
Built-in Self-Test and Built-in Self-Repair Strategies
Without Golden Signature for Computing in Memory

Yu-Chih Tsai, Wen-Chien Ting, Chia-Chun Wang, Chia-Cheng Chang, Ren-Shuo Liu
National Tsing Hua University, Hsinchu, Taiwan

{williemiku0504, kevinting0325, k4e520, raymond11022}@gmail.com, renshuo@ee.nthu.edu.tw

Abstract—This paper proposes built-in self-test (BIST) and
built-in self-repair (BISR) strategies for computing in memory
(CIM), including a novel test method and two repair schemes.
They all focus on mitigating the impacts of inherent and in-
evitable CIM inaccuracy on convolution neural networks (CNNs).
Regarding the proposed BIST strategy, it exploits the distributive
law to achieve at-speed CIM tests without storing testing vectors
or golden results. Besides, it can assess the severity of the
inherent inaccuracies among CIM bitlines instead of only offering
a pass/fail outcome. In addition to BIST, we propose two BISR
strategies. First, we propose to slightly offset the dynamic range
of CIM outputs toward the negative side to create a margin for
negative noises. By not cutting CIM outputs off at zero, negative
noises are preserved to cancel out positive noises statistically, and
accuracy impacts are mitigated. Second, we propose to remap the
bitlines of CIM according to our BIST outcomes. Briefly speaking,
we propose to map the least noisy bitlines to be the MSBs. This
remapping can be done in the digital domain without touching
the CIM internals. Experiments show that our proposed BIST and
BISR strategies can restore CIM to less than 1% Top-1 accuracy
loss with slight hardware overhead.

Index Terms—computing in memory, built-in self-test, built-in
self-repair, accelerator, convolutional neural networks

I. INTRODUCTION

Recently, computing in memory (CIM) [1]–[3] has been
an emerging architecture for convolutional neural networks
(CNNs). As an alternative to Von-Neumann architectures,
CIM provides the potentials of data movement reduction, low
power consumption, and better computing throughput. Most
CIM augments conventional memory with multiply–accumulate
(MAC) computing capability to support CNNs. That is, bitline
Outk =

∑
i Ai×Wi,k (where Wi,k means the k-th bit of Wi),

and Psum =
∑

k(Outk × 2k).
Having said that, typically, CIM inevitably exhibits inaccu-

racies due to its analog computing nature. Thus, the actual
MAC outputs can be probabilistically deviated from the ideal
MAC results. The potential sources of the inaccuracies are
enormous and out of the scope of this paper. For example,
they can come from the process variations (e.g., transistor size
variations among memory cells, parasitic capacitance variations
among bitlines, reference source variations among analog-to-
digital converters (ADC)) and randomness (e.g., thermal noises
and random telegraph noises).

Considering CIM’s inherent inaccuracies, we believe that
built-in self-test (BIST) and built-in self-repair (BISR) strate-
gies are the musts for CIM to mitigate the impacts of inaccura-
cies on CNNs. Although BIST and BISR ideas are common in
conventional memory [4], few works have designed BIST and

CIM
under Test

Input Pattern
ROM

Compare Pass/Fail

Golden Output Pattern ROM

CIM
under Test

Compare Pass/Fail

Random

R
an

d
o

m

Digital
Multiply and
Accumulate

Weight Pattern ROM

CIM
under Test

Random

R
an

d
o

m

Every Three
Computations

(a) Naive BIST

(b) Proposed CIM BIST and BISR

Estimated Quality Ranking of CIM Bitlines
Rather than just Pass/Fail

Adjusting the Bit Order
(i.e., the position of MSB … LSB)

CNN Models (i.e., Weights)

I/O Mux

Wi

Ai

Wi

Ai

…

…

…

…

MAC Result of a Bitline

෍𝐴𝑖𝑊𝑖

෍𝐴𝑖
′′𝑊𝑖

෍𝐴𝑖
′𝑊𝑖

Wi

Ai

Fig. 1: Proposed BIST and BISR

BISR for CIM, which combines both memory and computing
functionalities. As for the conventional memory functionality
of CIM, conventional BIST and BISR may be applicable, e.g.,
to detect and repair stuck-at cells, opens, and shorts. This work
does not focus on changing them. As for the MAC computing
functionality of CIM, however, conventional BIST and BISR
are inapplicable or not very efficient.

Figure 1 shows the high overheads of naively employing
the conventional BIST ideas to test CIM. In comparison, our
proposed BIST and BISR lead to relatively low overheads.
Figure 1(a) is the first naive approach to assess the inaccu-
racies in CIM. It resembles the conventional Automatic Test
Equipment (ATE) method that stores testing sequences of Ai

and Wi, stores their corresponding golden results (also known
as the golden signature), and compares the golden outputs
with the actual CIM outputs accordingly. Clearly, this approach
demands substantial storage. For example, assume each MAC

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

operation on one CIM bitline involves 16 4-bit activations.
The total number of different input vectors is 2(4×16) = 264.
This number suggests a large number of input vectors and
corresponding golden results are needed to achieve sufficient
coverage, and they cause significant on-chip storage overhead.
Although using a multiple input shift register (MISR) [5]
can compress the golden results, it hinders the capability of
assessing the severity of CIM’s inaccuracy. One may think of
storing the test patterns off-chip, e.g., in the ATE machine, but
doing so hinders at-speed tests and the ATE machines lead to
a production bottleneck.

Figure 1(a) also shows another naive way to assess the
inaccuracies in CIM by randomizing Ai and Wi and generating
the golden results on-the-fly using a golden MAC circuit,
typically a digital MAC circuit. The overheads of this approach
come from the golden digital MAC circuit. If one wants to
perform at-speed testing on CIM, the speed and parallelism of
the golden digital MAC circuit need to be comparable to the
CIM under test. According to the rationale for adopting CIM in
accelerators, CIM should achieve much higher area efficiency
and power efficiency than the digital counterpart. Therefore,
employing an extra golden digital MAC circuit for CIM BIST
is unreasonable.

Algorithm-based fault tolerance (ABFT) for matrix oper-
ations [6] is another method to detect and correct errors.
ABFT does not directly support assessing the severity of CIM’s
inaccuracy. In addition, ABFT has limited error correction
capacity and does not support graceful degradation, which our
design supports.

In this paper, we firstly propose a novel BIST method for
measuring the inaccuracies in CIM by utilizing the distributive
law. We exploit an invariant that

∑
i Ai × Wi,k =

∑
i A

′
i ×

Wi,k +
∑

i A
′′
i ×Wi,k as long as Ai = A′

i + A′′
i . We propose

to randomize Ai and Wi, randomly split Ai into A′
i and A′′

i ,
and get the three CIM outputs associated with Ai, A′

i, and A′′
i ,

accordingly, as illustrated in Figure 1(b). Doing so allows us to
check the distributive law among the three outputs to estimate
the CIM computation quality instead of only getting a pass/fail
result. Furthermore, we can also rank the estimated computation
qualities of the CIM bitlines. The proposed method follows a
straightforward concept and does not incur excessive overheads.
First, it avoids the storage overhead of storing test vectors
because randomizing Ai and Wi can be achieved on-the-fly.
Randomizing Ai and Wi can be done using linear feedback
shift register (LFSR) [7], and randomly splitting Ai can be
done using LFSR and AND circuits. Second, it does not
require another golden MAC circuit or store the golden result.
These benefits make our approach a suitable BIST design
for CIM. BIST is a must for CIM, and compared with the
naive approaches in Figure 1(a), our proposal incurs reasonable
overheads.

In addition to measuring the CIM inaccuracies, we explore
the impacts of such CIM inaccuracies on the accuracy of AI
tasks, e.g., image classification tasks using CNNs. Experiments
show sharp degradation in the accuracy of AI tasks once CIM
exhibits a certain level of inaccuracy. In response, we propose

restoring the accuracy of AI tasks by combining BIST with
BISR.

We propose two BISR strategies to counter the inaccuracy.
First, we observe that CIM’s inaccuracy causes the distributions
of CNNs’ output activations to distort, and we find that this
problem can be dealt with by offsetting the dynamic range
of CIM outputs. For example, let us consider a CIM bitline
performing the MAC operation which includes an N-bit output
ADC. Thus, its output range is [0, 2N − 1]. Given the same
dynamic range, we propose to offset the output range from
[0, 2N −1] to [−1, 2N −2]. It helps to preserve negative noises
that can cancel out positive noises since AI tasks accumulate
many such MACs. Otherwise, cutting off such negative noises
makes the noise distribution at zero become asymmetrical.

Second, as shown in Figure 1(b), we propose a BISR strategy
that utilizes the results obtained from our BIST by reordering
CIM bitlines and reordering the weight bits of a CNN model
correspondingly. More specifically, it allocates CIM bitlines
exhibiting the least inaccuracies to handle higher-weighting
bits, i.e., the most-significant bits (MSBs) in CNNs. The
overheads of this strategy are reasonable because reordering
CIM bitlines is done in the digital domain by multiplexers, and
reordering the weight bits of a CNN model is a simple number
conversion pass without involving training, re-training, or any
training procedure.

We perform image classification tasks using Resnet-50 [8]
and VGG-16 [9] on the ImageNet [10] dataset with our CIM
simulator to test our proposed BIST and BISR. Our BIST
method can successfully assess the severity of CIM output
inaccuracies, and our BISR strategies also show significant
accuracy restoration of less than 1% Top-1 accuracy loss
compared with ideal CIM. We also implement the proposed
BIST and BISR and compare with CIM-based accelerator; the
result verifies that the proposed BIST and BISR are hardware
friendly with only slight hardware overhead.

The rest of this paper is organized as follows: Section II
shows the background and related works. Section III details our
proposed system-level design, BIST and BISR strategies. Fi-
nally, Section IV evaluates our proposed strategies and presents
the experiment results.

II. BACKGROUND

A. MAC Operations in Computing in Memory

This paper focuses on CIMs that perform multiply and
accumulate operations, widely used in AI operations such as
convolutions. Figure 2 shows how a typical CIM performs the
MAC operation; multiple activations are multiplied by weight
bits stored in different bitlines separately in the CIM. In this
example, sixteen 4-bit activations are multiplied by sixteen 8-bit
weights. The CIM performs the MAC operations of activations
and weights’ each bit individually, i.e., sixteen 4-bit activations
are multiplied with sixteen weights’ single bit and summed
along each CIM bitline. It also shows the noise in each bitline,
which will be discussed in the following subsection. Since we
assume an adequate number of bits is allocated for each bitline,
each bitline is represented as an 8-bit unsigned integer. Outputs

!

!

CIMx1
6

ac

ti
va

ti
o

n

CIM output channel
x24

In output channel of single CIM array

A
D

C

Out7

DACA15

DACA1

DACA0

A
D

C

Out6

A
D

C

Out0

MSB LSB

W15

W1

W0

Noise value (LSB)

Probability

0 1-1

𝜎 𝜎

𝑵𝒐𝒊𝒔𝒆 ߶𝒌 = 𝑵 (𝟎, 𝝈𝒌
𝟐)

𝑶𝒖𝒕𝒌 = 𝒂𝒅𝒄(

𝒊=𝟎

𝟏𝟓

𝑨𝒊 ×𝑾𝒊_𝒃𝒊𝒕[𝒌] +߶𝒌)

𝑷𝑺𝑼𝑴 =

𝒌=𝟎

𝟕

𝑶𝒖𝒕𝒌 × 𝟐
𝒌

Noise ߶𝒌: normal distribution

Noise ߶7

𝝈7 = 0.15
Noise ߶6

𝝈6 = 0.07
Noise ߶0

𝝈0 = 0.31

MAC result

CIM noise

4-bit 8-bit

Fig. 2: MAC operation and simulated noise injection in CIM.

of each bitline are then weighted with powers of 2, i.e., left-
shifted by their corresponding number of bits.

This paper adds a positive offset (per channel of CNNs) to
all weights in convolutional layers to make weights positive
or zero, allowing convolution results to be acquired using
unsigned MAC operations. This offset, known as the ”zero-
point,” is deducted from the partial sum of each MAC operation
independently.

B. CIM Noise Model

Various sources of inaccuracies in CIM architectures are dis-
cussed in [11]. As stated in [12] and [13], ADCs typically have
thermal noises with Gaussian distribution in the time domain,
along with various independent noise sources in the CIM cells
and noises in the charge summing or current summing process.
Therefore, this paper focused on CIM inaccuracies modeled as
additive Gaussian noises in the analog domain.

As shown in Figure 2, we inject continuous Gaussian noises
σ before round and clip operations to simulate the effect
of ADC outputs. Our simulated CIM has 24 parallel MAC
arrays (192 CIM bitlines), and each CIM bitline is associated
with a fixed standard deviation. The standard deviation values
were randomly selected and uniformly distributed between 0
and 0.35 LSB. As [14] mentioned that the average standard
deviation is 0.37 LSB and hence we choose 0.35 LSB as
the upper bound. In addition, experiments also simulated with
higher Gaussian standard deviations upper bounds 0.45 LSB
and 0.55 LSB.

C. CNN Robustness

A common way to enhance the robustness of CNN is by
retraining the model; this commonly involves incorporating
noises or errors previously nonexistent into the training set,
such as in [15], [16]. However, noises and errors in CIM may
vary from chip to chip, making it difficult to predetermine
the inaccuracies and incorporate them into the training pro-
cess. Therefore, some work develops an in-memory calibration
scheme for noises due to chip variation [17].

Our testing method can be a means of retrieving such
errors needed for retraining the model. In addition, our BISR

methods are alternatives to recovering the lost accuracy without
retraining the model.

III. PROPOSED BIST AND BISR STRATEGIES

A. System-Level Block Diagram

Figure 3 shows a system-level block diagram of our proposed
BIST and BISR. The block diagram consists of three primary
parts: 1) an on-chip global SRAM buffer where weights and
activations are stored, 2) the CIM, which in this case is
our device under test, and 3) our proposed BIST and BISR
architecture. The BIST and BISR procedure performs once
when the chip is manufactured, and the inaccuracy order of
each CIM bitline is recorded in the reordering table. This
information is used to perform weight bit reordering and CIM
bitline reordering in the BISR process.

Weight
Reordering Compute

In
Memory

test mode

partial
sum

CIM Output
Reordering

Global Buffer
(weight & activation)

weight

activation

BIST

BISR

Random Pattern
Generator

(LFSR & AND gate)

Response Analyzer

Reordering Table

CIM bit line output

reordering
control

accuracy
order

random
seed

test
mode

address

data

test result
(accumulated error)

Adder Tree

test iter.

Fig. 3: System-level architecture

B. Built-in Self-Test Strategy

To tackle the storage overhead of test vectors, the hardware
overhead of golden MAC circuits, and estimating the CIM
computation quality, we developed a test procedure as Algo-
rithm 1 that utilizes the distributive property. We exploit an
invariant that

∑
i Ai ×Wi,k =

∑
i A

′
i ×Wi,k +

∑
i A

′′
i ×Wi,k

as long as Ai = A′
i + A′′

i . That means the bitline has an
error when resultA ̸= resultA′ + resultA′′ . In the end, the
accumulated total errors can be used to profile each CIM
bitline as inaccuracy indices. Random weights, activations, and
bitmasks are used to test the CIM under conditions similar to
perform MAC operations to accelerate AI tasks since our CIM
is not dedicated to only a particular model or CNN layer.

Equations (1)-(5) explain how it works more formally. If
we ignore the round and clip effect of the ADCs, ϕnoise

is a random variable of zero mean normal distributions with
standard deviation σ:

resultx = MACx + ϕnoise ; ϕnoise ∼ N (0, σ2) (1)

resultA−(resultA′ +resultA′′) = ϕnoise−(ϕnoise+ϕnoise) (2)

!

!

Algorithm 1 BIST Procedure

Input: random seed, N (number of test iterations)
Output: accumulated error

1: for iteration = 1, 2, ...N do
2: Initialize weights W0, . . .W15 ← random
3: Set activations A0 . . . A15 ← random
4: Set bitmask M0 . . .M15 ← random
5: Use CIM to compute ΣAi ×Wi,bit k and get resultA

(1st MAC operation)
6: Set activations A

′

0 . . . A
′

15 ← Ai&Mi

7: Use CIM to compute ΣA
′

i ×Wi,bit k and get resultA′

(2nd MAC operation)
8: Set activations A

′′

0 . . . A
′′

15 ← Ai&Mi

9: Use CIM to compute ΣA
′′

i ×Wi,bit k and get resultA′′

(3rd MAC operation)
10: error ← error + |resultA − (resultA′ + resultA′′)|
11: end for
12: accumulated error ← error
13: return accumulated error

A linear combination of ϕnoise − (ϕnoise + ϕnoise) is still a
random variable of a zero-mean normal distribution:

ϕnoise − (ϕnoise + ϕnoise) ∼ N (0, 3σ2) (3)

The error term is the absolute value of this random variable,
making it a random variable of a folded normal distribution:

error = |ϕnoise − (ϕnoise + ϕnoise)| ∼ FN (0, 3σ2) = Y (4)

Since µ = 0, the mean of this folded normal distribution is
proportional to σ:

µY = σ

√
6

π
e(−µ2/6σ2) + µ(1− 2Φ(− µ√

3σ
)) ∝ σ(µ = 0) (5)

The accumulation of this error term should reflect the magni-
tude of σ, which represents the severity of the Gaussian noise.
Even with ADC’s round and clip effect, a correlation between
BIST results and the standard deviation of Gaussian noise is
still establishable.

Compared with two naive BISTs in Figure 1(a), our BIST
strategy uses a random pattern generator instead of massive
storage. Additionally, our BIST strategy only needs adders and
accumulators as the response analyzer instead of expensive
golden digital MAC circuits. These two features make our BIST
more hardware friendly.

C. Built-in Self-Repair Strategy

Slight noises (σ ≤ 0.35 LSB) in CIM cause the Top-
1 accuracy of ResNet-50 drops from 77.7% to 17.7%. We
speculate that two primary reasons cause such drastic accuracy
degradation: 1) the noises in CIM distort the distribution of
output activations, and 2) the effects of noises are amplified by
the shift operations applied to each CIM output.

To tackle these two problems above, we propose two corre-
sponding strategies to reduce the impact of such inaccuracies:

1) CIM Output Range Adjustment. 2) CIM Weight Bit
and Bitline Reordering such that CIM bitlines with higher
inaccuracies can be used to compute less significant weight
bits of the MAC operation.

D. CIM Output Range Adjustment

Figure 4 shows the distribution of output activations in the
45th layer of the ResNet-50 model with ideal and noisy CIM.
Two noisy CIM have executed ADC clip operation (output
range [0, 255] and output range [−1, 254]), and another noisy
CIM has removed the clip operation (unlimited output range).
It is evident that the distribution with ADC clip operation
and normal output range [0, 255] has severely distorted; this
phenomenon tends to become more significant when using CIM
with inevitable noises to perform AI tasks.

Output activations

N
u

m
b

e
r

o
f

o
cc

u
rr

e
n

ce
s

Ideal CIM

Output Range [0, 255]

Output Range [-1, 254]

Unlimited Output Range

Fig. 4: Distribution of output activations in the 45th layer of
ResNet-50 when using ideal and noisy CIMs

A straightforward explanation is that when MAC results
before ADC are close to zero, only positive noises affect the
CIM output because ADCs clip negative noises to zero. That
means Gaussian noises are not symmetrical anymore, and the
positive noises are accumulated during activations propagate
to the following layers, and eventually cause accuracy loss.
Although the distortion can be avoided by removing the clip
operation, in reality, it cannot be removed since a finite number
of bits are allocated for each CIM output. However, the
distortion can be avoided by loosening the restriction of having
only CIM output values greater than or equal to zero, i.e., MAC
results below the lower bound of ideal CIM can be uniquely
represented for keeping the symmetry of Gaussian noises. This
paper proposes an alternative method to adjust the equivalent
CIM output range to [−1, 254].

The goal mentioned above can be achieved by adjusting the
voltage reference of ADCs in CIM by a negative offset of one
step size. As a result, the new CIM output code with a particular
reference voltage is greater than its original CIM output code
by one step size, making the equivalent CIM output range
[−1, 254]. So, for example, if the new CIM output code is 0, its
original CIM output code is −1. We can then deduct the sum
of this offset from the partial sum afterward so that an unsigned
representation of the MAC results is maintained. That means it
allows CIMs to present little negative values, thus making the

!

!

noises maintain symmetry when the MAC results are close to
zero. Figure 4 shows the similarity in the distribution of the
adjusting CIM output range [−1, 254] and the unlimited output
range, which validates the effectiveness of our compromised
method.

E. CIM Weight Bit and Bitline Reordering

The second source of accuracy drop is the elevated noises
effect when the noisy MAC results are shifted. Noises in the
MSB CIM bitline degrade the classification accuracy much
more severely than noises in the LSB CIM bitline because
noises are left-shifted more bits.

To reduce the impact of this problem, we propose the fol-
lowing BISR strategy using this property, as shown in Figure 5.
1) Accumulated errors from our proposed BIST procedure can
be retrieved and used as indicators of inaccuracy severity to
determine the inaccuracy order of each CIM bitline. 2) Weights
are reordered on a bitwise level according to the inaccuracy
order determined in the previous step. 3) CIM bitlines are
mapped to their corresponding number of bits to be left-shifted.

We defined the reordering levels: Level-1 selects the least
inaccurate CIM bitline and assigns it to compute the most
significant bit of the MAC operation. Level-2 selects the top
two least inaccurate CIM bitlines and assigns them to compute
the two most significant bits of the MAC operation, and so on.

CIM

Step 1

23 12 27 5 20 33 0 15Accumulated error from BIST

Inaccuracy order 5 02 6 31 4 7

MSB LSB

CIM

1 0 1 11 000

<<
7

<<
6

<<
5

<<
4

<<
3

<<
2

<<
1

<<
0

MSB LSB

partial sum

Step 2

Before BISR

0 1 1 10 100

After BISR

Step 3

Weigh bit
reordering

CIM bit line
reordering

Adder
Tree

<<
1

<<
4

<<
5

<<
6

<<
3

<<
2

<<
7

<<
0

partial sum

Adder
Tree

CIM bitline

MSB LSB

✱ BISR level-2 reordering is used in this example

Fig. 5: BISR with CIM weight and bitline reordering

IV. EXPERIMENTAL RESULTS

Experiment results verified our proposed BIST and BISR
strategies by performing image classification tasks using 8-bit
activations and 8-bit weights models, including Resnet-50 and
VGG-16 on the ImageNet dataset with our CIM simulator. Our
CIM simulator performs the operational behavior of CIM and
injects the Gaussian noises with user-defined σ in run-time. We
also implement our proposed BIST and BISR to evaluate the
hardware overhead.

A. BIST Result

This experiment aims to establish a correlation between the
accumulated errors acquired using our BIST testing method and
the severity of Gaussian noises. Our test iteration is 100, and
the number of experiment statistics is 1000.

 160

140

60

120

20

0 0.0 3.7

25.9

51.4

70.9

85.6

98.8

113.2

126.8

139.6

Mean value

±1𝜎 area

Standard deviation of injected Gaussian noise σ

0.1

100

80

60

40A
cc

u
m

u
la

te
d

 e
rr

o
r

0.4 0.5 0.6 0.7 0.8 0.9 1.00.30.2

Fig. 6: Correlation between accumulated error and standard
deviation of injected Gaussian noise

As shown in Figure 6, it is evident that there is a positive cor-
relation between the total error acquired in the BIST procedure
and the severity of the Gaussian noise.

The main difference between test iterations is how much the
error standard deviations can be separated. Therefore, a higher
test iteration allows us to get a relatively more accurate estimate
of the noise severity and require a longer testing time. In later
experiments, our test iteration is 100 because the Gaussian
noises σ are smaller than 0.55LSB which is clear to separate.

B. CIM Output Range Adjustment and Reordering Result

To evaluate the effectiveness of CIM output range adjustment
and reordering repair strategies on accuracy restoration, we
simulated using noisy CIM to accelerate image classification
tasks which are ResNet-50 and 1000 test samples.

σ=0~0.35LSB σ=0~0.45LSB σ=0~0.55LSB

To
p

-1
 A

cc
u

ra
cy

 (
%

)

Naïve CIM [0, 255]
Output Range [-1, 254]
Unlimited Output Range
Output Range [-1, 254] + Level 2 Reordering
Ideal CIM

100

80

60

40

20

0
σ=0~0.35 LSB σ=0~0.45 LSB σ=0~0.55 LSB

Fig. 7: ResNet-50 accuracy with proposed BISR

First, Figure 7 shows that accuracy can immediately be
restored by adjusting the CIM output range and that CIM output
range [−1, 254] and unlimited output range have similar effects
on accuracy restoration. However, there is still a considerable

!

!

gap in accuracy between unlimited CIM output range and
ideal CIM, indicating the limitations of this strategy. Second,
Figure 7 shows that the Top-1 accuracy can be significantly
restored with less than 1% accuracy loss when CIM output
range [−1, 254] and level-2 reordering are both applied, which
are our proposed repair strategies.

C. BIST and BISR with More Models Result

This experiment aims to evaluate proposed BIST and BISR
strategies with more noise parameters, CIM weight bit and
bitline reordering, and models including ResNet-50, VGG-16,
and 50000 test samples are shown in this section.

We approximated the effects of CIM output range adjust-
ment with an unlimited CIM output range to speed up our
experiments. We have two reasons show this approximation is
reasonable. First, the distribution of output activations when the
CIM output range is set to [−1, 254] is similar to that of the
unlimited output range, as shown in Figure 4 of Section III-D.
Second, experiment results shown in Section IV-B confirm this
assumption as accuracy restoration is still present without an
unlimited output range.

ResNet-50… ResNet-50… VGG-16… VGG-16…

To
p

-1
 A

cc
u

ra
cy

 (
%

)

Before Reordering Level-1 Reordering
Level-2 Reordering Level-3 Reordering
Fully Reordering Ideal CIM

100

80

60

40

20

0

ResNet-50
σ = 0∼0.35 LSB σ = 0∼0.55 LSB

VGG-16
σ = 0∼0.35 LSB σ = 0∼0.55 LSB

Fig. 8: More models’ accuracy with proposed BIST and BISR

Figure 8 shows that noisy CIM with proposed BIST and
BISR strategies can be significantly restored with less than 1%
Top-1 accuracy loss with fully (level-8) reordering. When the
CIM with slight Gaussian noises (σ ≤ 0.35LSB), the accuracy
drop can be within 1% even with level-1 reordering.

D. Implementation Result

TABLE I: Area percentage of CIM-based accelerator

 Category Area Percentage
CIM Macro 18.92 %

Data Buffer (SRAM) 30.13 %

Digital Circuit without BIST and BISR 47.84 %

Random Pattern Generator of Proposed BIST 0.51 %

Response Analyzer of Proposed BIST 0.41 %

Proposed BISR 2.18 %

We implement the proposed BIST and BISR capable of fully
(level-8) reordering CIM weight bits and bitlines, and compare
with CIM-based accelerator. The area percentage of each circuit

is shown in Table I. It is noteworthy that the proposed BIST is
hardware friendly with less than 1% area overhead because our
response analyzer only needs adders and accumulators instead
of golden digital MAC circuits. Our random pattern generator
also only needs LFSR and AND circuits. The proposed BISR
can restore CNNs accuracy with a slight area overhead of
approximately 2%.

V. CONCLUSION

In this paper, novel BIST and BISR strategies for CIM are
proposed. The proposed self-testing method is more hardware
friendly and can successfully profile CIM outputs with accu-
mulated errors, which can be used as a quality metric for CIMs.
The first proposed self-repairing strategy adjusts the range of
CIM outputs, aiming to avoid distortion of output activations,
which would cause massive accuracy loss. The second proposed
self-repairing strategy reorders CIM bitlines and corresponding
weight bits to avoid noisier CIM bitlines being shifted by a
more significant number of bits.

Experiment results validate how CIM inaccuracies would
impact image classification tasks and demonstrate the effec-
tiveness of our proposed BIST and BISR strategies, in which
Top-1 accuracy loss is less than 1%.

ACKNOWLEDGMENTS

We thank reviewers for their valuable comments. We
also thank National Center for High-performance Computing
(NCHC) and Taiwan Semiconductor Research Institute (TSRI)
for providing computational and storage resources. This work is
supported in part by National Science and Technology Council
(NSTC) projects 111-2823-8-007-001, 111-2218-E-007-009,
and 110-2218-E-007-037 and TSMC Ph.D. scholarship.

REFERENCES

[1] J. -W. Su et al., ”16.3 A 28nm 384kb 6T-SRAM computation-in-memory macro
with 8b precision for AI edge chips,” ISSCC’21.

[2] J. Wang et al., ”14.2 A compute SRAM with bit-serial integer/floating-point
operations for programmable in-memory vector acceleration,” ISSCC’19.

[3] Q. Liu et al., ”33.2 A fully integrated analog ReRAM based 78.4TOPS/W compute-
in-memory chip with fully parallel MAC computing,” ISSCC’20.

[4] Jin-Fu Li et al., ”A built-in self-repair design for RAMs with 2-D redundancy,”
IEEE Transactions on Very Large Scale Integration Systems, vol. 13, no. 6, pp.
742-745, June 2005.

[5] D. K. Pradhann et al., ”A new framework for designing and analyzing BIST
techniques and zero aliasing compression,” IEEE Transactions on Computers, vol.
40, no. 6, pp. 743-763, June 1991.

[6] Kuang-Hua Huang et al., ”Algorithm-based fault tolerance for matrix operations,”
IEEE Transactions on Computers, vol. C-33, no. 6, pp. 518-528, June 1984.

[7] M. Mohan et al., ”Review on LFSR for low power BIST,” ICCMC’19.
[8] Kaiming He et al., ”Deep residual learning for image recognition,”

arXiv:1512.03385, 2015.
[9] Karen Simonyan et al., ”Very deep convolutional networks for large-scale image

recognition,” in arXiv:1409.1556, 2015.
[10] Jia Deng et al., ”ImageNet: a large-scale hierarchical image database,” CVPR’09.
[11] S. K. Gonugondla et al., ”Fundamental limits on the precision of in-memory

architectures,” ICCAD’20.
[12] Bryan Lizon, ”Fundamentals of precision ADC noise analysis,” in Texas Instruments

website, Sep. 2020.
[13] A. S. Rekhi et al., ”Analog/mixed-signal hardware error modeling for deep learning

inference,” DAC’19.
[14] BH. Jia et al., ”A programmable heterogeneous microprocessor based on bit-scalable

in-memory computing,” JSSC, vol. 55, no. 9, pp. 2609-2621, Sep. 2020.
[15] K. Matsuoka, ”Noise injection into inputs in back-propagation learning,” IEEE

Transactions on Systems, Man, and Cybernetics, vol. 22, no. 3, pp. 436-440, May-
June 1992.

[16] S. K. Gonugondla et al., ”A variation-tolerant in-memory machine learning classifier
via on-chip training,” JSSC, vol. 53, no. 11, pp. 3163-3173, Nov. 2018.

[17] J. Kim et al., ”Area-efficient and variation-tolerant in-memory BNN computing
using 6T SRAM array,” Symposium on VLSI Circuits, 2019.

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

