermediate activations into activation contexts for the
next CNN layer. Similar to the software context generator,
the activation context generator will generate L2 norm and
hashed binary data from the input activations. The L2 norm
functionality is implemented using a simple adder tree and
a digital square-root module. Further, we use a non-volatile
memory (NVM) based crossbar-array to encode the random
vector C (see section III-A) as synaptic weights and implement
the on-chip hash function. Since we only need the sign bits for
carrying out projection operation using the crossbar-array, we
replace the high-resolution ADCs with simple sense amplifiers
that detect the negative results. This transformation module is
implemented as shown in Fig. 7.

IV. EVALUATIONS AND RESULTS

In this section, we will evaluate our DeepCAM acceler-
ator using state-of-the-art pre-trained CNN models (LeNet5,
VGG11, VGG16 and ResNet18) with benchmark datasets
(MNIST, CIFAR10 and CIFAR100) [1]. The details are sum-
marized in Table. I. Note, our FeFET CAM uses variable hash
length encoding strategy to maintain the inference accuracy of
the CNN models on hardware close to the software accuracy
as shown in Fig. 5. We compare our work against other deep
learning hardware accelerators that are widely used for CNN
inference.

A. Methodology

To evaluate our DeepCAM accelerator, we carry out system-
level and hardware-level simulations. For the system-level
evaluation, we consider two dataflows: 1) weight-stationary,
where the CAM module stores weight contexts as CAM
data and activation contexts are passed as search data; 2)
activation stationary, where the CAM module stores activation
contexts as CAM data and weight contexts are passed as
search data. The DeepCAM simulation system is implemented
in the manner shown in Fig. 3. For the dynamic size CAM,
we can have CAM row sizes of 64/128/256/512 to store the
fetched weight/activation contexts as CAM data, and CAM
column sizes of 256/512/768/1024 to represent the variable
context hash lengths. We use an FeFET CAM to evaluate
our proposed accelerator. The FeFET CAM search energy and
area statistics are extracted from EvaCAM [18] to project the
hardware overhead results for our chosen row/column sizes
(see Fig 8). For the hardware evaluation using DeepCAM, we
implement the hardware description code and use Synopsys
Design Compiler and PrimeTime [13], [26] to extract the

!

!



TABLE I
TABLE SHOWING OUR HARDWARE EVALUATION SETUP. NOTE, VHL

STANDS FOR VARIABLE HASH LENGTH.

Category CPU Systolic DeepCAM

Configuration Skylake with
AVX-512 [5]

Eyeriss
(14× 12) [4]

FeFET CAM
with VHL

Hardware
performance Overall inference computation cycles

Energy
consumption Dynamic inference energy

CNN &
Dataset

LeNet5 MNIST, VGG11 CIFAR10,
VGG16 CIFAR100, ResNet18 CIFAR100

Fig. 8. Plot of CAM-based hardware overhead results with various row and
column sizes.

power consumption, area, and timing results. The hardware
evaluations are carried out at a clock frequency of 300 MHz
using 45 nm CMOS technology node. Further, we simulate the
crossbar-array in the Post-processing & transformation module
having FeFET devices as synapses using the NeuroSim tool
[20]. Both the system and hardware evaluation data are used to
estimate the overall computation time and energy savings with
our DeepCAM accelerator for various CNN models.

Baselines: We compare our work with the state-of-the-art
Eyeriss accelerator based on systolic array architecture [4]. For
systolic array evaluations, we modify the SCALE-Sim [23]
framework with appropriate network topology and systolic
array configuration of Eyeriss [4]. Although, INT16 is used
in [4] as the data precision, we choose INT8 representation
because INT8 is the state-of-the-art quantization for various
CNN workloads [9]. Hence, we implement Eyeriss with a
processing-array configuration of 14×12 and a datapath with
INT8 representation. After running SCALE-Sim on the various
CNN models, we extract the computational cycles (indicating
overall computation time) and hardware utilization during in-
ference. As a second baseline, we use Intel Skylake CPU with
the AVX-512 extension that supports the vector neural network
instruction [5].

B. Hardware Performance with DeepCAM

We find that the activation-stationary dataflow results in
a lower number of computational cycles compared to the
weight-stationary dataflow with multiple CNN topologies on
our DeepCAM accelerator. To understand this, let us consider
the following example. Suppose, we have a single-channeled
input of size 32x32 and 6 weight-kernels of size 5x5 for
convolution with stride 1. Then, for obtaining the output feature
map, we need (28*28=784) input vectors for the 6 kernel-
vectors. If weight-stationary mode of mapping is considered for
a CAM with 64 rows, whereby only the 6 rows corresponding
to the 6 kernels are occupied out of the 64 CAM rows,
we have an hardware utilization of 6/64 = 9.4%. On the
other hand with activation-stationary mode of mapping on
the 64 CAM rows, the hardware utilization becomes 100%.

Fig. 9. Plot of computational cycles and hardware utilization for
weight/activation-stationary modes of DeepCAM compared with Eyeriss and
traditional CPU.

Fig. 10. Plot of normalized energy consumption of DeepCAM compared to
Eyeriss.

Hence, activation-stationary mode of dataflow in DeepCAM
induces full utilization of the available CAM hardware and thus,
facilitates faster convolutions with an overall lower number of
computational cycles.

Compared to Eyeriss, our DeepCAM (with 64 CAM rows
and activation-stationary dataflow) is ∼ 523.5× efficient in
reducing inference computational cycles for the LeNet MNIST
topology and ∼ 3.3× efficient in case of ResNet18 CIFAR100
topology. The efficiency in reducing computational cycles in-
creases to ∼ 26.4× for ResNet18 CIFAR100 topology when
CAM row size is increased to 512. Compared to Intel Skylake,
our DeepCAM (with 64 CAM rows) is ∼ 235.4× efficient in
reducing computational cycles for LeNet MNIST with weight-
stationary dataflow and up to ∼ 3498× with activation-
stationary dataflow. The summary of the above results is
presented in Fig 9.

C. Energy Consumption per Inference

In this section, we only make a comparison between our
DeepCAM accelerator and Eyeriss, because traditional CPUs
are known to be very energy-hungry architectures. Fig. 10
compares the energy results between our DeepCAM with
variable hash lengths to that of Eyeriss. In our comparison,
we choose the baseline as CNNs implemented on DeepCAM
with homogeneous 256-bit hash lengths across all layers. All
results in Fig. 10 are normalized to this baseline. Also, Max
DeepCAM refers to a homogeneous 1024-bit hash length im-
plementation across layers. The variable hash length DeepCAM
yields 1.78× energy reduction compared to Eyeriss in the case
of LeNet MNIST with 512 CAM rows (in weight-stationary
mode). However, we can increase the energy reduction up to
109.4× by changing the dataflow to activation stationary. In
case of ResNet18 CIFAR100, DeepCAM with variable hash
length achieves energy reduction of 2.16× compared to Eyeriss.

V. RELATED WORKS AND COMPARISON
Utilizing CAM architectures for deep learning applications

is a relatively new research direction. Prior works such as [14],

!

!



TABLE II
COMPARISON OF DEEPCAM (WITH VHL) WITH PREVIOUS PIM WORKS.

Work NeuroSim [20] Valavi et al. [24] Ours
Device RRAM SRAM FeFET
Dot-Product Mode Algebraic Algebraic Geometric
Energy per 34.98 3.55 0.488Inference (µJ)
Computation Cycles 5.74 2.56 2.652
per Inference (×105)

[15], [17], [19], [21] have used CAMs as associative memories
for fast and energy-efficient search operations across various
deep learning workloads. In [19], the classifier layer of a DNN
is implemented using FeFET CAMs operating on Locality-
sensitive Hashing (LSH). However, compared to other DNN
layers, the classifier has much lower computational overhead.
Thus, the application of CAM to implement DNN classifier
does not speed up the deep learning system and also incurs
additional power consumption by the CAM array. Another
work [21] uses Range-encoding (RE) method for data storage to
perform few-shot learning tasks. However, the proposed design
requires a significant number of CAM accesses to measure the
L∞ and L1 distance and hence, is computationally intensive.
We know that dot-product operations are the key computational
kernels for deep learning. However, developing large-scale
CAM-based deep learning accelerators has been challenging
because transforming CAMs from being associative memories
to efficient dot-product engines has not been well explored.
To this end, exploiting the properties of CAM to estimate the
hamming-distance between input activations and weights (using
random projection hashing method) in a DNN and performing
energy-efficient approximate geometric dot-products have been
the key contributions of our work. We have shown that our
DeepCAM accelerator opens up possibilities to carry out highly
parallelized dot-product operations on hardware for large-scale
deep learning tasks.

Now, we compare our PIM-based DeepCAM architecture
with two previously proposed PIM-based works [20], [24] for
the acceleration of deep learning workloads. Both of these
works conduct inference of CNNs on analog compute macros
(based on SRAM or NVM devices) by computing algebraic dot-
products. Analog dot-product PIM engines have been shown
to facilitate compact and energy-efficient implementation of
DNNs on hardware with high parallelism [2]. Table. II com-
pares DeepCAM against a VGG11 CIFAR10 CNN evaluated
on RRAM device-based PIM engine using the NeuroSim tool
[20] and SRAM-based PIM engine as described in [24], in
terms of dynamic energy and computation cycles per inference.
We find that our PIM-based solution (DeepCAM with variable
hash length) is ∼ 71.68× more energy-efficient and requires
∼ 2.16× less computation cycles per inference than [20]. In
comparison to [24], DeepCAM is ∼ 7.27× energy-efficient,
but requires slightly higher computational cycles per inference.

VI. CONCLUSION

This paper proposes DeepCAM, a reconfigurable CAM-
based inference accelerator built on critical innovations to al-
leviate computation time demands of deep learning workloads.
We find that DeepCAM can be up to 523× faster than Eyeriss

-conventional systolic array architecture while consuming up
to 109× less energy than Eyeriss. All these savings come with
negligible loss in output quality in image recognition tasks.

ACKNOWLEDGEMENT

This work was supported in part by C-BRIC, a JUMP center
sponsored by DARPA and SRC, Google Research Scholar Award, the
National Science Foundation (Grant #1947826), TII (Abu Dhabi), the
DARPA AI Exploration (AIE) program, and the DoE MMICC center
SEA-CROGS (Award #DE-SC0023198).

REFERENCES

[1] L. Alzubaidi et al., “Review of deep learning: Concepts, cnn architectures,
challenges, applications, future directions,” J.Big Data, 2021.

[2] Chakraborty et al., “Pathways to efficient neuromorphic computing with
non-volatile memory technologies,” Applied Physics Reviews, 2020.

[3] W.-K. Cham, “Development of integer cosine transforms by the principle
of dyadic symmetry,” IET, 1989.

[4] Y.-H. Chen et al., “Eyeriss: An energy-efficient reconfigurable accelerator
for deep convolutional neural networks,” JSSCC, 2016.

[5] J. Doweck et al., “Inside 6th-generation intel core: New microarchitecture
code-named skylake,” IEEE Micro, 2017.

[6] M. X. Goemans et al., “Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming,” Journal
of the ACM (JACM), 1995.

[7] P. Gysel et al., “Ristretto: A framework for empirical study of resource-
efficient inference in convolutional neural networks,” IEEE T NEUR NET
LEAR, 2018.

[8] W. B. Johnson, “Extensions of lipschitz mappings into a hilbert space,”
Contemp. Math., 1984.

[9] N. P. Jouppi et al., “Ten lessons from three generations shaped google’s
tpuv4i: Industrial product,” in ISCA, 2021.

[10] R. Karam et al., “Emerging trends in design and applications of memory-
based computing and content-addressable memories,” Proceedings of the
IEEE, 2015.

[11] A. I. Khan et al., “The future of ferroelectric field-effect transistor
technology,” Nature Electronics, 2020.

[12] A. Krizhevsky et al., “Imagenet classification with deep convolutional
neural networks,” NIPS, 2012.

[13] P. Kurup et al., Logic synthesis using Synopsys®, 2012.
[14] A. F. Laguna et al., “In-memory computing based accelerator for trans-

former networks for long sequences,” in DATE, 2021.
[15] A. F. Laguna et al., “Hardware-software co-design of an in-memory

transformer network accelerator,” Frontiers, 2022.
[16] Y. LeCun et al., “Deep learning,” Nature, 2015.
[17] M. Li et al., “imars: an in-memory-computing architecture for recom-

mendation systems,” in DAC, 2022.
[18] L. Liu et al., “Eva-cam: a circuit/architecture-level evaluation tool for

general content addressable memories,” in DATE, 2022.
[19] K. Ni et al., “Ferroelectric ternary content-addressable memory for one-

shot learning,” Nature Electronics, 2019.
[20] X. Peng et al., “Dnn+ neurosim: An end-to-end benchmarking framework

for compute-in-memory accelerators with versatile device technologies,”
in IEDM, 2019.

[21] D. Reis et al., “A fast and energy efficient computing-in-memory archi-
tecture for few-shot learning applications,” in DATE, 2020.

[22] A. Reuther et al., “Survey of machine learning accelerators,” in HPEC,
2020.

[23] A. Samajdar et al., “Scale-sim: Systolic cnn accelerator simulator,” arXiv,
2018.

[24] H. Valavi et al., “A 64-tile 2.4-mb in-memory-computing cnn accelerator
employing charge-domain compute,” JSSCC, 2019.

[25] S. Venkataramani et al., “Rapid: Ai accelerator for ultra-low precision
training and inference,” in ISCA, 2021.

[26] S. Walia, “Primetime® advanced ocv technology,” Synopsys, Inc, 2009.
[27] X. Yin et al., “Fecam: A universal compact digital and analog content

addressable memory using ferroelectric,” IETDAJ, 2020.

!

!


	Select a link below
	Return to Previous View
	Return to Main Menu


