
HULK-V: a Heterogeneous Ultra-low-power Linux
capable RISC-V SoC

Luca Valente∗, Yvan Tortorella ∗, Mattia Sinigaglia ∗, Giuseppe Tagliavini∗, Alessandro Capotondi†, Luca
Benini∗‡, Davide Rossi∗

DEI, University of Bologna, Italy∗ University of Modena and Reggio Emilia† IIS lab, ETH Zurich, Switzerland‡

{name.surname}@unibo.it

Abstract—IoT applications span a wide range in performance
and memory footprint, under tight cost and power constraints.
High-end applications rely on power-hungry Systems-on-Chip
(SoCs) featuring powerful processors, large LPDDR/DDR3/4/5
memories, and supporting full-fledged Operating Systems (OS).
On the contrary, low-end applications typically rely on Ultra-
Low-Power µcontrollers with a ”close to metal” software en-
vironment and simple micro-kernel-based runtimes. Emerging
applications and trends of IoT require the ”best of both worlds”:
cheap and low-power SoC systems with a well-known and agile
software environment based on full-fledged OS (e.g., Linux),
coupled with extreme energy efficiency and parallel digital signal
processing capabilities. We present HULK-V: an open-source
Heterogeneous Linux-capable RISC-V-based SoC coupling a 64-
bit RISC-V processor with an 8-core Programmable Multi-Core
Accelerator (PMCA), delivering up to 13.8 GOps, up to 157
GOps/W and accelerating the execution of complex DSP and ML
tasks by up to 112× over the host processor. HULK-V leverages a
lightweight, fully digital memory hierarchy based on HyperRAM
IoT DRAM that exposes up to 512 MB of DRAM memory to the
host CPU. Featuring HyperRAMs, HULK-V doubles the energy
efficiency without significant performance loss compared to
featuring power-hungry LPDDR memories, requiring expensive
and large mixed-signal PHYs. HULK-V, implemented in Global
Foundries 22nm FDX technology, is a fully digital ultra-low-cost
SoC running a 64-bit Linux software stack with OpenMP host-
to-PMCA offload within a power envelope of just 250 mW.

Index Terms—RISC-V, Multi-processor, Heterogeneous, Asym-
metric processing.

I. INTRODUCTION

As we entered a new Internet of Things era, the number
of IoT devices and the spectrum of IoT applications are
continuously increasing: from home applications, robotics,
industrial gateways, drones, and building automation to smart
cities, digital signage, medical equipment, and more [1].

Depending on the application’s requirements, commercial
IoT devices can either be high-end computing platforms, called
Single Board Computers (SBCs), or low-end µcontrollers
(MCUs) with ultra-low-power consumption. To keep the power
envelope within 200 mW, MCUs usually feature simple RISC
host processors (e.g., ARM Cortex-M) to which they expose
just a few hundred KBytes of on-chip SRAM memory, and
leverage heterogeneity to achieve high data processing capa-
bilities [2]. Due to the limited amount of memory, MCUs can
only support lightweight real-time Operating Systems (OS)
or custom bare-metal runtimes. On the other hand, to support
full-fledged OSs (e.g., Linux) and provide access to high-level
software libraries, SBCs feature application-class cores, like
multi-core ARM Cortex-A processors [3], GPUs, and GBytes
of high-performance off-chip LPDDR/DDR/3/4/5 memories,
with dedicated large (few mm2 in 22 nm node [4]), mixed-
signal, proprietary and expensive (> 300 thousands dollars [5])

on-chip PHY controllers, ending up with a power envelope of
few Watts.

Even though an increasing number of applications require
low power consumption, low silicon cost and highly energy-
efficient data processing capabilities coupled with standard
and mature programming interfaces, there is still no hardware
platform offering all these characteristics simultaneously. This
work presents HULK-V: a Heterogeneous Ultra-Low-power
Linux-ready RISC-V SoC, implemented in Global Foundries
22nm FDX technology. HULK-V’s heart is the 64-bit RISC-
V Linux-capable CVA6 [6] core, accelerated by an ultra-low-
power energy-efficient programmable cluster composed of 8
32-bit RISC-V cores enhanced with integer and floating-point
DSP extensions. The cluster can deliver up to 13.8 GOps
and 157 GOps/W over a broad spectrum of IoT applications.
HULK-V supports an OpenMP-based user-space library that
provides an intuitive programming interface to offload parallel
code from the host to the accelerator.

To fit the tight power and cost requirements of many IoT
applications while exposing hundreds of MB to the host
processor, HULK-V replaces power-hungry LPDDR memories
and large mixed-signal PHY controllers with HyperRAMs [7]
and an ultra-low-power cheap 0.27mm2 fully-digital memory
controller. HyperRAMs belong to the family of IoT memories,
like RPCDRAMs [8], providing relatively high-bandwidth,
low-pin count, ease of integration, low power consumption,
and enough memory capacity to run a full-fledged OS like
Linux. To mitigate the performance impact of the lower
bandwidth of such memories compared to LPDDRs, HULK-
V integrates a Last-Level Cache (LLC) tightly coupled to the
memory controller.

Featuring HyperRAMs, HULK-V increases the energy effi-
ciency by up to 2× on IoT ML applications, with negligible
performance penalty on CPU-centric benchmarks compared
to featuring LPDDR4 memories, usually needed to run full-
fledged OSs. To the author’s knowledge, HULK-V is the only
Linux-capable, heterogeneous, and programmable platform,
delivering GOps range performance at extremely high energy
efficiency within a power envelope of only 250 mW and die
area smaller than 9mm2. The hardware and software described
in this work are open-source, intending to support and boost
an innovation ecosystem focusing on ULP computing for the
IoT landscape.

II. RELATED WORK

IoT devices can be classified into three categories: low-
end, mid-end, and high-end devices [1]. Low-end devices, like
[9], typically run at very low frequency (<30 MHz), have
minimal on-board resources (<100 kB of on-chip SRAM) and

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

connectivity, and consume a few mW of power, with minimal
software support. In this work, we rather focus on mid-end
and high-end devices with moderate performance and support
for a full-fledged OS. Table I shows the systems closest to our
approach, namely mid-end and high-end devices.

A. Mid-end devices
Mid-end devices, like [2] [10] [11], usually have a simple

host core and a few hundreds of kB of on-chip scratchpad
SRAM and tens of MB of off-chip DRAM. Due to the
limited memory resources, these devices provide only support
for lightweight RTOSs and custom runtimes. The off-chip
DRAM is accessible only through IOs (SPI, QSPI, ...), and all
transactions are explicitly managed through drivers offering
in/out copy APIs. State-of-the-art mid-end devices have high
energy-efficient DSP capability, thanks to ISA optimizations
or dedicated hardware accelerators.

Vega [2] is a mid-end IoT platform consuming less than
100 mW. It comprises a host RISC-V core and an accelerator
featuring 9 RISC-V cores optimized for DSP reduced precision
computation, supporting integer and FP arithmetic. Vega also
features a neural networks hardware accelerator, delivering up
to 32 GMAC/s on int8 data, and it integrates an HyperBUS
controller. Unlike HULK-V, Vega does not directly expose
the off-chip DRAMs to the host processor and only supports
RTOS and bare-metal runtimes: FreeRTOS and PULP-OS.

Sapphire [10] is a soft-SoC available for FPGA deployment.
The off-chip memory is memory-mapped on the AXI intercon-
nect, and customers can choose between DDR or HyperRAM
memories on board. Differently from HULK-V, Sapphire is
not available as ASIC, and its processor does not support
application-class features, like virtual memory or multiple
privilege levels, necessary to run a Linux OS.

i.MX RT1180 [11] is an embedded SoC from NXP featuring
a powerful ARM Cortex-M7, reaching up to 800 MHz. The
SoC provides the CPU with a big 1.5 MB on-chip memory,
but external memories are not directly accessible by the
core, limiting the memory mapped footprint available for
OSs. Moreover, the ARM Cortex-M7 does not provide Linux
support, and it delivers much less operational throughput than
HULK-V.
B. High-end devices

High-end devices, like [12] [13] [3], feature more powerful
CPUs, running at more than 1 GHz, and hundreds of MB
of memory provided by LPDDR3/4/5 devices and their PHY
controllers, which consume more than one Watt [14]. High-
end SoCs might also have integrated GPUs [13]. These devices
are known as Single Board Computers (SBC) thanks to their
capability of running complete Linux OS distribution.

Pi0 [3] from Raspberry is probably the most popular SBC
on the market, and it is the archetype of a simple SBC
with a significantly reduced form factor. It is powerful but
power-hungry, with its Quad-core ARM Cortex-A53 running
at 1 GHz and 512 MB of LPDDR2 as main memory. The
same reasoning applies to Nvidia’s Orin [13] and SiFive’s
Unmatched [12].

HULK-V joins the benefits of SBC and MCU systems.
The main CPU memory comprises HyperRAMs, not oversized
DDRs or small on-chip SRAMs. Such a setup allows the
processor to run Linux while maintaining a limited power

TABLE I: Comparison with State-of-Art

OS Memory ASIC/ Host Accel-
FPGA CPU erators

Vega RTOS 512KB SRAM ASIC Ri5cy PMCA
[2] 512MB Hyper 200MHz

Sapphire RTOS 4MB-3GB FPGA VexRiscv No
[10] DDR/Hyper 400MHz

i.MX RT RTOS 1.5MB ASIC CortexM7 MIPI
[11] SRAM 800MHz

HeroV2 Linux 1GB FPGA Quad-Core PMCA
[15] DDR4 CortexA53

1GHz
Raspberry Linux 512MB ASIC Quad-Core No

Pi0 [3] LPDDR2 CortexA53
1GHz

Unmatched Linux 16GB ASIC U74 No
[12] DDR4 1GHz
This Linux/ 512KB SRAM ASIC/ CVA6 PMCA
work RTOS 512MB Hyper FPGA 900MHz

consumption and a simplified form factor. Furthermore, thanks
to the accelerator cluster, HULK-V delivers state-of-the-art
computing performance compared to mid-end embedded sys-
tems, associated with a productive and mature programming
environment based on a complete SPM Linux Distribution
coupled with an intuitive and effective heterogeneous program-
ming interface based on OpenMP 5.

C. Research platforms

When compared to academia, several projects could resem-
ble our approach, especially regarding heterogeneity. Three
research projects that aim to build heterogeneous SoC, with a
particular focus on cache coherency, are ESP [16], BYOC [17],
and AGILER [18]. Platforms like ESP, BYOC, and AGILER
are research platforms used for the architectural exploration
of many-core high-performance systems. They rely on DDR
memories, many application-class cores, and accelerators to
meet their performance target. On the contrary, HULK-V
features only one application-class core, and it is sized for
embedded applications, hitting a much smaller power enve-
lope.

The closest one is HERO [15]. HERO is an FPGA-based
research platform developed to enable accurate and fast explo-
ration of heterogeneous computers consisting of an 8 RISC-V
cores cluster and an ARM Cortex-A53 host processor. While
the asymmetry of the architecture is similar to ours, the target
is entirely different. In HERO, the host system is the Zynq-SoC
running at 1.2 GHz, and the PULP cluster is only emulated at
50 MHz, not providing any actual speed up against the host.
On the contrary, HULK-V is a deeply optimized ASIC SoC, it
is not an FPGA platform for architectural exploration and the
PMCA actually speeds up the execution of parallel workloads
against the host. Furthermore, differently from HERO, all
IPs integrated in HULK-V are open-source, except for the
technology dependent ones.

III. ARCHITECTURE

This section describes the heterogeneous system architec-
ture focusing on the two key elements of the system: i) the
low-power and cheap memory system and ii) the parallel
programmable accelerator. Figure 1 contains the block diagram
of HULK-V. The SoC is divided into four frequency domains,
adjusted by four Frequency Locked Loop (FLL): the host core,
the host domain, the peripheral domain, and the accelerator
cluster.

CVA6 Host Core
FPU

Host Interconnect

AXI-4

 HYPERRAM

Controller

AXI-4 Last
Level CacheAXI-4

to APB

AXI-4
to

TCDM

MAILBOX
AXI CDC

MMU

CLINT
&PLIC 512 KiB

L2SPM SRAM

PMP AXI CDC

Periph
Xbar

DMA

L1 TCDM Interconnect

L1I$ L1D$

L2 TCDM
Interconnect Fully-Connected AXI-4 crossbar

Fully-Connected AXI-4 crossbar

APB Peripheral interconnect

RI5CY
 NN

core #0

F
P
U

. . .
I
$

Cluster EU

RI5CY
 NN

core #7

F
P
U

Bank #0 Bank #15128 KiB
L1 TCDM

CAN
μDMA (SPI, QSPI, I2C, SDIO, CAM, UART)

I/O Master interfaces

Fig. 1: Overall HULK-V SoC Architecture.

The heart of the host subsystem is the CVA6 [6] core.
CVA6 is a 6-stages, single-issue, in-order, 64-bit RISC-V core,
supporting the RV64GC ISA variant, virtual memory, three
execution privilege levels, physical memory protection (PMP),
and the Linux OS. CVA6 has 16 kB of L1 I-cache and 32 kB
of write-through L1 D-cache to enable simple coherency with
other masters to the interconnect.

The main host interconnect is a high-bandwidth, low-latency
64-bit AXI4 crossbar. The host domain provides a 512 kB
scratchpad memory (L2SPM) and a complete set of peripherals
(I2C, (Q)SPI, CPI, SDIO, UART, CAN, PWM, I2S) serving
the requirements of IoT applications in several fields, such
as automotive, audio, and robotics. Data to/from off-chip
peripherals are autonomously written/read from/to the L2SPM
through a dedicated µDMA. The host domain is also composed
of a standard Platform Level Interrupt Controller (PLIC), a
Core Local Interrupt (CLINT), the HyperRAM controller, and
an LLC.
A. Last Level Cache

CVA6 needs a Last Level Cache (LLC) to cope with
the intrinsic high latency of the HyperRAMs and to deliver
maximum performance. The LLC’s architecture is shown in
Figure 2. Incoming AXI transactions are first filtered. The
requests inside the cacheable region are passed to the cache,
while the others are directly propagated out to the external
memory.

Cacheable AXI transactions are then split onto the descrip-
tors used in the hit/miss tag-lookup mechanism. Tags are
stored in SRAM and are accessible in one clock cycle. After
the tag-lookup, the descriptor goes directly to the read/write

CONFIG

SPLIT

TAGSRAM TAGSRAM. . .

HIT/MISS
DETECTION MERGE

REFILL &
EVICT

WAY0

WAY
N-1

. . .

W/R UNITS

APBM
AXI4S

AXI4M

Fig. 2: Last Level Cache Architecture.

H
Y
P
E
R
B
U
S
1

Ax queue

AR/AW

FSM
H
Y
P
E
R
B
U
S
0

TX

W B

RX

PHY R
TO

AXI R

R Phy clk

Delay
lines

DIV &
SHIFT

AXI W
TO

PHY W

AX
TO

PHY

CFG
REGS

APB

uDMA engineL2

MEM
1

MEM
2

MEM
3

MEM
0

Fig. 3: HyperRAM Memory Controller Architecture.

units on a hit. On a miss, a cache line must be evicted and
refilled. An eviction generates an AXI write transaction on the
output port through the read unit. Then, the refill triggers an
out AXI read transaction on the output port through the write
unit.

The HULK-V’s LLC design is highly parameterizable.
”Blocks” are as wide as the AXI data width (AXIdw). Then,
one can choose the number of blocks in a cache line (Nblocks),
the number of lines in a set (Nlines) and the number of
ways (Nways). The resulting LLC size will be equal to:
LLCsize = Nways · Nlines · Nblocks · AXIdw. In HULK-V,
we set the number of blocks to 8, the number of lines to 256,
and the number of ways to 8, which means 128 kB of LLC.

B. Low-cost, low-power HyperRAM controller
HULK-V’s HyperRAM controller is depicted in Figure 3.

It provides an AXI4 slave port and a configuration APB
port; it connects the SoC with the off-chips HyperRAMs. The
HyperBUS protocol is a fully digital protocol counting 11+n
pins: 3 control pins, n Chip Select (CS), and 8 Double-Data-
Rate pins. Latest HyperRAMs can reach up to 200 MHz and
provide up to 3.2 Gbps and up to 64 MB of capacity [7].

The HyperRAM controller comprises two modules: the
PHY controller and the front-end, in separate frequency do-
mains. The front-end contains an AXI4-to-PHY converter and
a dedicated µDMA engine programmable through APB for
software-programmed DMA transfers. The AXI and µDMA
transactions are multiplexed towards the PHY, which translates
the incoming data packets into HyperRAM transactions and
vice versa.

The AXI front-end enqueues the AXI transactions one at a
time, and it translates the oldest pending AR/AW transaction
into a data packet for the PHY. Then, if it is a write, the
W channel transactions get converted into multiple PHY data
packets. For reads, the mechanism is the same, with the

PHY back-end sending data packets to the converter that then
populates the R channel.

The µDMA engine directly connects the L2SPM and the
HyperRAM and can generate both 1D and 2D burst transac-
tions. Such features are precious for efficiently executing ML
algorithms on the cluster. Doing so requires careful tiling of
the input weights: filling the L2SPM with as many weights as
possible and then bringing a smaller portion of them into the
L1SPM, accessible by the cores in one clock cycle.

The proposed module is highly parameterizable. One can
choose how many memories to connect on the same Hyper-
BUS to set the overall available memory. Multiple memories
on the same bus are placed contiguously in the address
memory map and selected through their dedicated CS. At
runtime, one can communicate to the controller the size
of the HyperRAMs, and the controller will demultiplex the
transactions accordingly.

Also, one can choose how many HyperBUS interfaces (1 or
2) to expose. Both buses will have the same number of CSs.
When exposing 2 HyperBUSes, the pair of memories on the
same chip select will be mapped as interleaved: each memory
will be seen as a memory block of 16-bit width. Doing so will
double the maximum achievable bandwidth, up to 6.4 Gbps,
doubling the pin count.

C. Programmable Multi-Core Accelerator

The Programmable Multi-Core Accelerator (PMCA) is built
around 8 CV32E4-based cores [19] sharing 16×8 kB SRAM
banks, composing a 128 kB L1SPM, and it is invoked by the
host to run computation-intensive kernels. The cores feature
a custom RV32 extension, providing many DSP and ML
features, like hardware loops, MAC&Load operation, SIMD
operations, and post-increment LD/ST. The cluster features
8 FPUs supporting FP32 and FP16 with SIMD support.
SIMD operations, not available in the CVA6 host core, reduce
the operands’ width to double or quadruple the number of
operations per cycle. On integer numbers, the precision can
be reduced down to 8-bit and down to 16-bit for FP. The
cluster also features a two-level I-cache: 512 B for each core
and 4 kB shared.

The cluster architecture is optimized for embedded sys-
tems and ML algorithms. To avoid the hardware overhead
of data caches, the cluster exploits scratchpad memories,
DMA accesses, double-buffering, and custom ISA extension to
maximize the utilization of memory and computing resources
through explicit memory management of the memory [20].

The PMCA communicates with the host’s AXI4 intercon-
nect through two 64-bit AXI4 ports, one master and one slave.
An IOPMP controlled by CVA6 filters master transactions.
The cluster provides a DMA with one AXI4 port and 4 ports
towards the L1SPM for high-bandwidth, low-latency trans-
actions to/from the L1SPM. A dedicated event unit enables
fine-grain parallel thread dispatching. Efficient communication
between cluster and host domain is implemented through a
dedicated hardware mailbox.

IV. SOFTWARE STACK AND PROGRAMMING MODEL

HULK-V comes with a mature software stack for hetero-
geneous programming, as illustrated in Figure 4. Supporting
Linux and an OpenMP-based framework for heterogeneous

Heterogeneous application

OpenMP pragmas

Accelerator RT

CVA6 PMCA

DriverLinux Kernel

Fig. 4: HULK-V SW stack (from HW to user-space)

programming, HULK-V’s software stack furnishes a well-
known, popular, and mainstream set of user-level libraries, eas-
ing the programmability and enabling straightforward porting
of legacy Linux-compatible applications.

On the PMCA side, HULK-V supports a lightweight bare-
metal runtime that allows low programming overhead and is
optimized for the small L1SPM. The PMCA runtime also
allows hardware functionality validation and performance and
power profiling. On the host side, CVA6 runs a full-fledged
Buildroot-based Linux distribution (v5.16.9) equipped with a
dedicated driver for the PMCA management but also supports
a HULK-V bare-metal runtime.

CVA6’s MMU supports SV39 virtual memory paging [21],
while the PMCA can only generate 32-bit addresses. A special
main memory shared region, accessible through user-space
hulk malloc() function, enables data sharing in this mixed-
address space. The function allocates contiguous memory
buffers within accessible memory space, making the pointer
sharing between the subsystems straightforward.

The APIs provided by the PMCA runtime and the Linux
driver are already sufficient to run heterogeneous code on
the platform. However, one must write two different codes
for the host and cluster. To avoid this, HULK-V adapts the
OpenMP 5 framework from HERO [15], allowing users to use
a high-level, directive-based, intuitive programming interface
to efficiently offload the computationally intensive part of
a program to the PMCA within one single heterogeneous
source code. The HULK-V software stack comes with runtime
libraries and compiler extensions of the Clang/LLVM 12
compiler for OpenMP 5 offload support from CVA6 ISA to
RI5CY ISA.

V. PHYSICAL IMPLEMENTATION

We implemented HULK-V in 22 nm FDX technology from
Global Foundries, down to ready-for-silicon layout, with the
aim of reliably estimating operating frequency, power, and
area of the SoC. Physical synthesis has been performed with
Synopsys Design Compiler, Place & Route with Cadence
Innovus, power analysis with Synopsys PrimeTime extracting
value change dump (VCD) traces on the post layout, parasitics
annotated netlist of the design with Siemens Questasim. Fig-
ure 5 shows the layout of the proposed SoC, featuring an area
smaller than 9 mm2.

CVA6 can reach up to 900 MHz in the worst corner (SSG
corner at 0.72 V, -40/125 °C). The other components can
reach between 400 and 450 MHz in the same corner. Table II
shows the power consumption in typical corner, at 0.8 V and
25°C. The HyperRAM controller consumes less than 2 mW
at maximum frequency, around two orders of magnitude less
than DDR controllers [14]. The overall power envelope of the
SoC goes from 70 mW to 240 mW, depending on the active
blocks in the system and their frequency.

Fig. 5: HULK-V floorplan.
TABLE II: Power consumption at 25°C, 0.8V, TT

Area Leakage Dynamic Max Freq Max Power
(mm2) (mW) (uW

MHz
) (MHz) (mW)

Top 7.28 4.23 214.7 450 100.53
CVA6 0.49 4.79 47.5 900 47.54
PMCA 1.56 5.78 206 400 88.18

Mem Ctrl. 0.27 0.14 2.3 450 1.16
Total 7.28 14.94 469.8 - 237.41

VI. BENCHMARKING

We emulate HULK-V on the Xilinx VCU118 FPGA de-
velopment board to measure performance. On FPGA, HULK-
V can instantiate the HyperRAM controller or a proprietary
Xilinx AXI4 DDR4 controller. While the DDR4s are already
available on board, the HyperBUS is connected to one Hy-
perRAM mounted on a PCB board plugged into the FMC
connector.

On FPGA, HULK-V runs at 50 MHz, the DDR4 controller
interface at 165 MHz, and the DDR4 PHY at 1.2 GHz, while
the HyperBUS runs at 25 MHz. The DDR4 models an ideal
off-chip memory, faster by one order of magnitude than the
SoC, while the HyperRAM works at half the frequency of
the SoC, as it is for the ASIC SoC. Doing so allows us
to sample the performance counters and obtain the same
data on ASIC. On FPGA, we measure the operations per
cycle. Combining Ops/Cycle and the measures obtained with
Synopsys Primetime, we obtain the GOps and GOps/W of
HULK-V with the components running at the frequencies
listed in Table II.
A. Programmable Multi-Core Accelerator and CVA6

To assess the performance and offloading overhead of the
PMCA, we run a set of integer and floating-point DSP kernels
on CVA6 and the cluster. All the benchmarks can be run on
the cluster with reduced precision (FP16 for float and int8
for integer) to exploit the SIMD extensions unavailable on the
CVA6 core and increase the operations per cycle.

The left plot in Figure 6 shows the cluster’s speedup in
terms of the number of cycles. To estimate the two opposite
boundaries in terms of code utilization, the figure shows the
acceleration when executing the accelerated kernel once or
1000 times on the cluster. Due the fact that OpenMP offload
triggers the load of the code lazily (at first occurrence), when
we run the inner kernel just once, if the kernel execution time
is very short (<100k cycles), the cluster’s offload overhead
(i.e., loading the code into the L2SPM) dominates the total
execution time and reduces the speedup. Luckily this is a
very uncommon case, and even there, offloading to the cluster
halves the execution time.

Fig. 6: Speedup and Energy Eff. on PMCA vs CVA6.

Fig. 7: Sweep on Last Level Cache

The right plot in Figure 6 shows the energy efficiency
achieved by CVA6 and the cluster on the same benchmarks,
with the IPs working at the maximum frequency. On a
reduced-precision matrix multiplication, the cluster can reach
up to 157 GOps/W, while CVA6 can only provide 4.9 GOps/W,
32× less. The matrix multiplication is representative of many
ML applications, such as deep neural networks, and thanks
to the high regularity and parallelizability, it is an easy target
got the PMCA. On the other hand, the FP applications are
less regular, and the minimum precision scales down to 16-
bit and not 8-bit, being a more challenging target for the
PMCA. Nevertheless, when executing the kernel many times,
the PMCA can offer at least five times faster execution than
CVA6 and higher energy efficiency on FP kernels.

B. Benchmarking of the Fully Digital Memory Hierarchy

To benchmark the proposed lightweight, fully digital mem-
ory hierarchy with respect to a full-blown DDR one, we mea-
sure and compare CVA6’s performance firstly on a synthetic
benchmark and then on five IoT CPU-centric benchmarks,
with four different memory configurations: 1) having the
DDR4 and the LLC, 2) having the HyperRAMs and the LLC,
3) having just the DDR4 and 4) having just the HyperRAMs.

The synthetic benchmark, specifically designed to stress the
cache hierarchy generating a controllable number of misses,
consists of the following: we first read a whole 4 kB L1 cache
way, the 0th, filling it. Then, we do many rounds of 4 kB
reads with stride S. The second iteration warms up the caches.
Within the remaining loops, reads can either be in the 0th way,
causing either a miss or a hit, or in a different cache way and
hit. The cache miss ratio increases with S.

Such a benchmark draws a lower performance bound: the
resulting data pattern is highly unlikely to happen in real-
world applications. Figure 7 shows that CVA6’s performance
would not benefit from replacing the HyperRAMs with DDR4s
when the L1 miss ratio is below 50%, which is a reasonable
assumption for the target embedded applications. Indeed,

Fig. 8: Last Level Cache effect

Fig. 9: HULK-V Energy Efficiency.

Figure 8 shows that the current cache hierarchy properly
handles real-world IoT benchmarks. As expected, cases 1 and
2 have very similar performance, closer than 5%, meaning that
LPDDR/DDR memories would be oversized for our use cases.

C. Energy Efficiency Assessment of the Fully Digital Memory
Hierarchy

Once assessed the extremely limited performance degra-
dation of the proposed memory hierarchy, we demonstrate
its benefits in terms of energy efficiency, still comparing
it with respect to a full-blown LPDDR4. We measure the
computation-to-communication ratio of the benchmarks pre-
sented before plus two end-to-end DNNs (one for classifica-
tion [20] and one for autonomous navigation of drones [22]),
exploiting DORY [20] as memory-aware deployment flow,
and Dhrystone. CCRhyper is defined as the ratio between
the computing time and the time spent reading from the
main memory, assuming full overlap of computation and
communication phases, which is typical of explicitly memory-
managed accelerators [20].

The plot on the left in Figure 9 shows the results. On
the left of the line, there are compute-bound applications,
that achieve maximum GOps with limited bandwidth. On
the right of the line, there are memory-bound applications,
benefitting from higher bandwidth in terms of GOps. However,
that is not always the case also for energy efficiency, due
to the much higher power consumption of the LPDDR4 and
mixed-signal controller. To generalize, we also plot the relative
energy efficiency against the CCRhyper in the right plot. Most
of the IoT target applications, especially on the cluster, are
compute-bound, thanks to the careful, deeply optimized data
movements. For typical IoT applications with high data reuse,
our memory hierarchy achieves double energy efficiency and
the same performance as having an LPDDR4-based equivalent
memory subsystem, while drastically reducing die area and
cost.

VII. CONCLUSION

In this paper, we presented HULK-V: the first open-source
low-cost heterogeneous RISC-V SoC running Linux within a

250 mW power envelope while providing up to 13.8 GOps and
157 GOps/W. Our memory subsystem enables Linux execution
while keeping a small power factor; it provides comparable
performance to equipping the board with LPDDR4 memories
while achieving double GOps/W on ML parallel applications
with high data reuse. Furthermore, our memory subsystem is
open-source, fully-digital and cheap, occupying 0.27 mm2 as
compared to large (few mm2 in the same technology node [4])
proprietary mixed-signal PHY controllers. Finally, HULK-V
provides a user-friendly OpenMP-based programming model
for compiler-assisted heterogeneous code generation.

ACKNOWLEDGEMENT

This work was supported by the UAE Technology Innova-
tion Institute (TII).

REFERENCES

[1] M. O. Ojo et al., “A review of low-end, middle-end, and high-end iot
devices,” IEEE Access, vol. 6, pp. 70 528–70 554, 2018.

[2] D. Rossi et al., “Vega: A ten-core soc for iot endnodes with dnn
acceleration and cognitive wake-up from mram-based state-retentive
sleep mode,” IEEE Journal of Solid-State Circuits, vol. 57, no. 1, pp.
127–139, 2021.

[3] Raspberry, “Rasperry pi 0,” 2020. [Online]. Available: https://www.
raspberrypi.com/products/raspberry-pi-zero/

[4] B. Bowhill et al., “The xeon® processor e5-2600 v3: a 22 nm 18-core
product family,” IEEE Journal of Solid-State Circuits, vol. 51, no. 1, pp.
92–104, 2016.

[5] M. B. Taylor, “Your agile open source hw stinks (because it is not a
system),” in 2020 IEEE/ACM International Conference On Computer
Aided Design (ICCAD), 2020, pp. 1–6.

[6] F. Zaruba and L. Benini, “The cost of application-class processing:
Energy and performance analysis of a linux-ready 1.7-ghz 64-bit risc-
v core in 22-nm fdsoi technology,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 27, no. 11, pp. 2629–2640, Nov
2019.

[7] B. John, “Hyperram as a low pin-count expansion memory for embedded
systems,” 2020. [Online]. Available: https://www.infineon.com/

[8] EtronTechnology, “Reduced pin count (rpc) dram,” 2022. [Online].
Available: https://etron.com/innovative-dram-pl/rpc-dram/

[9] Arduino, “Arduino nano 33,” 2022. [Online]. Available: https:
//store.arduino.cc/products/arduino-nano-33-iot

[10] Efinix, “Risc-v socs: Powering embedded computing,” 2020. [Online].
Available: https://www.efinixinc.com/products-riscv.html

[11] NXP, “Crossover embedded processors – bridging the gap between
performance and usability,” 2020. [Online]. Available: https://www.nxp.
com/

[12] SiFive, “Sifive unmatched,” 2022. [Online]. Available: https://www.
sifive.com/boards/hifive-unmatched

[13] M. Ditty, “Nvidia orin system-on-chip,” in IEEE Hot Chips 34
Symposium, HCS 2022, Palo Alto, CA, USA, August 21-24, 2022, 2022.
[Online]. Available: https://hc34.hotchips.org/

[14] NXP, “i.mx 8m quad power consumption measurement,” 2022. [On-
line]. Available: https://www.nxp.com/docs/en/nxp/application-notes/
AN12118.pdf

[15] A. Kurth et al., “Herov2: Full-stack open-source research platform for
heterogeneous computing,” CoRR, vol. abs/2201.03861, 2022. [Online].
Available: https://arxiv.org/abs/2201.03861

[16] J. Zuckerman et al., “Enabling heterogeneous, multicore soc research
with RISC-V and ESP,” CoRR, vol. abs/2206.01901, 2022. [Online].
Available: https://doi.org/10.48550/arXiv.2206.01901

[17] J. Balkind et al., BYOC: A ”Bring Your Own Core” Framework
for Heterogeneous-ISA Research. New York, NY, USA: Association
for Computing Machinery, 2020, p. 699–714. [Online]. Available:
https://doi.org/10.1145/3373376.3378479

[18] A. Kamaleldin and D. Göhringer, “Agiler: An adaptive heterogeneous
tile-based many-core architecture for risc-v processors,” IEEE Access,
vol. 10, pp. 43 895–43 913, 2022.

[19] M. Gautschi et al., “Near-threshold risc-v core with dsp extensions for
scalable iot endpoint devices,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 25, no. 10, pp. 2700–2713, 2017.

[20] A. Burrello et al., “Dory: Automatic end-to-end deployment of real-
world dnns on low-cost iot mcus,” IEEE Transactions on Computers,
vol. 70, no. 8, pp. 1253–1268, 2021.

[21] A. Waterman et al., “The risc-v instruction set manual volume 2:
Privileged architecture version 1.7,” University of California at Berkeley
Berkeley United States, Tech. Rep., 2015.

[22] D. Palossi et al., “A 64-mw dnn-based visual navigation engine for
autonomous nano-drones,” IEEE Internet of Things Journal, vol. 6, no. 5,
pp. 8357–8371, 2019.

	Select a link below
	Return to Previous View
	Return to Main Menu

