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Abstract—Printed and flexible electronics promises smart de-
vices for application domains, such as smart fast moving consumer
goods and medical wearables, which are generally untouchable
by conventional rigid silicon technologies. This is due to their
remarkable properties such as flexibility, non-toxic materials,
and having low-cost per area. Combined with neuromorphic
computing, printed neuromorphic circuits pose an attractive
solution for these application domains. Particularly, the additive
printing technologies can reduce large amount of fabrication
complexities and costs. On the one hand, high-throughput additive
printing processes, such as roll-to-roll printing, can reduce the
per-device fabrication time and cost. On the other hand, jet-
printing can provide point-of-use customization at the expense
of lower fabrication throughput. In this work, we propose a
machine learning based design framework, that respects the
objective and physical constraints of split additive manufacturing
for printed neuromorphic circuits. With the proposed framework,
multiple printed neural networks are trained jointly with the
aim to sensibly combine multiple fabrication techniques (e.g.,
roll-to-roll and jet-printing). This should lead to a cost-effective
fabrication of multiple different printed neuromorphic circuits
and achieve high fabrication throughput, lower cost, and point-
of-use customization.

I. INTRODUCTION

As emerging domains, such as wearable computing [1], near-
sensor computing [2], and edge AI [3] are unceasingly ex-
plored, the flexibility, non-toxicity, and low cost are desperately
in demand. In this regard, printed electronics (PE) becomes
one of the most attractive candidates: Additive manufacturing
guarantees the low cost of PE, while different material and
substrate choices allow for the realization of non-toxic and
flexible circuits [4]. Compared to silicon technology, PE cannot
exceed in terms of performance, integration density, and area.
Therefore, rather than replacing silicon-based electronics, PE
serves as a complement of them.

Neuromorphic computing refers mainly to the combination
of weighted-sum operation and non-linear activation inspired by
synaptic neurons in the human brain. Despite the simplicity of
its primitive operations, it has shown to have strong (non-linear)
expressiveness [5] and has achieved extraordinary success in
many fields [6].

Bringing together the advantages of both PE and neuromor-
phic computing, printed neuromorphic circuits were proposed
(e.g., [7]). In printed neuromorphic circuits, the weighted-
sum operation and the activation function are implemented
by crossbar and non-linear circuitry. Further, similar to the
neural networks in silico, by interconnecting multiple printed
neurons, a circuit capable for expressing more sophisticated
functionality can be realized. Moreover, machine learning based

processes can be applied to printed neuromorphic circuits,
which ensures the high efficiency of their designing. Based on
these advantages, printed neuromorphic circuits become highly
competitive in the aforementioned emerging domains.

The production of PE can be categorized into two
types: high-volume production, such as gravure- and screen-
printing [8], and low-volume or customized manufacturing, like
jet-printing [9]. High-volume manufacturing generally leads to
lower individual costs and production time of each circuit,
but allows to only produce replications of a single template.
Conversely, low-volume manufacturing provides maximum
flexibility, but the cost-per-circuitry becomes higher, and the
production time is increased.

On this premise, in case numerous circuits for diverse
tasks need to be printed, low-volume printing technologies are
usually employed, as circuits for different tasks usually do not
share components. Thus, the production cost could be high.
Alternatively, for cost saving, same circuits can be printed by
high-volume printing processes to address all the tasks, but the
performance (e.g., accuracy in classification tasks) could be
worse. In this regard, neither high- nor low-volume production
can consider both cost and performance.

In this work, we leverage the additive manufacturing feature
of PE to bridge the gap between high- and low-volume print-
ing technologies by combining high-throughput (high-volume)
printing with point-of-use (low-volume) customization. This al-
lows for a reduction of the manufacturing costs, while retaining
an acceptable circuit performance.

Ideally, different (neuromorphic) circuits, while fulfilling dif-
ferent tasks, display high commonality in their designs. In this
case, a large subset of the circuit components may be fabricated
in an initial, shared, high-volume production step. Afterwards,
point-of-use additive post-printing adjustment can be applied to
configure the printed circuits to specific tasks. To achieve this,
we propose a common training (design) strategy for multiple
printed neuromorphic circuits. Through this strategy, we aim to
encourage high commonalities in printed neuromorphic circuits
and thus minimize the required post-printing effort. We refer
to this as split additive manufacturing.

In summary, the contributions of this work are:

• We formulate the split additive manufacturing as well
as the physical constraints mathematically. Based on this
formulation, we propose the super printed neural network,
a model to train (design) multiple neuromorphic circuits
for different tasks simultaneously, while encouraging high
design similarities.
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Fig. 1. Schematic of different printing technologies, gravure printing (left) and
inkjet-printing (right).

• We investigate the relationship between the adjustment of
individual configurations and the circuits’ performance.
The trade-off can be described by a Pareto curve.

• We train a super printed neural network on 30 benchmark
datasets (simultaneously) to evaluate the capabilities of our
approach of co-designing printed neuromorphic circuits.

The preliminary experiment shows that, 61.4% point-of-use
printing cost can be saved without loss in accuracy. In case a
10% drop in accuracy were allowed, 94.3% of this cost could
be saved.

The rest of this paper is structured as follows: Sec. II
introduces PE and printed neural network (pNN). Sec. III
describes the formulation of the super pNN, as well as the
technique to reduce the cost for individual configuration. In
Sec. IV, the proposed approach is evaluated and discussed.
Finally, Sec. V concludes this work and discusses possible
future works.

II. PRELIMINARY

A. Printed Electronics

Printed electronic (PE) technology refers to manufacturing
that is based on various printing processes, such as gravure-
printing and jet-printing. Due to the simplicity of the manufac-
turing process and the low cost of equipments, printed circuits
can be fabricated with significantly lower cost compared to
silicon-based electronics. Moreover, PE provides the option to
print on flexible substrates, such as Kapton [4] or PET [10],
so that the produced devices can also be flexible. Rather than
replacing silicon-based electronics, PE serves as a comple-
ment since it cannot precede silicon-based chips regarding
performance, integration density, and area. Therefore, PE has
a high compatibility in many emerging domains like wearable
computing and near-sensor computing.

Regarding the scale of production, printing technologies
are broadly divided into two categories. Replication printing
technologies are designed for high-volume printing, such as
gravure- and screen-printing [8]. Gravure-printing (see Fig. 1,
left) is a type of intaglio printing process. In gravure-printing,
the (circuit) pattern will be engraved onto a cylinder carrier,
after which a large amount of circuits can be fabricated by rotat-
ing the cylinder carrier. Screen-printing refers to hollowing out
(circuit) patterns on a stencil, and using a squeegee to press the
printing material onto the substrate in the hollowed out areas. In
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Fig. 2. Resistor reprinting by adding layers. (a) microscope photos, (b) physical
schematics, (c) circuit diagrams.

these two high-volume processes, the masks (cylinder carrier or
stencil) are hard to be modified once they are defined, however,
the masks can be reused repeatedly and allow for cheap and fast
production. Contrary to replication printing technologies, jet-
printing technologies like inkjet-printing (see Fig. 1, right) are
more appropriate for individual manufacturing. By adapting the
printing route and material for each task, circuitry with a broad
spectrum of functionalities can be achieved. Unfortunately,
the functionality of individual printing comes at a price of
higher production times and higher (variable) costs per circuit.
This technology should therefore only be employed when the
flexibility or custom fabrication capabilities are required.

B. Reprinting Resistors in Printed Electronics

Thanks to the additive manufacturing characteristic of PE,
printed circuits can be adjusted post-fabrication. This is possi-
ble by selectively adding material or modifying the geometric
shape of a component. Fig. 2 shows a printed resistor with
additional layers of conductive ink added post-fabrication to
adjust its conductivity. This additive characteristic enables to
combine multiple printing technologies and bridge the gap
between them. For brevity, this procedure will be referred to as
reprinting in the following. Note that, as can be seen in Fig. 2,
reprinting cannot adjust the existing resistance arbitrarily, but
only decrease it. This is because adding additional conductive
(resistive) material creates parallel resistive structures, which
lead to lower overall resistance. Hence, reprinting can only
decrease resistance.

C. Printed Neural Network

Similar to classical artificial neural networks, printed neu-
romorphic circuits are composed of printed neurons. Fig. 3
shows an exemplary printed neuromorphic circuit and an en-
larged schematic of a printed neuron. According to Kirchhoff’s
law [11], we obtain

Vzgd =
∑
i

(Vi − Vz)g1 + (Vb − Vz)gb, (1)

where V1, V2, ..., Vb denote the input voltages and Vz refers
to the output voltage of the crossbar (green part in Fig. 3) and
gi = 1/Ri denotes the conductance of a resistor Ri. After
summarizing G =

∑
g, Eq. 1 can be formulated as

Vz =
∑
i

gi
G
Vi +

gb
G
Vb.

By interpreting wi = gi/G, the similarity to the weighted-
sum operation in a neural network,

∑
i wixi + b, becomes
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Fig. 3. An exemplary neural network (left) and an enlarged schematic of a
printed neuron (right). The green part indicates the crossbar for weighted-sum
operation, and the red part denotes a tanh-like activation function circuit.

evident, i.e., the weights in neural networks are embodied
in the conductances of the printed resistors. By connecting a
printed tanh-like activation function circuit (pink part in Fig. 3)
to the crossbar, circuitry resembling a printed neuron can be
implemented.

Generally, only the conductance values gi of the crossbar
resistors are modified, as they correspond to the weights in the
neural network. To find suitable values for these conductances
and solve, e.g., a classification task, a pNN (mathematical
model of the printed neuromorphic circuit) is generated. The
learnable parameters of the pNN are the surrogate conductances
θi that resemble the conductance values gi and the correspond-
ing negative weight circuits [7]. The negative weight circuit
is designed to emulate negative weights. This is necessary as
printed conductance can only be positive, therefore, when the
learned weight wi (surrogate conductance θi) is negative, the
conductance gi = |θi| should be printed and the corresponding
input voltage is inverted (inv(Vi)) through the negative weight
circuit. In other words, the absolute value of the surrogate
conductance |θi| indicates the conductance to be printed, while
the sign of θi denotes whether the input voltage Vi should be
inverted. In training, surrogate conductances are obtained via
gradient-based learning. In this way, training the pNN may be
understood as designing a printed neuromorphic circuit.

III. METHODOLOGY

PE involves both high- and low-volume fabrication pro-
cesses. However, neither can cover both circuit performances
(e.g, classification accuracy) and printing costs simultaneously,
in case numerous circuits for diverse tasks need to be printed.
In this section, we bridge the gap between two types of
technologies by leveraging the reprinting technology, and aim
to achieve a higher efficiency for the fabrication with acceptable
circuit performances.

For this, we try to find common parts in a set of printed
neuromorphic circuits. These common parts can be fabricated
via a high-volume process. Then, each individual circuit is
customized via point-of-use reprinting. Through this, the costs
and time of individual printing are reduced, while retaining an
acceptable accuracy. For this purpose, we introduce the super
pNN, a model for training multiple pNNs for different tasks
simultaneously. The super pNN considers a decomposition of
the conductances of multiple pNNs into a common part, which
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Fig. 4. Structure of learnable parameters in an exemplary super pNN. Each
pNN has its own individual conductance θI

t , while the common conductance
θC is shared across all pNNs. The resultant conductance of the pNN for the
t-th task θt equals θC +θI

t and determines the resulting weights in the pNN.
The input/output layers of all pNNs in a super pNN are padded to the same
dimensionality. The inputs denoted by 0 will be connected to ground.

is shared across all pNNs, and individual parts, which vary
among the pNNs of different tasks. By fabricating the circuits
with combined technologies, costs and production time can be
saved, while attaining comparable performances for the circuits.

A. Conductance Splitting

As illustrated in Fig. 2, reprinting a resistor, i.e., printing
additional material on top of the existing resistor can be seen
as printing an additional, parallel conductive path. Hence, the
total conductance of the reprinted resistor is the sum of the
conductances of the old conductive path and that of the newly
added geometry. The conductance value of a resistor produced
via an initial fabrication step (high-volume) and later individu-
ally customized via, e.g., inkjet-printing, can thus be expressed
as θ = θC + θI . Here, θC (common surrogate conductance)
denotes the conductance value of the initially printed device.
As it is fabricated with a high-volume process, it is shared
by all circuits fabricated with the same mask. Consequently,
θI (individual surrogate conductance) denotes the conductance
value of the additional material printed post-fabrication to
customize the device in a reprinting step. In the following,
we refer to the vector θ as the summary of all conductance
values θi in a pNN, i.e., θ = [θ1, θ2, ...]. Analogously, θC

and θI summarize their corresponding common and individual
conductance values.

B. Super pNN

When pNNs should be fabricated for a set of different tasks
t = 1, · · · , T , we need to design/train T different pNNs to
address them. If these pNNs are trained independently, little
commonality can be expected between them. Thus, there is
little potential for joint production and split manufacturing. To
increase this potential, the training of these pNNs should be
done jointly. For this purpose, we introduce the super pNN.
A super pNN is a model for training pNNs of different tasks
jointly to achieve a high commonality and thus high potential
for joint production via split additive manufacturing. For a set
of T tasks, a super pNN has a set of parameters θC , which
is shared among all pNNs, and several sets of parameters θI

t

with t = 1, · · · , T that are unique to each individual task t.
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TABLE I
BENCHMARK DATASETS AND BASELINE ACCURACY

dataset #input
#data baseline

#output accuracy
Acute Inflammation 6-2 120 0.904
Acute Nephritis 6-2 120 0.925
Balance Scale 4-3 625 0.671
Blood 4-2 748 0.747
Breast Cancer 9-2 286 0.724
Breast Cancer Wisconsin 9-2 699 0.955
Breast Tissue 9-6 106 0.409
Ecoli 7-8 336 0.592
Energy (y1) 8-3 768 0.816
Energy (y2) 8-3 768 0.761
Fertility 9-2 100 0.857
Glass Identification 9-6 214 0.439
Haberman’s Survival 3-2 306 0.788
Hayes-Roth 3-3 132 0.342
ILPD 9-2 583 0.684
Iris 4-3 150 0.701
Mammographic Mass 5-2 961 0.728
Monks-1 6-2 124 0.598
Monks-2 6-2 169 0.617
Monks-3 6-2 122 0.576
Pima Indians Diabetes 8-2 768 0.644
Pittsburgh Bridges MATERIAL 7-3 106 0.902
Pittsburgh Bridges SPAN 7-3 92 0.509
Pittsburgh Bridges T-OR-D 7-2 102 0.800
Pittsburgh Bridges TYPE 7-6 105 0.665
Seeds 7-3 210 0.454
Teaching Assistant Evaluation 5-3 151 0.397
Tic-Tac-Toe Endgame 9-2 958 0.632
Vertebral Column (2 cl.) 6-2 310 0.635
Vertebral Column (3 cl.) 6-3 310 0.586

The (surrogate) conductance vector of a pNN trained for task t
is then implicitly determined by θt := θC + θI

t . A conceptual
illustration can be seen in Fig. 4. Naturally, for this to work,
the topologies of all pNNs need to be compatible in the sense
that they have the same number of input, hidden, and output
neurons. To address this, we take the maximal number of
input/output among all pNNs as the number of input/output for
all pNNs (see Fig. 4). For tasks with fewer inputs, zero-padding
is employed in training, which relates to connecting those
inputs to 0V (GND) in the circuits. Consequently, irrelevant
outputs can simply be ignored.

To achieve valid pNNs, several constraints of the printing
technology need to be respected. Firstly, the range of printable
conductance values is given by {0} ∪ [Gmin,Gmax], where
Gmax and Gmin depend on the specific technology and θ = 0
refers to no printing. These constraints must hold for both |θC |
and the |θI

t |, and can be addressed via projections in training,
see [7], and the use of the straight-through estimator as in [12].

Beyond that, we also have to consider that reprinting can
only increase the conductances from their original values, i.e.,
|θt| ≥ |θC | for any task t. In other words, we cannot change
the choice of connecting either Vi or inv(Vi), to adjust what
would relate to the sign of wi via reprinting. To respect this
constraint, θC determines the signs of the entries of θt via

θt := sign(θC) · |θI
t |+ θC ,

while θI
t is only able to adjust the absolute value of the resulting

conductances.

C. Training Objective

Through the super pNN, a connection between different tasks
is established via the common θC . However, the definition
of the super pNN does not necessitate high commonality
between the individual pNNs. For example, the solution after
training may likely have θC = 0 and express everything via
the uncoupled θI

t . Therefore, to encourage high commonality,
we add a penalty term to the training objective to keep the
individual conductances θI

t , and thus the reprinting effort, low.
In this work, the penalty term is formulated as the ℓ1 norm of
all the individual conductances θI

t , i.e.,

C(θI) =
∑
t

∥∥θI
t

∥∥
1
, (2)

because both printing times and the amount of the printing
materials of the individual printing are approximately propor-
tional to the size of the entries of θI

t . Consequently, the training
objective of the super pNN considering both accuracy and
reprinting costs is then given by

L(θC ,θI) =
∑
t

L(θC ,θI
t ,xt,yt) + α · C(θI), (3)

where L(·) denotes the loss function proposed in [7], which
takes hardware-related constraints into account. The vectors
xt and yt are the training inputs and labels of the t-th task.
Furthermore, the coefficient α ≥ 0 denotes a (hyper-parameter)
adjusting the influence of the costs C(θI).

For α = 0, the training objective is unaffected by the cost
C(θI) of the reprinting required for each task. In this case,
the training of the super pNN can be conceptually equated to
the completely independent training of T pNNs for T tasks.
Consequently, there may be little commonality between the
different pNNs and thus little potential for a sensible production
of θC via a high-volume production process. However, the
individual pNNs may also achieve the best accuracy as they
are not bound together. On the other hand, for high values of
α (potentially α → ∞, in practice greater than a certain thresh-
old), the cost C(θI) will completely dominate the loss term in
training. This should lead to a solution where ∀t : θI

t = 0. In
this case, the individual pNNs are solely determined by θC ,
and are thus all the same. While this is the most economical
in terms of production costs, the resulting pNNs likely provide
no useful accuracy for their respective tasks. Thus, α may be
used to express a trade-off between cost and accuracy. To find
an appropriate value of α, we suggest training the super pNN
for different values of α and draw a Pareto front [13].

IV. EVALUATION

We implement1 the proposed super pNN with PyTorch, and
conduct an experiment with 30 benchmark datasets, whose
complexities and use cases match the PE and pNN profile. The
results are additionally analyzed regarding the accuracy-cost
trade-off by generating a Pareto front of possible solutions.

1https://github.com/Neuromophic/Split Manufacturing One Mask
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Fig. 5. Results of experiment with 100 different α values. (a) normalized accuracies of 30 tasks. Each task is indicated by a different color. (b) summarized
accuracies (average normalized accuracies), the blue curve and area denote the mean and standard deviation respectively. (c) normalized cost of the individual
(point-of-use) reprinting, the red curve and area denote the mean and standard deviation respectively.

A. Experiment

a) Datasets: For our experiments, a subset of the 121
classification benchmark datasets summarized in [14] was
taken. We select datasets which are suitable for PE and printed
neuromorphic circuits, most notably, tasks with a limited num-
ber of inputs and outputs (≤ 10). Moreover, since numerous
pNNs are trained simultaneously, we limit the experiments to
datasets with the number of data points between 100 and 1 000,
which leaves 30 datasets. Finally, we scale all the inputs to [0, 1]
to simulate the electrical signals from sensors and put all inputs
on the same scale. We split each dataset into training (60%),
validation (20%), and test (20%) sets. The detailed information
about the datasets can be found in Tab. I.

b) Hyper-parameters: As described in Sec. III-B, the
topology of all pNNs is determined by the maximal number
of input and output of all the datasets. In this experiment, the
topology is chosen to be 9-3-8, where the number of inputs
and outputs are determined by the datasets. For training, we use
the Adam [15] optimizer with default parameters and a learning
rate of 0.01. As the stop criterion, we employ the early-stopping
with 1000-epoch patience on validation loss. In investigate
trade-off between accuracy and cost, we select α ∈ [10−5, 105]
equidistant in log space. To generate the conceptual boundary
cases of α = 0 and α → ∞, we train only with θI (for α = 0)
and θC (for α → ∞).

The training is repeated 30 times (with seeds varying from
1 to 30) for different initialization for each value of α to make
sure to achieve a sufficiently good solution for each value of
α. Finally, all the hardware-related hyper-parameters, such as
measuring threshold and margin, are taken from [12].

c) Baseline: As the baseline, we report the performance
of the super pNN corresponding to α = 0, which equivalent to
train the super pNN considering only individual θI . This result
can be regarded as the upper bound of the circuit performance.
We also refer to this as individual pNNs.

B. Result

After training, we evaluate the super pNNs on the test
sets. Tab. I reports the accuracies of baseline. To analyze
the impact of α more clearly and to eliminate the disparate
difficulties among different tasks, we normalize the accuracy by
the baseline, which should theoretically be able to achieve the
best results. Note that this is not always achieved in practice due
to the complex nature of the nonlinear optimization problem

that neural network training resembles. The resulting curves
are displayed in Fig. 5(a).

To summarize the overall implications of α for super pNN,
we report the summarized accuracy, which refers to the average
value of the normalized accuracies over all the tasks in a super
pNN. The result of all runs is shown in Fig. 5(b). We also
show the relationship between α and the cost of reprinting
in Fig. 5(c). To obtain the Pareto front, we plot all the C(θI)
versus their summarized accuracy for all runs and all values of
α in Fig. 6. Based on the scatters, we draw the Pareto front as
the red dashed line.

C. Discussion

As can be seen in Fig. 5, at α = 0, which refers to fully in-
dividual printing, the summarized accuracy is normalized to 1,
and the expected cost of individual reprinting is the highest.
Analogous to the treatment of the accuracy, we normalize the
cost by this value, as shown by the black point in Fig. 5(c),
where C̃(θI) denotes the normalized reprinting cost. With
increasing α, the normalized accuracy, summarized accuracy,
and the cost of reprinting C(θI) will decrease. For α greater
than a certain threshold, i.e., α ≥ 102.5 in this experiment, the
cost penalty completely dominates the training objective. Thus,
as expected, θI

t = 0 for all pNNs, and the training results are
equivalent to performing all tasks with the same pNNs. We refer
to this pNN as common pNN. The orange points in Fig. 5(b),
(c) and Fig. 6 show the common pNN with the best accuracy.

Contrary to our expectation, the summarized accuracy does
not decrease immediately as α is increased from 0. This could
be due to two possible reasons. Firstly, the C(θI) term may
act as a regularization and mitigates overfitting to the training
set of the specific task. Therefore, the accuracy of some pNNs
could even slightly increase, e.g., the pink curve in Fig. 5(a).
Secondly, α only explicitly affects θI rather than θC . Hence,
θC would be adjusted accordingly during training to compen-
sate for the loss of accuracy caused by the penalty term. This
phenomenon allows reducing the cost of individual printing,
while retaining an acceptable accuracy. Such a solution can be
found at the purple point in Fig. 5(b), where α ≈ 10−1.5.

The Pareto curve in Fig. 6 reveals the relationship between
the cost for individual configuration and the summarized ac-
curacies of super pNNs. Compared to fully individual printing
(black point), the point-of-use printing cost can be reduced to
38.6% without any noticeable loss in accuracy (purple point).
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TABLE II
ACCURACY-COST TRADE-OFF

summarized normalized cost of
accuracy reprinting C̃(θI)

individual 100% 100.0%
100% 38.6%

split
additive
manufacturing

95% 15.7%
90% 5.7%
85% 2.9%
80% 1.4%

common 75% 0.0%

Moreover, if the summarized accuracy is allowed to reduced by
e.g., 5%, the reprinting cost can be further reduced to 15.7%
(blue point). Finally, using a single common pNN (orange
point) leads to a 75% summarized accuracy, but consequently
also no reprinting costs. Other exemplary trade-off options are
summarized in Tab. II.

In other word, based on the (common) throughput printing,
the accuracy increases rapidly as the allowed cost for individual
printing increases and then saturates. In other words, relatively
little adjustment from the joint configuration of θC of the
individual conductances θI

t leads to a significant improvement
in performance for the individual pNNs. Thus, there is great
potential for a joint fabrication of multiple pNNs via split
additive manufacturing.

V. CONCLUSION AND FUTURE WORK

In this work, we propose a design strategy for multiple
different printed neuromorphic circuits to leverage split addi-
tive manufacturing. We combine and bridge the gap between
high- and low-volume printing. The experiment shows that,
given pNNs that are trained together (co-designed) with shared
conductances in our proposed super pNN model, a substantial
amount of point-of-use printing cost can be saved, while still
obtaining pNNs with sufficient accuracies. This may result in
substantial time savings when fabricating printed neuromorphic
circuits. Also, depending on the requirements, manufacturers
may be able to adjust their production strategy based on the
cost-accuracy trade-off visualized by the Pareto front.

Despite the preliminary progress made in this work, many
possibilities remain for future work. First, the performances of
some tasks drop dramatically with increasing α, i.e., these tasks
are potentially not suitable to use the common conductance with
other tasks. This problem can be addressed by either fabricating
them individually, or by creating groups of tasks for joint
fabrication dynamically. Additionally, for this work, we chose
to estimate the costs of reprinting C(θI) by the sum of the ℓ1
norms of the θI

t . However, this cost would depend also on, e.g.,
the distribution of θI

t at each individual position, the printing
technique adopted, etc. Therefore, a more elaborate cost model
could be developed that considers reprinting capabilities and
efforts more concretely. Lastly, the C(θI) is controlled im-
plicitly by α. Future work could allow constraining the costs
explicitly, so that the optimal performance for a given budget
can be found.
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Fig. 6. Scatter plot of summarized accuracy versus cost of reprinting for all
the runs. The red curve displays the Pareto front and the bold points denote
different possible trade-offs on the Pareto front.
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