
Polyglot Modal Models through Lingua Franca
Alexander Schulz-Rosengarten∗, Reinhard von Hanxleden∗, Marten Lohstroh†, Soroush Bateni‡, Edward A. Lee†

∗ Kiel University, Kiel, Germany, {als, rvh}@informatik.uni-kiel.de
† UC Berkeley, California, USA, {marten, eal}@berkeley.edu

‡ UT Dallas, Texas, USA, soroush@utdallas.edu

Abstract—Complex software systems often feature distinct
modes of operation, each designed to handle a particular scenario
that may require the system to respond in a certain way. Breaking
down system behavior into mutually exclusive modes and discrete
transitions between modes is a commonly used strategy to reduce
implementation complexity and promote code readability.

The work in this paper aims to bring the advantages of working
with modal models to mainstream programming languages, by fol-
lowing the polyglot coordination approach of Lingua Franca (LF),
in which verbatim target code (e. g., C, C++, Python, Typescript,
or Rust) is encapsulated in composable reactive components called
reactors. Reactors can form a dataflow network, are triggered by
timed as well as sporadic events, execute concurrently, and can
be distributed across nodes on a network. With modal models
in LF, we introduce a lean extension to the concept of reactors
that enables the coordination of reactive tasks based on modes of
operation.

Index Terms—coodination, polyglot, modal models, state ma-
chines, model-driven engineering, reactors, Lingua Franca

I. INTRODUCTION

The focus of this paper is on reactive systems, which
continuously react to their environment, are typically embedded
in larger systems, and often have some real-time requirements.
Two major notations or views have emerged for describing
reactive systems. The dataflow view breaks down the program
into smaller blocks or actors with streams of data flowing
between them. In a state-oriented view, the program is modeled
in terms of states of the system and its progression in the
form of transitions between them. While state machines often
describe fine-grained steps at the system level, they can also be
used to represent more abstract modes of operation [2], where
each mode may encapsulate a complex collection of (stateful)
reactive behaviors.

However, the languages that provide the capabilities to
model systems in any of these notations often come in the
form of standalone domain specific languages (as in Simulink,
LabVIEW) or language-specific frameworks (such as Akka1).
The idea of polyglot coordination is to allow any mainstream
programming languages to benefit from the advantages of mod-
eling with actors, states, or modes. Lingua Franca (LF) [3] em-
bodies this principle, as it is designed as polyglot coordination
language based on reactors. Reactors encapsulate reactive tasks
specified in verbatim code and provide a minimal coordination
layer around them that is reactive, timed, concurrent, event-
based, and accounts for isolated states. The applicability of LF
ranges from embedded systems to distributed systems deployed
to the Cloud.

1https://akka.io/

We here introduce modal reactors, a language extension
for LF that provides modal models for coordinating polyglot
reactive tasks. While this paper is only a brief summary of
our work, a more detailed report is available in a separate
publication [4].

II. MOTIVATING EXAMPLE: THE FURUTA PENDULUM

A Furuta pendulum [1] is a classic control system problem.
The setup consists of a vertical shaft driven by motor, a fixed
arm extending out at 90 degrees from the top of the shaft, and a
pendulum at the end of the arm. The goal is to rotate the shaft
to impart enough energy to the pendulum that it swings up, to
then catch the pendulum and balance it so that the pendulum
remains above the arm. Each of these steps (SwingUp, Catch,
and Stabilize) requires a different control behavior which
makes a controller a prime candidate for a modal model.

From a classical event-driven or dataflow perspective, there is
only a single reactive task, computing the motor control based
on the angle measurements at the arm and shaft. However, with
modes we can identify more fine-granular tasks and coordinate
these by embedding them in a modal model. Fig. 1 illustrates
our concept of a modal pendulum controller implemented in LF.
Our language extension includes the diagram synthesis capabil-
ities of LF, which yields an automatically generated and inter-
active pictorial representation (Fig. 1a) of the textual program.
The program consists of three connected reactors Sensor,
Controller, and Actuator. Fig. 1b represents an abbreviated
version of the textual source code for the Controller reactor.
The source code of a more comprehensive implementation is
available online.2

The very first line in Fig. 1b identifies the target language as
C, which means that reactors in this file will have their reactions
written in C. The first two lines in the Controller reactor
define the input and output ports. Following are three reaction
definitions, each reacting to the angles input, producing a
control output, and implementing one of three control laws
(abbreviated in lines 7, 14, and 21). We here use the new
mode extension to encapsulate each one in a separate mode.
Lines 9, 16, and 23 use C expressions (abstracted here) to
determine whether a mode change is required, and, if so, invoke
lf_set_mode to specify the next mode.

III. MODAL REACTORS

The basic idea of modal reactors is to use the existing reactor
model but to allow for a modal coordination, by partitioning

2https://github.com/lf-lang/examples-lingua-franca/tree/date23/C/src/modal
models/FurutaPendulum

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

FurutaPendulum

Sensor
angles

Actuator
control

Controller

SwingUp

1angles control

Catch

2angles control

Stabilize

3angles control

angles control

(a) Structural overview as graphical diagram

1 target C;
2 reactor Controller {
3 input angles:float[];
4 output control:float;
5 initial mode SwingUp {
6 reaction(angles) -> control, reset(Catch) {=
7 ... control law here in C ...
8 lf_set(control, ... control value ...);
9 if (... condition ...) { lf_set_mode(Catch); }
10 =}
11 }
12 mode Catch {
13 reaction(angles) -> control, reset(Stabilize) {=
14 ... control law here in C ...
15 lf_set(control, ... control value ...);
16 if (... condition ...) { lf_set_mode(Stabilize); }
17 =}
18 }
19 mode Stabilize {
20 reaction(angles) -> control, reset(SwingUp) {=
21 ... control law here in C ...
22 lf_set(control, ... control value ...);
23 if (... condition ...) { lf_set_mode(SwingUp); }
24 =}
25 }
26 }

(b) The Controller reactor code

Fig. 1. Aspects of the LF program driving the Furuta Pendulum.

reactors into disjoint subsets that are associated with mutually
exclusive modes. In a modal reactor, only a single mode can be
active at a particular logical time instant, meaning that activity
in other modes is automatically suspended. Transitioning be-
tween modes switches the reactor’s behavior and controls the
starting point of the entered modes. We support two common
options, to reset all elements in a mode or to let them continue
based on their previous state. The latter is particularly helpful
to control the time-sensitive constructs of LF, such as periodic
timers.

While the ideas behind modal reactors are not new, the
guidance by LF’s fundamental principles towards a polyglot
modal coordination layer is novel. Our proposed concept aims
at providing a modal extension that is lean—a minimal co-
ordination layer that provides the most essential functionality
but still offers maximal versatility; polyglot—a flexible multi-
language wrapper that focuses on the user’s language and re-
quires only minor adaptation effort; concurrent—allowing the
design of multiple separate modal units acting independently;
timed—a reliable and precise way to specify time sensitive
modal behavior; and deterministic—yielding unambiguous and
reproducible output behavior for the same sequence of tagged
input events.

Our modal models in LF embody these very principles and
embrace the crucial “black box” approach to reactions, which
is the key enabler for LF’s polyglot approach. As illustrated by
Fig. 1 the modes seamlessly integrate into both the textual and
graphical syntax of LF. Modes simply encapsulate reactions and
other reactor elements. Transitions are specified as additional
effects in the causality interface of reactions, see lines 6, 13, and
20. This enables statically retrieving transition information from
the model, e. g. for the diagrams or causality analyses, while
the actual behavior is still controlled by the target code inside
reactions. The semantics of model transitions are carefully
aligned with LF and introduce a microstep delay. This orders
subsequently activated modes along the super-dense time of LF
and prevents causality issues that would occur if modes would
be activated multiple times at the same tag.

Furthermore, the time model of LF is extended to feature
mode-local time, inspired by modal models in Ptolemy [2].
That means while a mode is inactive, the progress of time is
suspended locally. How the timing components behave when
a mode becomes active depends on the transition type. For
example, a timer in an inactive mode will restart with its initial
offset when the mode is entered by a reset, whereas if entered
via a history transition, it will continue counting down the time
remaining when the mode was left. The suspension of time
gives a clear and consistent meaning to the inactivity of modes,
provides a comprehensible state for the mode’s contents upon
entry, and facilitates modularity.

IV. CONCLUSION AND OUTLOOK

Modal reactors enable the coordination of reactive behavior
in terms of modes and transitions. While modes are already
central to a large family of existing programming and modeling
languages, our approach of building modal abstractions into
the polyglot coordination language LF has the advantage of
being applicable to a range of target languages at once. Our
implementation currently provides modal support for the C and
Python targets, demonstrating the versatility of our approach.
We also successfully used modes in LF to control a robot and
specify different modes for driving and collision avoidance.

Having modes modeled explicitly opens up new opportuni-
ties for static analyses, which we plan to further explore in the
context of model checking and federated LF programs.

REFERENCES

[1] K. Furuta, M. Yamakita, and S. Kobayashi, “Swing-up control of inverted
pendulum using pseudo-state feedback,” Proceedings of the Institution of
Mechanical Engineers, Part I: Journal of Systems and Control Engineer-
ing, vol. 206, no. 4, pp. 263–269, 1992.

[2] E. A. Lee and S. Tripakis, “Modal models in Ptolemy,” in 3rd International
Workshop on Equation-Based Object-Oriented Modeling Languages and
Tools (EOOLT), vol. 47. Linköping University Electronic Press, Linköping
University, 2010, pp. 11–21.

[3] M. Lohstroh, C. Menard, S. Bateni, and E. A. Lee, “Toward a Lingua
Franca for deterministic concurrent systems,” ACM Transactions on Em-
bedded Computing Systems (TECS), Special Issue on FDL’19, vol. 20,
no. 4, p. Article 36, May 2021.

[4] A. Schulz-Rosengarten, R. von Hanxleden, M. Lohstroh, S. Bateni,
and E. A. Lee, “Modal reactors,” January 2023. [Online]. Available:
https://arxiv.org/abs/2301.09597

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

