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Abstract—In CMOS-based current mode realization, the thresh-
old logic gate (TLG) implementation with rational weights has
been shown to be more cost-effective than the conventional TLG
implementation without rational weights. The existing method
for the rational-weight TLG identification is an integer linear
programming (ILP)-based method, which could suffer from inef-
ficiency for a Boolean function with a large number of inputs. This
paper presents a heuristic for rational-weight TLG identification.
We observe from the ILP solutions that in the ILP formulation,
many variables related to the rational weights are redundant.
Additionally, a rational-weight TLG could be transformed from
a conventional TLG. Thus, the proposed method aims to identify
the conventional TLG that can be transferred to a rational-
weight TLG with lower implementation cost. We conducted the
experiments on a set of TLGs with 4 ∼ 15 inputs. The results
show that the proposed method has a competitive quality with
an average ratio of 0.96, compared to the ILP-based method.
Additionally, the proposed method spent only an average of
approximately 2% of CPU time.

Index Terms—Threshold logic, rational weights, logic synthesis.

I. INTRODUCTION

Recent achievements in hardware realization of threshold
logic and the rise of machine learning make threshold logic [1]
re-attract enormous attention from researchers. Threshold logic
is a more powerful representation than conventional Boolean
logic composed of primitive gates. A threshold logic gate
(TLG) can implement a complex Boolean function that a prim-
itive gate cannot. In addition, due to the functional similarity
between a TLG and an artificial neuron, threshold logic is
regarded as a feasible solution for hardware implementation
of artificial neural networks.

The Boolean function f of a TLG with n Boolean inputs,
x1 ∼ xn, is defined by (1). Each input xi is accompanied with
an integer weight wi, and there is an integer threshold value
wT . The function evaluates to 1 if the sum of all the activated
weights (i.e., xi = 1) is greater than or equal to wT ; otherwise,
it evaluates to 0.

f(x1, x2, ..., xn) =

 1, if
n∑

i=1

xiwi ≥ wT

0, otherwise
(1)

For example, Fig. 1(a) shows the graphical representation of
a TLG that has 4 inputs with weights −1, 1, 2, and 3, and a
threshold value 4. When the input pattern is 0101, it evaluates to
1 because 1+3 = 4 ≥ 4. However, if the input pattern is 1110,

This work was supported by the National Science and Technology Council,
Taiwan, under grant MOST 111-2221-E-011-137-MY3.

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝟒

𝒇

−𝟏

𝟏

𝟐

𝟑

𝟒

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝟒

𝒇

(𝟎,−𝟏)

(𝟎, 𝟏)

(𝟏, 𝟎)

(𝟏, 𝟏)

(𝟐, 𝟎)

𝐚 𝐛

Fig. 1. (a) Conventional TLG, f = [−1, 1, 2, 3; 4] and (b) R-TLG of l = 2,
f = [0,−1, 0, 1, 1, 0, 1, 1; 2, 0].

the output is 0, since (−1)+1+2 = 2 < 4. A TLG can also be
represented by a weight-threshold vector [w1, w2, ..., wn;wT ],
e.g., [−1, 1, 2, 3; 4] for the TLG.

In recent years, Mozaffari et al. [2] proposed a novel CMOS-
based current mode implementation of a TLG with rational
weights, increasing the flexibility of TLG implementation. In
the new implementation, an input xi has l rational weights,
w1

i ∼ wl
i, and there are l threshold weights, w1

T ∼ wl
T . The

function of the rational-weight TLG is defined as (2).

f(x1, x2, ..., xn) =

 1, if
n∑

i=1

((
l∑

j=1

1
jw

j
i ) ∗ xi) ≥

l∑
j=1

1
jw

j
T

0, otherwise
(2)

For an activated rational weight wj
i , the value it contributes

to the weight sum is 1
jw

j
i . Additionally, a threshold weight wj

T

contributes 1
jw

j
T to the overall threshold value. For clarity, we

call a rational-weight TLG an R-TLG and a conventional TLG,
which has no rational weight, a TLG. Furthermore, for an R-
TLG, we call the rational weights wj

i with j > 1 true rational
weights, and the rational weights w1

i false rational weights
since the values they contribute to the weight sum are integers.

Fig. 1(b) shows the R-TLG implementation of l = 2
for the same function in Fig. 1(a). Each input xi has two
rational weights, w1

i and w2
i , e.g., (w1

1, w
2
1) = (0,−1) for

x1. Additionally, there are two threshold weights, (w1
T , w

2
T ) =

(2, 0). The R-TLG can be represented by the weight-
threshold vector [w1

1, w
2
1, w

1
2, w

2
2, w

1
3, w

2
3, w

1
4, w

2
4;w

1
T , w

2
T ] =

[0,−1, 0, 1, 1, 0, 1, 1; 2, 0].
In [2], Mozaffari et al. also presented an integer linear

programming (ILP)-based method for R-TLG identification of
a given Boolean function, under a predetermined l. Compared
with a TLG, an R-TLG could have a lower hardware imple-
mentation cost for the same Boolean function. Although the
ILP-based identification method is effective, it could suffer
from inefficiency for a large Boolean function or a large l.
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To solve the issue, we propose a heuristic method for R-TLG
identification without ILP solving.

Given a TLG and a user-defined l, our objective is to find an
R-TLG implementation that has a lower implementation cost.
By analyzing the ILP results, we observe that many variables
related to the rational weights in the ILP formulations are
redundant, i.e., they are assigned 0. Additionally, we observe
that a TLG can be directly transformed into an R-TLG. Thus,
we first propose an approach for transforming a TLG into an R-
TLG. Then, we adapt the heuristic TLG identification method
[3] to find a TLG implementation that can lead to a lower-cost
R-TLG implementation after transformation.

We conducted the experiments on a set of TLGs collected
from the threshold logic networks (TLNs) generated by using
the LUT-based synthesis method [4]. The experimental results
show that the proposed method has a competitive quality with
an average ratio of 0.9625, compared to the ILP-based method.
Additionally, the proposed method is much more efficient. It
can save an average of 98.24% of CPU time.

The remainder of this paper is organized as follows: Section
II reviews some background on threshold logic, the heuristic
method for TLG identification [3] and the ILP-based method
for R-TLG identification [2]. Section III shows our three obser-
vations on R-TLG implementation, which inspire the proposed
method to be presented in Section IV. Section V shows the
experimental results. Finally, the conclusion is presented in
Section VI.

II. PRELIMINARIES

A. Background

Threshold logic is an alternative and more powerful repre-
sentation of conventional Boolean logic. A complex Boolean
function can be represented with only one TLG. For example,
the function f = x1

′x2x4 + x3x4 can be implemented with
only one TLG as shown in Fig. 1(a). A Boolean function
f(x1, ..., xn) is said to be a threshold function (TF), if it can
be implemented with only one TLG. Unateness is a necessary
condition of a TF. All TFs must be unate, but not necessarily
vice versa. For example, g = x1x2 + x3x4 is a unate function,
but not a TF.

A TLN is a Boolean logic network composed of TLGs. In
general, the weights and the threshold value in a TLG are
integers, which can be positive or negative. A negative weight
can be converted to a positive weight through the negation
property [5]. Let f(x1, ..., xn) be [w1, w2, ..., wi, ...wn;wT ].
The negation of xi, i.e., xi → xi

′, changes the weight-threshold
vector to [w1, w2, ...,−wi, ...wn;wT −wi]. Take the function f
in Fig. 1(a) as an example, we can negate x1 and convert the
weight-threshold vector [−1, 1, 2, 3; 4] into [1, 1, 2, 3; 5].

In this work, we pre-convert all the negative weights (if any)
to be positive before we manipulate a TLG, and then convert
them back when we evaluate its hardware implementation cost.

B. Design Automation for Threshold Logic

In the past few decades, many design automation techniques
for threshold logic have been proposed. Most of them are ded-
icated to conventional threshold logic. The TLG identification

technique checks whether a Boolean function can be repre-
sented with a TLG and computes the weights and threshold
value. Several exact and heuristic methods were proposed [3],
[6]–[9]. The exact method based on ILP [6] can compute the
minimum weights and threshold value. The heuristic methods
[3], [8], [9] have a competitive quality and are more efficient,
compared to the exact ILP-based method.

The synthesis technique maps a Boolean logic network into
a TLN [4], [6], [7]. The state-of-the-art synthesis method [4] is
a lookup table (LUT)-based approach, which takes advantage
of the LUT-based mapping technology for Field Programmable
Gate Arrays (FPGAs) [10] and is very effective in minimizing
the TLG count and logic depth. Furthermore, the optimization
technique minimizes the hardware implementation cost of a
TLN [11], [12].

Few techniques exist for rational-weight threshold logic.
In [2], Mozaffari et al. presented a CMOS-based hardware
implementation [13] for R-TLGs and an ILP-based method for
R-TLG identification. The authors also demonstrated that for
some functions, an R-TLG has a lower implementation cost
than a TLG. Although the ILP-based identification method is
effective, it could suffer from the scalability issue. Thus, in this
work, we propose a heuristic method to compute the lower-cost
R-TLG for a TLG.

C. Hardware Implementation of TLG and R-TLG

S. Bobba and I. N. Hajj [13] proposed a CMOS-based
current-mode implementation for a TLG. The implementation
consists of three parts: two differential parts and one sensor
part. One differential part is to implement the positive input
weights and the negative threshold value, and the other differ-
ential part is to implement the negative input weights and the
positive threshold value. The sensor part compares the currents
from the two differential parts to determine the output value.

The hardware implementation cost of a TLG is estimated
based on the area of the transistors in the differential parts. It
is defined by (3), which is the sum of the absolute values of
weights and threshold value. For example, the cost of the TLG
in Fig. 1(a) is 11 (= | − 1|+ 1 + 2 + 3 + 4).

TLG cost =
n∑

i=1

(|wi|) + |wT | (3)

In [2], Mozaffari et al. adapted the CMOS-based current-
mode implementation for an R-TLG. In the differential parts, a
rational weight wj

i is implemented with j transistors connected
in series. Thus, the hardware implementation cost of wj

i is j
times that of w1

i . The cost of an R-TLG is defined by (4).
For example, the cost of the R-TLG in Fig. 1(b) is 10 (=
2 ∗ | − 1|+ 2 ∗ 1 + 1 + 1 + 2 ∗ 1 + 2).

R− TLG cost =

n∑
i=1

(

l∑
j=1

(j ∗ |wj
i |)) +

l∑
j=1

(j ∗ |wj
T |) (4)

These two examples also demonstrate that an R-TLG can
have a lower cost than a TLG for implementing the same
function. For more details on the hardware implementation,
please refer to [2], [13].
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D. Heuristic for TF identification

In [3], Liu et al. proposed an efficient and effective heuristic
method for TF identification. The key procedure consists of two
stages. First, it constructs a system of inequalities according
to the given Boolean function. The inequalities are in fact
constraints on the relationships among the weights. Second,
it finds a weight assignment that satisfies all the inequalities,
and computes the threshold value.

Let us use an example taken from [3] to illustrate the TF
identification process. Suppose that the given function is f =
x1x2+x1x3+x1x4+x2x3+x2x4+x1x5x6. The method first
checks whether f is unate or not, since only a unate function
can be a TF. Next, it computes the weight ordering of f , which
is w1 > w2 > w3 = w4 > w5 = w6, based on the modified
Chow’s parameters [5].

Then, the method finds the ON-set cubes and the OFF-set
cubes of f , which are

{
x1x2, x1x3, x1x4, x2x3, x2x4, x1x5x6

}
and

{
x1

′x2
′, x1

′x3
′x4

′, x2
′x3

′x4
′x5

′, x2
′x3

′x4
′x6

′}, respec-
tively. Since the weight sum of an ON-set cube is always
larger than that of an OFF-set cube, the method pairs the
two sets of cubes to construct the system of inequalities and
eliminates redundant inequalities based on the weight ordering.
Additionally, the method simplifies the inequality system by
using the same symbol to replace the equal weights in the
inequalities according to the weight ordering. For example, w1

is replaced by A, w2 is replaced by B, w3 and w4 are replaced
by C, and w5 and w6 are replaced by D.

After that, the method conducts the weight assignment
procedure to find the smallest weight values satisfying all
the inequalities. It starts with an initial weight assignment, in
which each weight is assigned the smallest positive integer that
satisfies the weight ordering, e.g., A = 4, B = 3, C = 2,
and D = 1. In each iteration, the current weight assignment is
used to check whether the inequality system is satisfied. If there
are unsatisfied inequalities, called false inequalities, the method
finds critical weights (CWs) and increases their values. The CW
is a weight that appears more times on the greater side than
the lesser side in the false inequalities. Increasing the values of
CWs could cause more false inequalities to be satisfied. The
weight adjustment repeats until all the inequalities are satisfied
or a termination condition is reached.

Finally, if a legal weight assignment is found, f is a TF,
and then the method computes the threshold value which is the
largest weight sum among the OFF-set cubes plus 1.

In this work, we adapted the heuristic method to identify R-
TLGs. Unlike [3], which aims to find a TLG with minimum
weights and threshold value, our objective is to find a TLG that
has a lower cost after it is transformed into an R-TLG.

E. ILP-based R-TLG Identification

In [2], Mozaffari et al. presented an ILP-based method for
R-TLG identification. The method models the identification
problem as an ILP problem. Given a Boolean function f , to
construct the ILP formulation, the method first enumerates the
truth table of f . Then, for each input pattern, it generates
an inequality (i.e., a constraint) based on (2). The objective

TABLE I
PERCENTAGES OF TRUE R-WEIGHTS WHOSE VALUES ARE 0

l 2 3 4 5 6 7 avg.
0-value true

R-weights (%) 65.71 76.90 84.72 88.64 90.90 92.39 84.69

function of the ILP formulation is to minimize the hardware
cost of the R-TLG defined by (4). If the formulation has
a solution, f has an R-TLG implementation and its rational
weights leading to the minimum cost are obtained.

According to [2], for an n-input Boolean function, there are
2n+ l∗3∗ (n+1) constraints and l∗3∗ (n+1) variables in the
ILP formulation for finding an R-TLG implementation with l
rational weights. Although the ILP-based is effective, it could
suffer from inefficiency for a large n or l. Thus, in this work,
we are going to propose an efficient heuristic method that has
a competitive quality with the ILP-based method.

III. OBSERVATIONS

In this section, we present three observations on the ILP-
based R-TLG identification [2] and the transformation from a
TLG to an R-TLG, which inspire the proposed method.

Observation 1: Most of the true rational weights are 0.
In ILP-based R-TLG identification, the number of variables in
the ILP formulation dramatically increases, as the input number
of the given Boolean function, n, and the number of rational
weights, l, increase. However, we observe that most of the
true rational weights reported by the ILP-based method are
0. That is, the corresponding variables are redundant and can
be removed from the ILP formulation without affecting the
quality. Table I shows the percentages of 0-value true rational
weights in the R-TLGs with 4 ∼ 15 inputs for different l. The
benchmark functions are collected from the TLNs generated by
using the LUT-based synthesis method [4] and the R-TLGs are
computed by the ILP-based method. As you can see, most of
the true rational weights have a value of 0 and the percentage
increases as l increases. Thus, it is inefficient to consider all
the variables when we identify an R-TLG.

Observation 2: Constraining all the true rational weights
to 0, 1, or −1 does not affect the quality. In general, a rational
weight can be an arbitrary integer and its value represents the
hardware configuration. We observe that, in the experiment of
Table I, when we constrain all the true rational weights to 0,
1, or −1, the quality in terms of R-TLG cost does not change.

Observation 3: A TLG can be transformed into an R-
TLG. We observe that a TLG can be directly transformed into
an R-TLG with the following procedure: Given a TLG and the
value of rational weight count, l, we first divide each weight
and the threshold value by l to obtain a new weight-threshold
vector. Although some weights and the threshold value may
become fractions, the function remains the same. Then, for each
fraction, its integer part is implemented with the false rational
weight and its fractional part is realized with a combination of
the other true rational weights.

According to the three observations, the objective of the
proposed method is to find a TLG which can be transformed
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Fig. 2. Example of computing the ON-set cubes.

into an R-TLG with a lower implementation cost. When we
find a TLG, we do not consider the variables corresponding
to the rational weights. Additionally, we only find the weights
that can result in the 1-value or −1-value rational weights.

IV. PROPOSED METHOD

The inputs of the problem under consideration are a Boolean
function with its TLG implementation and a user-defined l. Our
objective is to identify the R-TLG implementation with l of the
function with a lower hardware cost.

The proposed method aims to be more efficient in identifying
R-TLG. It contains four stages: create the inequalities system,
build the tables for transformation, search the R-TLG weight
assignment, and refine the weight assignment for minimizing
cost.

A. Generation of the System of Inequalities

We directly use f ′(A,B,C,D,E) = [1, 1, 1,−3,−3;−3]
as an example to demonstrate the proposed method. First, all
the negative weights are converted to be positive through the
negation property. As a result, we can get f = [1, 1, 1, 3, 3; 3]
and the weight ordering is D = E > A = B = C.

Then, we compute the ON-set cubes and the OFF-set cubes
of f by implicitly building a binary decision tree. The variable
order of the decision tree is determined according to the weight
ordering.

To compute the ON-set cubes, at each iteration, we first
assign 1 to the target variable, and then assign 0. When the
assigned value is 1, we check whether the current assignment
can directly determine f = 1 regardless of other unassigned
values. If yes, an ON-set cube is obtained by collecting the
variables that are assigned 1. On the contrary, when the
assigned value is 0, we check whether f = 0 can be directly
determined. If yes, we fathom the node. Fig. 2 shows the binary
decision tree and the computed ON-set cubes.

The method of computing the OFF-set cubes is similar to that
of computing the ON-set cubes, while the considered values are
opposite. We first assign 0 to the target variable, and then 1.
When the assigned value is 0, we check whether the current
assignment can directly determine f = 0 regardless of other
unassigned values. If yes, an OFF-set cube is obtained by
collecting the variables that are assigned 0. Similarly, when we
assign 1 to the target variable, we check whether f = 1 can be
directly determined. If yes, we fathom the node. The computed
OFF-set cubes of f are

{
A′D′E′, B′D′E′, C ′D′E′}.

TABLE II
SYSTEM OF INEQUALITIES OF f ′

Inequalities
1. D > B + C 4. E > B + C
2. D > A+ C 5. E > A+ C
3. D > A+B 6. E > A+B

After obtaining the ON-set cubes and the OFF-set cubes, we
use the method in [3] to generate the system of inequalities and
simplify them as shown in Table II.

B. Building of the Tables for Rational Weight Transformation

Based on our observations, we first define a single-device
table that constrains the values of the true rational weights to
be 0 or 1. It records all the weights within a certain range that
can be implemented under the constraint and the corresponding
minimum hardware costs. Constructing the table early can
avoid repeated calculation.

We also define a multiple-device table without any restriction
on the rational weight values. The table is used to obtain a lower
hardware cost during the adjustment process of the weights and
the threshold value.

Algorithm 1 Build the single-device table
Input: The value of l and a upper bound b
Output: The single-device table Ts

1: Ts = ∅;
2: Lcm ← LeastCommonMultiple(1, ..., l);
3: Ts ← CreateFundamentalWeights(l, Lcm);
4: for i = 1 to b do
5: pairSet = ∅;
6: pairSet← EnumerateAllPairCombinations(i, Ts);
7: for each pair combination p in pairSet do
8: if (SingleDevice(p)) then
9: c = CalculateCost(p);

10: if (Entry i does not exist in Ts) then
11: Insert [i, c] into Ts;
12: else if (c is lower than the cost in Ts) then
13: Update [i, c] in Ts;
14: return Ts

Algorithm 1 shows the proposed method for constructing
the single-device table Ts. We first calculate the least common
multiple Lcm among all the integers from 1 to l, according
to the given value of l (Line 2). The weights contributed by
different rational weights are multiplied by Lcm to establish
the fundamental weights (Line 3).

For example, if l = 3, the value of Lcm is 6 and we
use the rational weight (w1

i , w
2
i , w

3
i ) to create the table. The

fundamental weights 6 ∗ ( 11 ,
1
2 ,

1
3 ) = (6, 3, 2) are created and

the corresponding costs are (1, 2, 3), respectively.
Then, for all the possible weight values from 1 to the upper

bound b, we iteratively consider one value i (Line 4). At
each iteration, we first find all the pair combinations from Ts,
which can form i (Lines 5 and 6). If a combination p can be
implemented by the true rational weights with a value 0 or 1
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TABLE III
EXAMPLE OF Ts AND Tm WITH l = 3

Ts [weight, cost] Tm [weight, cost]
[2, 3] [11, 6] [20, 6] [2, 3] [8, 4] [14, 5] [20, 6]
[3, 2] [12, 2] [21, 5] [3, 2] [9, 3] [15, 4] [21, 5]
[5, 5] [14, 5] [23, 8] [4, 6] [10, 7] [16, 8] [22, 9]
[6, 1] [15, 4] [24, 4] [5, 5] [11, 6] [17, 7] [23, 8]
[8, 4] [17, 7] [6, 1] [12, 2] [18, 3] [24, 4]
[9, 3] [18, 3] [7, 8] [13, 9] [19, 10]

(Line 8), we compute the cost of p, denoted as c (Line 9).
Then, we check whether the entry i exists in Ts or not (Line
10). If not, we insert the entry i with the cost c, [i, c], into Ts

(Line 11). Otherwise, if c is lower than the cost stored in Ts,
we update [i, c] in Ts (Lines 12 and 13).

The method of constructing the multiple-device table Tm

is similar to that of Ts, except Line 8 in Algorithm 1 is not
necessary. Table III shows the Ts and Tm under l = 3 and
b = 24.

C. Weight Adjustment

The proposed method basically adjusts the selected weights
up by one level based on the single-device table Ts.

Since the initial weight assignment, i.e., the given TLG,
might not be implementable according to Ts, we first adjust the
weights to a closet greater weight value in Ts, which satisfies
the weight ordering.

Next, we iteratively select weights to adjust based on two
methods. If the current weight assignment does not satisfy the
system of inequalities, i.e., illegal assignment, we use Method
1 to select all the CWs as the previous method [3]. Otherwise,
we use Method 2 to select the weight that leads to the largest
cost reduction when adjusted. If there is more than one weight,
we choose the largest weight. For Method 2, we adjust the
selected weight and the other weights that are identical to it in
the weight ordering (if any) simultaneously.

At each iteration, after adjustment, if it causes the weight
ordering to be violated, we also adjust the other weights to meet
the ordering. Furthermore, if the current weight assignment
is legal, we check whether the possible threshold value is
implementable or not according to Tm. The possible threshold
value is within the range between the smallest sum of the ON-
set cubes and the largest sum of the OFF-set cubes plus 1. If
all the values within the range after conversion with negation
property are not implementable according to Tm and none of
them is 0, the current weight assignment is seen as an illegal
assignment as well.

If the weight assignment is legal, we compute its cost based
on Tm and the threshold value is determined as the imple-
mentable value within the range and having the lowest cost.
Please note that the negative variables need to be restored with
the negative property when we compute the cost. Additionally,
if its cost is lower than that of the last legal weight assignment,
we add it into the downhill set. If its cost is lowest among all
the legal weight assignments so far, we store it in the best set.
We also estimate the most optimistic cost of the legal weight

2, 2, 2, 3, 3

2, 2, 2, 5, 5; 5

2, 2, 2, 6, 6; 6
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Fig. 3. Details of the weight adjustment and the refinement processes for
f ′ = [1, 1, 1,−3,−3;−3].

assignment based on (5). It is the possible lowest cost that can
be achieved in the following adjustments.

The adjustment process terminates when the most optimistic
cost of the current legal weight assignment is larger than that
of the best set.

Cost =

n∑
i=1

(|wi|/Lcm+ 1) + |wT |/Lcm+ 1 (5)

Fig. 3 shows the details of the weight adjustment process
for the example of f = [1, 1, 1, 3, 3; 3]. The collected weight
assignments in the downhill set are [2, 2, 2, 6, 6], [3, 3, 3, 9, 9],
and [3, 3, 3, 12, 12]. The best set has only one weight assign-
ment [2, 2, 2, 6, 6] with a threshold value of 6, and its cost is 12.
The process terminates when the weight assignment becomes
[3, 3, 3, 14, 14], for which the most optimistic cost is 13 under
the threshold value of 7, and it is larger than the cost of the
best set.

D. Refinement

In this stage, we would like to refine the weight assignments
in the downhill set and the best set to find a better weight
assignment that has a lower cost.

We first tackle the downhill set. For each weight assignment
in the set, we consider every weight group, in which the
weights are equal in the weight ordering, one at a time. We
simultaneously adjust the weights in the group up to the closet
lower-cost weight value (if any) in Ts. If the new weight
assignment is legal and has a lower cost, we add it into the
downhill set. Furthermore, if the new cost is lower than that
of the best set, we update the best set. The process terminates
when no new weight assignment exists in the downhill set.

For example, for [3, 3, 3, 9, 9] in the downhill set, we sep-
arately adjust the first three weights of 3 to 6 and the last
two weights of 9 to 12 to obtain the two weight assignments
[6, 6, 6, 9, 9] and [3, 3, 3, 12, 12]. Among them, the second
weight assignment [3, 3, 3, 12, 12] is legal and has a lower cost
than [3, 3, 3, 9, 9], and, thus, we add it to the downhill set.
Additionally, the best set does not need to be updated.
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Second, we deal with the best set. The refinement method
for the best set is similar to that for the downhill set. The
main difference is that when we consider a weight group, we
only adjust one weight that leads to the largest cost reduction,
rather than all the weights in the group. For example, for the
weight assignment [2, 2, 2, 6, 6], when we consider the first
weight group, we adjust the first weight to 3 to generate the new
weight assignment [3, 2, 2, 6, 6]. The new weight assignment is
legal and has a lower cost, and, thus, we add it into the best set.
Again, the process terminates when no new weight assignment
exists in the best set.

Finally, we can obtain the lowest-cost weight assignment
from the best set and transform it into an R-TLG based on
Tm. In the example, it is [3, 2, 2, 6, 6] and the threshold value
is 6. After restoring the negative weights through the negation
property, we obtain f ′ = [3, 2, 2,−6,−6;−6]. It then can
be transformed to an R-TLG [w2

A, w
3
B , w

3
C , w

1
D, w1

E ;w
1
T ] =

[1, 1, 1,−1,−1;−1] and the cost is 11.
Fig. 3 also summarizes the refinement process for the func-

tion f ′.

V. EXPERIMENTAL RESULTS

We implemented the proposed method in C++ language and
conducted the experiments on a Linux platform with the Intel
Core i5-10500 processor and 8GB memory. The ILP solver is
GUROBI [14]. The TLG benchmarks are collected from the
TLNs generated by the synthesis method [4], in which each
TLG has at most 15 inputs. We remove the duplicate TLGs and
cluster them according to their input counts. In the experiments,
each TLG is transformed into an R-TLG by separately using
our method and the ILP-based method [2].

The experimental results with l = 2 and b = 400 are
summarized in Table IV. Columns 1 and 2 show the TLG sets
of different input counts and the numbers of TLGs in each
TLG set. Columns 3 ∼ 5 show the results of our method. They
are the average percentages of implementation cost reduction
compared with the given TLGs (R), the average CPU time
AT for processing a TLG, and the total CPU time TT for
processing all the TLGs. The corresponding results of the ILP-
based method are shown in Columns 6 ∼ 8. The last two
columns show the ratios of the results of our method and the
ILP-based method. The results show that our method saves the
cost with an average ratio of 0.9956, compared to the ILP-
based method. Additionally, our method spent only an average
of approximately 0.23% of CPU time.

Table V shows the ratios of the results of our method
and the ILP-based method for different l. It depicts that our
method has a competitive capability for saving the cost with
an average ratio of 96.25%, and it only needs 1.76% of CPU
time, compared with the ILP-based method.

VI. CONCLUSION

In this work, we propose an effective and efficient heuristic
method for R-TLG identification. We first present three obser-
vations on R-TLG implementation. Then, we adapt the heuristic
method for TLG identification to find a TLG implementation
that can be transformed to a lower-cost R-TLG based on the

TABLE IV
COMPARISON OF OUR METHOD WITH THE ILP-BASED METHOD [2] UNDER

l = 2

TLG Ours ILP Ratio (Ours/ILP)
n #G R (%) AT (ms) TT (ms) R (%) AT (ms) TT (ms) R TT

4 102 21.78 0.01 1.48 21.78 4.01 409 1.0000 0.0035

5 347 30.73 0.02 8.03 31.22 4.52 1570 0.9843 0.0051

6 790 38.33 0.03 27.47 38.69 7.46 5891 0.9907 0.0047

7 1003 44.92 0.05 51.82 45.18 16.18 16233 0.9942 0.0032

8 1071 49.32 0.07 75.38 49.52 31.71 33965 0.9959 0.0022

9 681 52.35 0.09 61.46 52.51 55.38 37714 0.9970 0.0016

10 431 53.38 0.14 60.93 53.54 108.57 46791 0.9970 0.0013

11 280 53.98 0.37 103.14 54.13 229.96 64388 0.9972 0.0016

12 173 53.74 0.78 134.25 53.94 490.57 84868 0.9964 0.0016

13 101 53.66 3.31 334.50 53.80 1173.84 118558 0.9973 0.0028

14 80 55.69 0.79 63.37 55.75 2573.76 205901 0.9989 0.0003

15 51 56.23 0.20 10.25 56.34 7014.49 357739 0.9981 0.0003

Avg. 47.01 0.49 47.20 975.87 0.9956 0.0023

TABLE V
COMPARISON OF OUR METHOD WITH THE ILP-BASED METHOD

Value of l 2 3 4 5 6 7 Avg.
Upper bound b 400 800 1000 5000 5000 20000 −

Ratio (Ours/ILP) (%) Cost 99.56 95.17 95.97 96.29 96 94.49 96.25
Time 0.23 0.29 0.62 1.39 2.32 5.7 1.76

observations. The experimental results show that the proposed
method is more efficient than the ILP-based method, and has
a competitive quality.
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