2023 Design, Automation & Test in Europe Conference (DATE 2023)

Run-time integrity monitoring of untrustworthy
analog front-ends

Heba Salem* and Nigel Topham!
School of Informatics, The University of Edinburgh, Edinburgh, United Kingdom
Email: *s1573838@ed.ac.uk, Tnigel.topham@ed.ac.uk

Abstract—Recent advances in hardware attacks, such as cross
talk and covert channel based attacks, expose the structural
and operational vulnerability of analog and mixed-signal circuit
elements to the introduction of malicious and untrustworthy
behaviour at run-time, potentially leading to adverse physical,
personal, and environmental consequences.

One untrustworthy behaviour of concern, is the introduction
of abnormal/unexpected frequencies to the signals at the analog/
digital interface of a SoC, realised through intermittent bit-flipping
or stuck-at-faults in the middle and lower bits of these signals.
In this paper, we study the impact of these actions and propose
integrity monitoring of signals of concern based on analysing the
temporal and arithmetic relations between their samples. This pa-
per presents a hybrid software/ hardware machine-learning based
framework that consists of two phases; a run-time monitoring
phase, and a trustworthiness assessment phase. The framework
is evaluated with three different applications and its effectiveness
in detecting the untrustworthy behaviour of concern is verified.
This framework is device, application, and architecture agnostic,
and relies only on analysing the output of the analog front-end,
allowing its implementation in SoCs with on-chip and custom
analog front-ends as well as those with outsourced and commercial
off-the-shelf (COTS) analog front-ends.

Index Terms—Hardware security, Hardware trust, Run-time
monitoring

I. INTRODUCTION

Analog front-ends are sets of analog circuits designed to
condition real-world analog signals and prepare them for analog
to digital conversion and later digital processing. Analog front-
ends consist of sensors, filters, amplifiers, and potentially
application-specific circuitry. The output of the analog front-end
is fed to analog to digital converters (ADCs), which are mixed-
signal circuits that transform the conditioned analog signals
into a form that is comprehensible to the digital processing,
control, and decision making parts of a given IC. Ensuring
the operational security of the analog front-end and the ADC
is paramount, as a corrupted analog front-end and/or ADC
implies a corrupted system, regardless of the safety and security
measures implemented in the digital domain. The trust and
security of analog front-ends is threatened by a range of
malicious acts including counterfeiting, hardware Trojan (HT)
insertion, and frequency injection attacks [1] [2] [3].

This paper addresses the problem of detecting low-level
malicious actions or untrustworthy behaviour (UB) occurring
from within an ADC or the upstream sensors, amplifiers,
and filters that provide the ADC with analog inputs. The
malicious action of concern is output modification, in which
the correctness and integrity of one of the outputs of the front-

end elements is adversely affected. As the output of the ADC
dictates the decisions taken downstream in the system, and is
often accepted blindly as a true representation of the front-end’s
analog input, without continuously verifying this assumption,
this issue must be addressed more thoroughly. The hardest
modifications to detect are those that would be imperceptible
to the observer of individual ADC outputs, but which over
time have the potential to cause significant disruption in the
downstream digital subsystems that rely on the ADC’s output.
The malicious actions may result, for example, in intermittent
output bit-flips or/and stuck-at-faults.

Such actions and anomalies may originate from HTs, fault
injection attacks, IP counterfeiting, and unintentional hardware
faults. The non-permanent nature of faults introduced by HTs
and fault injection attacks in addition to their stealth and
unpredictability, and the obscured nature of defects expected of
counterfeited cloned or out-of-specification ICs, all contribute
to the difficulty of detecting such faults and errors or the vul-
nerabilities leading to them in the pre-deployment stages, and
dictate the need for effective run-time monitoring techniques.

The problem: How to ensure the run-time correctness and
integrity of the signals at the digital/analog interface, while
accounting for the variability in the types, architectures, and
applications of analog front ends and ADCs?

The proposal: In this paper, we propose a framework for
machine-learning based run-time security monitoring of the
signals at the digital/ analog boundary of SoCs. The proposed
framework involves extracting mathematical and temporal re-
lations between the outputs of the ADC at run-time, and
projecting these relations on machine learning models that have
been trained on the same mathematical and temporal relations
obtained during correct and secure operation of the system.
Any notable discrepancy between the projected data and the
pre-trained data is an indication of incorrectness in the run-
time output. By basing our monitoring technique solely on the
outputs of ADCs, and considering the entire analog front-end as
a black box, we are able to achieve full independence from the
type and architecture of the monitored ADC and analog front-
end. This is effectively a device agnostic run-time integrity
monitoring of the analog front-end. This also has the additional
benefit of detecting hardware faults in the analog front-end as
well as malicious attacks. Identifying the source of a UB is out
of scope for this paper, however, this could be performed by
isolated security testing of the circuit elements of concern.

978-3-9819263-7-8/DATE23/© 2023 EDAA

II. THE THREAT VECTOR

Some of the most safety-critical electronic systems such
as healthcare systems, avionics, manufacturing systems, and
infrastructure control systems depend on analog front-ends to
sample real-world signals. A successful attack on the analog
front-end is a serious threat in any safety-critical system,
potentially resulting in a catastrophic impact on personal safety,
economic stability, and the natural environment.

In the context of HTs, the malicious actions of concern in
this paper; bit-flipping and stuck-at-faults could be realized in
a number of different ways from the addition of a single logic
gate and connecting it to the internal ADC wires responsible
for driving ADC outputs, to the utilization of capacitive cross-
talk [4].Such cross-talk based HTs could be introduced by
an untrusted foundry, by adding or moving wires to increase
capacitive crosstalk in the proximity of wires carrying signals of
interest. A capacitive crosstalk HT could force a targeted wire
to stay at logic high for several cycles, leading to a sequence
of erroneous outputs [4]. Pre-existing counters in some ADCs
could be utilized in activating an injected HT after a certain
sequence of events. Analog triggers linked to temperature or
pressure and driven by on-chip sensors [5], or activated by
temporal relationships measured using capacitive charging [6]
[7] could also be used in activating HTs in analog and mixed
signal circuits. The work in [7] presents the possibility of
using the reverse saturation current of an on-chip diode and
the leakage current of thin-oxide NMOS devices in charging
capacitive HT triggers, delaying hence the HT activation and
de-linking it from the triggering event. These advances in
HT realization and activation show the viability of inserting
a HT with minimal or near-zero footprint, fitting, therefore,
in the small circuitry of analog and mixed signal circuits and
increasing their vulnerability to HT attacks.

Analog and mixed-signal ICs and IPs, such as sensors, ampli-
fiers, and converters are the most reported type of counterfeited
semiconductor parts [1]. Likely causes are their long life cycle
and small circuitry. Additionally, IP Counterfeiting is currently
a prominent concern in the light of the shortage in genuine IC
supply as caused by the Covid-19 pandemic and the China-US
trade wars. Faulty and erroneous operation and low-integrity
outputs are expected from counterfeited IPs, especially those
of the recycled, defective, cloned, or out-of-specification types
due to them nearing their original end-of-life, being rejected
and discarded by their original manufacturers, or being based
on poor and low-skilled reverse engineering and cloning. Fault
injection attacks such as those based on controlled and targeted
electromagnetic waves and focused laser beams are also known
to cause sudden transistor switching and/ or signal flipping.

III. THE PROPOSAL

Our proposed approach to run-time integrity monitoring of
the output of the analog front-end, is based on characterizing
temporal and mathematical relationships between the ADC’s
output codes to verify if they are an actual, correct, and
trustworthy representation of the analog input. The authors

studied and investigated several generic relationships that are
reflective of temporal and mathematical signal properties, with
the aim of identifying a single relationship for systematic use
in establishing references of signal integrity. One relationship
is related to the location of maximum levels or peaks and the
temporal distances (in number of samples) between consecutive
ones. Another relationship is the distance or number of samples
between certain output codes, which is generally suitable for
characterizing signals of stochastic and non-uniform nature.
The rate or frequency of change in the digital output code is
another investigated relationship, quantified by the number of
samples between changes in the code. Another relationship is
the slope, or the ratio of the arithmetic change (difference in
value) in the output code to the temporal change (number of
samples), which effectively quantifies the frequency, factor, and
direction of change in the output of an ADC.

Figure 1 shows histograms of the investigated relationships,
when extracted from the digital codes of an 80bpm electro-
cardiogram (ECG) signal. Each of the relationships shows a
distinct distribution and could be used in establishing references
of signal integrity. However, distances between peaks is a
relationship only applicable to periodic signals, whereas dis-
tances between specific codes is tied to the possibly fluctuating
occurrences of these codes. An issue with the rate of change
is that its distribution would not be altered if abnormal bit-
flips coincide with actual changes in the code. To avoid these
shortcomings, the slope, which reflects both the temporal and
arithmetic changes in the digital output codes of ADCs, was
chosen for our framework. The distribution of slope values
is also noticeably sensitive to bit-flips and stuck-at-faults, as
could be seen when comparing figures 1d, le, and 1f, which
show histograms of the slopes of the 80bpm ECG signal, in
the normal case, in case of a stuck-at-fault at bit 4, and in case
of flipping of bit 4, respectively.

A. The framework

The proposed framework, presented in figure 2, consists of
two phases; a run-time monitoring and incorrectness detection
phase, and a trustworthiness assessment phase.

1) Phase 1: run-time monitoring and incorrect output de-
tection: In order to use slopes (or any other relationship) as a
reference in live detection of incorrectness in the output of the
front-end (represented by the ADC output), a model based on
the correct and baseline values of this relationship should be
constructed and used for periodic comparison with the same
relationship when obtained from live operation. Therefore, a
requirement of the framework is that the type of the input signal
is known, which is usually pre-defined and directly related to
the application of the SoC. As slope values for a given signal
will adopt a distribution of non-defined shape and with multiple
peaks, they can be modelled using non-parametric density
estimation machine learning models such as Kernel Density
Estimation (KDE). In our approach, we train KDE models
on the trusted pre-deployment slopes. Once the system is in
operation, arithmetic and temporal distances between changes
in the output code are collected and used in run-time slope

60 Distances between code 01011000

6 «10% Rate of change

6 Distances between peaks
>
> 2)
2 240 24
&4 [} 2
= g 3
o
82 ool 820 8 2
Lt I :| :| I J I ‘m‘|; [* -
ol LML KA LU0 0 1 . il ok
#5005 600 T TI00 7800 = 1900 500 1000 1500 2000 2500 (i 1400

Distances

(a) Distances between absolute peaks

Distances

(b) Distances between code 01011000
x10° Slope - stuck at fault

400 800
Number of samples

(c) Rate of change

, <10 Slope 15 10 x10* Slope - bit flip
) g > ‘
§ g1 5
31 3
g JH H g s g
S ™ 'S
L 0 w0l s 0 — _— 0 A \.J‘\ 1l

2 -1 0 -50 0 50 -15 5 0 5 15
Slope Slope Slope
(d) Slopes (e) Slopes when bit 4 is stuck at logic 0’ (f) Slopes when flipping bit 4

Fig. 1: Histograms of the temporal and arithmetic relationships calculated from the 80bpm ECG signal

Phase 1

Pre-deployment
Trusted
operation

Run-time
Untrustworthy|
operation

Calculate
analysis
metric
(slope)

Calculate
analysis
metric

(slope)
¥
KDE
Modelling
and saving

Query

<~

{ Catutate |
IMatch rate I

Phase 2
Pre-deployment Run-time
Match rate vs.
regression model

Bit-flipping injection
| (different scenarios)

Calculate Calculate
match rate Severity

Train regression machine |
learning model

Set severity/ trustworthiness
levels and alerts

L

Predictor

Response ‘

Determine
trustworthiness
level

Raise
relevent
security

alerts

Fig. 2: The proposed analog front-end run-time integrity mon-
itoring and trustworthiness assessment framework

calculation. These slopes are queried periodically in the pre-
trained and saved KDE models. The querying process provides
an indication of whether the run-time slope values have some
probability in the saved KDE model, implying whether similar
slopes were “seen” by the KDE model in the training stage. For
a rigorous approach, the probabilities obtained from the query
process may be further investigated and verified. However, for
a more generic approach, we follow our query process by a
match rate calculation. The match rate is the number of run-
time slope values that return some probability when queried in
the KDE model divided by the total number of run-time slope
values. The match rate metric provides a quantified measure
of how often the slopes calculated at run-time match (or are
close to) those observed during trusted operation. The lower

the match rate, the greater is the significance and likelihood of
incorrectness.

2) Phase 2: trustworthiness assessment: The second phase
of the framework is concerned with automatically and system-
atically distinguishing trusted from untrusted operation of the
analog front end. To perform this trustworthiness assessment,
we propose a severity metric that provides a quantified mapping
between the calculated match rates and the severity of deviation
from the correct conditioning and conversion of a given input
signal. In our experiments, we emulated incorrectness in the
output of the analog front-end by introducing occasional bit-
flips and stuck-at-faults to the ADC’s output, given that, as
presented in section II, these are realistic scenarios resulting
from different threat vectors such as cross-talk based HTs and
electromagnetic fault injection attacks. The proposed quantifi-
cation of the amount of incorrectness is, therefore, tied to
the position of the bit targeted by the bit-flipping or stuck-
at-fault and by the frequency of the activation/ occurrence of
this flipping. The proposed severity metric is calculated through
the formula presented as, severity (significancey;; *
weighty;) + (frequency * weight frequency)- This formula is
a weighted sum of the significance of the targeted bit (e.g. a
significance value of 2 for attacks targeting bit 2), which is
given a weight of ‘1’, and the frequency of the bit-flipping
(e.g. a value of 0.5 for bit-flipping targeting 50% of output
codes over a specified period), and this frequency is assigned
a weight of 0.5, reflecting our experimental observation that
the significance of the targeted bit has greater impact on the
distribution of slope values comparing to the impact of the
frequency of activation. The mapping of the calculated severity
to the targeted bit and the frequency of the bit-flipping, when
applying different bit-flipping scenarios to the ECG signal, is
presented in figure 3. Whereas, the mapping of the resultant
match rates to the severity is presented in figure 4. In the
application of the proposed framework, the SoC integrator
would induce different bit-flipping scenarios to the output of
the ADC in the pre-deployment stages. The resultant modified
codes are then to be used in calculating the match rates
(following the process presented in phase 1) and the severity of

the different bit-flipping scenarios. The severity and match rates
are then used in training a regression-based machine learning
model. At run-time, whenever new match rates are obtained,
they are provided as predictors to this model to obtain the
response, the severity of the incorrectness, a clear and direct
indicator of the extent and frequency of the attack or fault.
Furthermore, levels of trustworthiness are to be assigned to
the different severity values with each of the trustworthiness
levels mapped to certain alerts and appropriate remedial actions.
Potential remedial or counter actions include offline testing of
the individual elements in the front-end and filtering the front-
end output to smooth out any minor incorrectness. In systems
with element duplication/redundancy, the framework could also
be used to signal the point of time when the secondary elements
should replace the main untrustworthy ones.

Severity vs. flipping frequency vs.
targeted bit

Severity

0.4 5

08 | Iﬂ
s 4

0.2
Flipping frequency 0 1 2 Targeted bit

Fig. 3: Severity vs. flipping frequency vs. targeted bit

Severity vs. Match-rate

2

P

[R —
>

> " H
0 | | Il

0.2 0.4 0.6 0.8 1

Match-rate

Fig. 4: Severity vs. match-rate

IV. METHODOLOGY AND EVALUATION
A. The experimental setup

The 8-bit arithmetic tracking successive approximation reg-
ister ADC simulator from [8] was used for the A/D conversion
of different types of input signals pertaining to three different
applications'; The ECG signal from the ECGSYN tool-set [9],
readings of flow and level sensors from the secure water
treatment system developed by iTrust in the centre for Research
in Cyber Security at Singapore University of Technology and
Design [10], and level and flow readings of airplane fuel tank
sensors [11]. The obtained digital output in each of these
cases was then analyzed and the slopes were calculated using
Matlab. The KDE modelling was performed with the KDE
implementation provided by the Scikit-learn tool [12], a Tophat
kernel and 0.1 bandwidth were chosen so that the generated
models are moderately detailed around the trained-on slope

!'The signals were modified via amplification/ attenuation and interpolation
to prepare them for the A/D conversion and to obtain a large number of samples
for machine learning purposes.

values. For the severity versus match rate machine learning,
the Fine tree regression model provided by Matlab regression
learner was used. For the ECG case, an RMSE of 0.11865 was
obtained when training the Fine Tree regression model on the
severity versus match-rate of different bit-flipping scenarios,
indicating the effectiveness of this approach.

B. The implementation

The proposed implementation of the framework is of hy-
brid software/hardware nature. The KDE modelling and the
regression machine learning parts are performed in software,
limiting the overhead on hardware and allowing implementation
in lightweight systems. Moreover, all of the steps performed in
the pre-deployment stage of the second phase of the framework,
could be efficiently preformed in software once digital output
from trusted pre-deployment operation of the ADC is obtained.

The hardware part is concerned with the live tracking of the
amount and time of change in the digital output of the ADC
and is implemented independently of the analog front-end; at
the analog/ digital interface of the SoC. A comparator and a
substractor are used to detect changes in the ADC output and
determine the amount of this change. Simultaneously, a counter
counts the samples between changes in the output code. The
outputs of the subststractor and counter could be saved in logs
for periodic calculation of slopes either in software or hardware.
After querying the slopes in the saved KDE models and once
the match rate is obtained, the run-time part of the second phase
of the framework is also performed fully in software.

C. Use case 1: The electrocardiogram

The Electrocardiogram (ECG) signal is the recording of the
electrical activity of the heart (in voltage vs. time), and is used
in diagnosing many heart conditions and breathing disorders.
The conditioning and A/D conversion of the ECG signal could
be attacked to introduce errors and failures in the diagnostic
process. One attack scenario would cause confusion in the
diagnosis by adding noise and additional peaks or dips in
the ECG signal, which could be easily achieved by malicious
bit-flipping or stuck at faults, and hence is addressed by the
proposed framework. Figure 1f shows the histograms of the
slopes calculated from the bit 4-flipping affected ECG signal
(UB2 in table I) and as visible the range of slope values doesn’t
conform with that of the correctly converted signal (figure 1d).

As the ECG signal varies naturally (within clinically identi-
fied limits) from one person to another, and to allow the KDE
model to distinguish those variations from anomalies, slopes
calculated from 50 different variations of the ‘digitized” ECG
signal were used in training the reference KDE model. The
KDE model was then queried with slope values calculated from
single variations of the ECG signal (reflecting the ECG of an
individual) when affected by different bit-flipping scenarios.
Table I shows the tested scenarios and the obtained match rates.
Each of the match rates presented in table I is the average of
match rates obtained from implementing the framework with
different variations of the ECG signal when infected with the
respective UB scenarios. When referring to the severity versus
match-rate mapping shown in figure 4, UB 1 with a match rate

TABLE I: The bit-flipping scenarios introduced to the ECG
signal and the obtained match rates

UB Frequency affected bit match rate
UB 1 50% of code (random) bit 5 26.7%
UB 2 50% of code (random) bit 4 34.67%
UB 3 16% of code (random) bit 3 70.4%
UB 4 3% of code (random) bit 2 88.6%
UBS5 50% of code (random) bit 1 88.79%
UB 6 0.3% of code (random) bit 3 79.9%

of around 26.7% implies a severity greater than 5, indicating a
high level of untrustworthiness, whereas, UB 5 with a match
rate of around 88.79% implies a low severity level, reflecting
the low significance of the affected bit.

D. Use case 2: The water treatment system

Industrial control systems (ICS) used in the vital sectors of
power transmission, water treatment and distribution, and oil
refining, commonly deploy sensors and ADCs for measuring
and detecting the instantaneous changes and quantities of dif-
ferent parameters pertaining to the specific application. These
measures are often used in controlling and dictating the actions
performed by the rest of the system. Therefore, an attacker
aiming to cause catastrophic damage and destruction in an ICS
while maintaining a small attack footprint would likely target
the analog front-end. One such attack was demonstrated in [2],
in which ICS-level Sigma Delta ADCs were tricked to accept
and convert “malicious” input frequencies potentially causing
abnormal vibrations in the motor or turbine in the system, and
leading to permanent damage and shut-down of the system.

The proposed framework was implemented on normal-
operation sensor readings from the secure water treatment
system (SWAT) developed by iTrust [10], after they were
converted to digital. The tested-on sensor readings are those of
the LIT101 sensor, a level sensor responsible of measuring and
reporting the level of water in the raw water tank of the SWAT
system, and those of the FIT301 water-flow sensor. Introducing
bit-flips to these sensor readings emulates the malicious intent
of causing a tank overflow/ underflow and potentially damaging
the valves and pumps connected to the tank. The readings of
the sensors were divided to pre-deployment trusted readings,
used in KDE modelling, and run-time untrustworthy readings,
injected with bit-flips. The readings from the LIT101 and the
FIT301 exhibited similar match rates when affected by the same
UB scenario. The introduced UB scenarios and the match rates
(average) obtained are presented in table II. Figures 5a and 5b
show the range of slopes obtained from the normal trusted
behaviour and UB readings of the LIT101 sensor, respectively.
The visible differences in the slopes, which is reflected in the
calculated match rates, is a clear indicator of the effectiveness
of using the proposed framework in detecting anomalies and
incorrectness in the output of the analog front end in ICS.

E. Use case 3: The airplane fuel tank

Some of the most safety-critical electronic systems are
avionics, given their direct and immediate impact on human
lives. A vital system in airplanes is the aircraft fuel distribution

TABLE II: The bit-flipping scenarios introduced to the SWAT
level and flow sensor readings and the obtained match rates

UB Frequency affected bit match rate
UB 1 50% of code (random) bit 5 23.09%
UB 2 50% of code (random) bit 4 32.64%
UB 3 28% of code (random) bit 3 63.52%
UB 4 14% of code (random) bit 2 81.77%
UBS5 20% of code (random) bit 1 84.96%
UB 6 1.4% of code (random) bit 3 78.34%
UB 7 1.4% of code (random) bit 6 38.09%

TABLE III: The bit-flipping scenarios introduced to the AFDS
FTL and CLF sensor readings and the obtained match rates

UB Frequency affected bit Match rate
FTL CLF
UB 1 50% of code (continuous) bit 4 22.22% 33.33%
UB 2 50% of code (continuous) bit 5 28.57% 50%
UB 3 6% of code (random) bit 3 18% 30%
UB 4 25% of code (continuous) bit 6 25% 60%

system (AFDS) that is responsible of storing and distributing
fuel. Typically, an AFDS consists of engines, fuel-storing tanks,
valves, and jettison points. The state of fuel in the tanks is
constantly monitored by level and temperature sensors, whereas
the flow of the fuel in the pipes is measured by several flow
meters [13]. The introduction of bit-flips to such sensors could
lead to misjudgement of the amount of fuel in the tanks or its
flow rate in the pipes, negatively affecting the decisions taken
downstream in the system.

Readings of fuel level sensors and fuel flow meters were
obtained from the normal scenario dataset provided in [11].
The tested-on readings are those of the front and the central
tank level sensors and the center to front tank flow meter,
denoted as FTL, CTL, and CLF, respectively. For a more
continuous representation, the readings were interpolated before
converting them to digital. KDE models were then constructed
from the slopes obtained from the “trustworthy” digital codes.
Various bit-flipping scenarios were introduced to the readings,
the proposed framework was implemented, and the match
rates were calculated. The implemented UB scenarios and the
resultant match rates for the sensors FTL and CLF are presented
in table III, Figure 6 shows the baseline and the UB-affected
(UB 4) readings of the FTL sensor and histograms of the slopes
calculated from them. Although the slopes from both cases peak
at the same value, the range of slopes is significantly different.

V. RELATED WORK

A small number of publications addressed a similar threat
model to that addressed in this paper. In [3], the authors
introduced bit monitoring based on verifying the arithmetic
difference between consecutive digital codes as a countermea-
sure against HT-induced missing-code errors. However, the
introduced bit-monitoring convention applies to certain types
of signals and is more suitable for occasional verification
of the correctness of the A/D conversion. In the framework
presented in [14], multiple hashes are generated for internal
SoC signals in multiple internal stages, and are used for
verifying the integrity of the signals as they propagate in the
SoC. By focusing on the security of the intermediate signals in

4 x10° Slope - LIT101

Frequency

ols 1
- -05 0 0.5 1
Slope

s x10° Slope - LIT101 - bit flip

Frequency
- N

)

20 20

0o
Slope

(a) Baseline slope histogram (b) Bit-flip slope histogram

Fig. 5: Histograms of the slopes of the baseline and the bit-flipping infected LIT101 signal

FTL signal .
300 = FTL signal - UB

o 300
° o
o

3200 §200
I =
= [}

5100 5100
a [=]

0)

0 5 10 14 o 5 10 6
Sample x10° Sample x10°

(a) Baseline FTL signal

x10°

14

3

Frequency
)

-1

(b) Bit-flipped FTL signal (c) Baseline slope histogram

o /;ﬂin hAax\\\\

Slope - FTL
15210° Slope - FTL - bit flip

3

Min Max

N\

o 65
Slope

Frequency
@

B~

E)

-0.5 Sltgpe 05 1

(d) Bit-flip slope histogram

Fig. 6: Baseline and bit 6-flip infected FTL signals and histograms of the corresponding slopes

SoCs and implementing the security measures in independent
security elements, this framework addresses a similar issue to
that addressed in this paper. Nevertheless, it assumes that the
outputs of the analog-front end and ADC are trusted and could
be used to generate reference hashes. In a similar approach to
that proposed in this paper, an approach combining statistical
analysis with machine learning techniques was proposed to
distinguish between trustworthy and untrustworthy operation
of analog circuits in [15]. This work, however, mainly focuses
on information-leaking HTs in wireless cryptography circuits.

VI. CONCLUSION

The work presented in this paper is, to the best of our
knowledge, the first to address, at run-time, the issue of
trustworthiness at the boundary between an analog front-end
and the digital domain, and in a manner which is agnostic to
both the device and its application. The proposed machine-
learning framework provides a mechanism for characterizing
the output of the analog front-end by modelling the mathe-
matical and temporal relationships extracted from the output
codes of the analog front-end. Consequently, these models serve
to establish knowledge about the integrity, correctness, and
trustworthiness of the output of the analog front-end at run-
time. The framework is independent of the system it monitors,
and its hybrid software/hardware approach enables its adoption
in a wide range of applications regardless of the analog-front
end, and whether it is implemented off-chip or on-chip.

REFERENCES

[1] M. M. Alam, S. Chowdhury, B. Park, D. Munzer, N. Maghari,
M. Tehranipoor, and D. Forte, “Challenges and Opportunities in Analog
and Mixed Signal (AMS) Integrated Circuit (IC) Security,” Journal of
Hardware and Systems Security, vol. 2, no. 1, pp. 15-32, Mar. 2018.
[Online]. Available: https://doi.org/10.1007/s41635-017-0024-z

A. Bolshev and G. Gonzalez. (2016) How to fool an adc or
how to hide the destruction of a turbine with the help of dsp.
[Online]. Available: https://www.blackhat.com/docs/eu-16/materials/eu-
16-Gonzalez-How-To-Fool-An-ADC-Part-1I-Or-Hiding-Destruction-Of-
Turbine-With-A-Little-Help-Of-Signal-Processing.pdf

(2]

[3]

[4]

(51

(6]

(71

(8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

S. Taheri, J. Lin, and J.-S. Yuan, “Security interrogation and defense
for sar analog to digital converter,” Electronics, vol. 6, no. 2, 2017.
[Online]. Available: https://www.mdpi.com/2079-9292/6/2/48

C. Kison, O. M. Awad, M. Fyrbiak, and C. Paar, “Security implications
of intentional capacitive crosstalk,” IEEE Transactions on Information
Forensics and Security, vol. 14, no. 12, pp. 3246-3258, 2019.

S. Ghandali, D. Holcomb, and C. Paar, “Temperature-based hardware
trojan for ring-oscillator-based trngs,” 2019.

T. Yang, A. Mittal, Y. Fei, and A. Shrivastava, “Large delay analog
trojans: A silent fabrication-time attack exploiting analog modalities,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 29, no. 1, pp. 124-135, 2021.

K. Yang, M. Hicks, Q. Dong, T. Austin, and D. Sylvester, “A2: Analog
malicious hardware,” in 2016 IEEE Symposium on Security and Privacy
(SP), 2016, pp. 18-37.

R. Inanlou, M. Safarpour, and O. Silvén, “Arithmetic tracking adaptive
sar adc for signals with low-activity periods,” IEEE Access, 2020.

P. McSharry, G. Clifford, L. Tarassenko, and L. Smith, “A dynamical
model for generating synthetic electrocardiogram signals,” IEEE Trans-
actions on Biomedical Engineering, vol. 50, no. 3, pp. 289-294, 2003.
J. Goh, S. Adepu, K. N. Junejo, and A. Mathur, “A dataset to sup-
port research in the design of secure water treatment systems,” in
Critical Information Infrastructures Security, G. Havarneanu, R. Setola,
H. Nassopoulos, and S. Wolthusen, Eds. Cham: Springer International
Publishing, 2017, pp. 88-99.

Y. Gheraibia, S. Kabir, K. Aslansefat, I. Sorokos, and Y. Papadopoulos,
“Safety + ai: A novel approach to update safety models using artificial
intelligence,” IEEE Access, vol. 7, pp. 135855-135869, 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” Journal of Machine Learning
Research, vol. 12, pp. 2825-2830, 2011.

S. Kabir, M. Walker, and Y. Papadopoulos, “Dynamic system
safety analysis in hip-hops with petri nets and bayesian networks,”
Safety Science, vol. 105, pp. 55-70, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0925753517314911

T. Wehbe, V. J. Mooney, O. T. Inan, and D. C. Keezer, “Securing
Medical Devices Against Hardware Trojan Attacks Through Analog-,
Digital-, and Physiological-Based Signatures,” Journal of Hardware and
Systems Security, vol. 2, no. 3, pp. 251-265, Sep. 2018. [Online].
Available: https://doi.org/10.1007/s41635-018-0040-7

Y. Jin, D. Maliuk, and Y. Makris, Hardware Trojan Detection in
Analog/RF Integrated Circuits. Cham: Springer International Publishing,
2016, pp. 241-268. [Online]. Available: https://doi.org/10.1007/978-3-
319-14971-4~

	Select a link below
	Return to Previous View
	Return to Main Menu

