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Twin ECC: A Data Duplication Based ECC for 

Strong DRAM Error Resilience  

Abstract—With the continuous scaling of process 

technology, DRAM reliability has become a critical challenge 

in modern memory systems. Currently, DRAM memory 

systems for servers employ ECC DIMMs with a single error 

correction and double error detection (SECDED) code. 

However, the SECDED code is insufficient to ensure DRAM 

reliability since memory systems become more susceptible to 

errors. Though various studies have proposed multi-bit 

correctable ECC schemes, such ECC schemes cause 

performance and/or storage overhead. To minimize 

performance degradation while providing strong error 

resilience, in this paper, we propose Twin ECC, a low-cost 

memory protection scheme through data duplication. In a 512-

bit data, Twin ECC duplicates meaningful data into 

meaningless zeros. Since ‘1’→‘0’ error pattern is dominant in 

DRAM cells, Twin ECC provides strong error resilience by 

performing bitwise OR operations between the original 

meaningful data and duplicated data. After the bitwise OR 

operations, Twin ECC adopts the SECDED code for further 

enhancing data protection. Our evaluations show that Twin 

ECC reduces the system failure probability by average 64.8%, 

56.9%, and 49.5%, when the portion of ‘1’→‘0’ error is 100%, 

90%, and 80%, respectively, while causing only 0.7% 

performance overhead and no storage overhead compared to 

the baseline ECC DIMM with SECDED code. 

Keywords—DRAM reliability, data duplication, error 

correction code, bitwise operation 

I. INTRODUCTION 

The density and capacity of DRAMs have grown rapidly 
with the continued scaling of process technology. Though 
the scaling to smaller technology nodes enables higher 
density of DRAMs, it causes reliability challenges [5][8]. To 
ensure the DRAM reliability, error correction code (ECC) is 
widely exploited for modern memory systems. In general, 
recent DRAM memory systems for servers employ ECC 
DIMMs (Dual In-line Memory Modules) with a single error 
correction and double error detection (SECDED) code, 
which protects 64-bit data with 8-bit parity. However, as the 
error rate increases due to the technology scaling, several 
studies have proposed multi-bit correctable ECC schemes 
that provide stronger error correction capability than the 
SECDED code [4][6][7][10]. CARE adopts a 6-bit 
correctable Bose-Chaudhuri-Hocquenghem (BCH) code with 
memory page retirement techniques to prevent initially 
correctable errors from developing into uncorrectable errors 
later [4]. Stealth ECC has a 3-bit correctable BCH code in 
the meaningless part of the narrow-width value to protect the 
meaningful part from errors [10]; though Stealth ECC adopts 
a single stronger BCH code for narrow-width values only, 
we would like to leverage more meaningless parts more 
efficiently. AMD Chipkill exploits an 8-bit symbol Reed-
Solomon (RS) code to correct any single symbol error from 
eighteen DRAM chips [18]. However, previously proposed 
ECC schemes incur substantial performance and/or storage 
overhead compared to the SECDED code.  

One important observation not considered in previous 
ECC schemes is the asymmetric error behavior (‘1’→‘0’ 
error pattern is dominant in true-cell regions1). A retention 
error occurs when a DRAM cell loses the charge before a 
refresh operation. A disturbance error occurs when the 
repetitive accesses lead a DRAM cell to lose the charge, such 
as Row Hammer [8][17]. Thus, it is natural that ‘1’→‘0’ 
error pattern is dominant. A radiation induced error is caused 
by alpha particles and cosmic neutrons. When the radiation 
induced error occurs in DRAM cells, it is reported that 
‘1’→‘0’ error pattern is dominant [11][14][16]. However, 
when the radiation induced error occurs on the other circuits 
such as sense amplifiers and registers, it has the symmetric 
error behavior [11][14][16]. In other words, only except the 
case of the radiation induced error on the other circuits, 
‘1’→‘0’ error pattern is dominant in the true-cell region 
[8][9][11][14][16][17]. Note some studies have reported that 
DRAM error behavior was not asymmetric, since they 
evaluated the true-cell and anti-cell regions together.  

In this paper, we propose Twin ECC, a low-cost memory 
protection scheme providing strong error correction 
capability through data duplication. By exploiting the 
asymmetric error behavior of DRAM cells, Twin ECC 
improves the error correction capability with the bitwise OR 
operations between the original meaningful data and 
duplicated data; the result of the bitwise OR operations 
recovers all the ‘1’→‘0’ errors only if any ‘1’→‘0’ error 
does not occur in the same bit position between the original 
and duplicated data. To duplicate data without storage 
overhead in an ECC DIMM, Twin ECC classifies 64-bit data 
into four types: zero, narrow-width, same2, and full-width 
values; since the zero value is a subset of the same value and 
narrow-width value, we classify them as mutually exclusive. 
In a 512-bit data, Twin ECC exploits meaningless zeros 
(zero values and upper bits of 32-bit narrow-width values) as 
a redundant space for meaningful data. Twin ECC also 
adopts the BCH (137,128,1) to correct any 1-bit error. 
Additionally, Twin ECC stores data with an interleaved 
manner to DRAM chips. The key contributions of this paper 
are as follows: 

• Based on the asymmetric error behavior of DRAM 
cells, we propose Twin ECC, a strong error correction 
scheme through data duplication and ECCs. 

• To duplicate data without additional storage overhead 
in an ECC DIMM, Twin ECC exploits meaningless 
zeros accounting for a considerable portion in DRAM.  

• With bitwise OR operations instead of strong ECCs, 
Twin ECC achieves a short decoding latency leading 
to much less performance overhead compared to the 
previously proposed strong ECC schemes. 

 
1 In this paper, we focus on true-cell regions for simplicity. 
2 We define same value as a 64-bit value in which the upper 32-bit 

value is same as the lower 32-bit value.  

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA 

	



II. BACKGROUND AND MOTIVATION 

 To protect memory systems against errors, various 
studies have employed multi-bit correctable BCH codes. 
Note the encoding process of BCH(n,k,t) converts k-bit data 
into n-bit codeword by exploiting (n-k)-bit parity for t-bit 
error correction and (t+1)-bit error detection. Typically, there 
is a trade-off among decoding latency, storage overhead, and 
error correction capability for BCH codes. For example, for 
64-bit data, a 1-bit correctable BCH(72,64,1) requires 3 
cycles of decoding latency with 8-bit parity (storage 
overhead), while a 3-bit correctable BCH(86,64,3) requires 
10 cycles of decoding latency with 22-bit parity, which is 
calculated by Strukov’s model based on the 22nm 
technology nodes [15]. Thus, ECC schemes employing 
strong BCH codes (i.e., multi-bit correctable BCH codes) 
increase the error correction strength at the expense of 
performance and storage overhead. 

To provide strong error resilience while mitigating the 
performance and storage overhead, we exploit meaningless 
zeros of narrow-width data values. According to [10], 32-bit 
narrow-width values (i.e., a 64-bit data consists of 32-bit 
zero values with 32-bit non zero values) in DRAM account 
for more than 40%, on average. We investigate the 
proportion of 64-bit data types for duplication (i.e., zero, 
narrow-width, and same values) in DRAM for SPEC CPU 
2017 [3] and PARSEC [1] workloads3. As shown in Fig. 1, 
the proportion of 64-bit data types for duplication in DRAM 
accounts for 50.2% (30.6/16.8/2.8% for zero/narrow-
width/same values, respectively), on average. Therefore, it is 
efficient to enhance DRAM reliability through duplication.  

III. TWIN ECC: DATA DUPLICATION BASED ECC 

In this section, we first describe a brief overview of our 
proposed Twin ECC, followed by a detailed description of 
the encoding and decoding process.  

A. Overview 

Fig. 2 depicts the hardware components of Twin ECC in 
the memory controller. As shown in the top of Fig. 2, on a 
memory write operation (encoding), Twin ECC requires a 
data duplicator, ECC encoder, flag encoder, and bitwise 
interleaver. In case of a memory write operation, the data 
duplicator reorganizes the 512-bit data by duplicating 64-bit 
full-width values and 32-bit narrow-width values into zero 
values and upper 32 bits of 32-bit narrow-width values, 
respectively, if possible; for the same values, we consider the 
upper 32-bit same values as duplicated data of the lower 32-
bit same values. The duplicated data is exploited to improve 
error correction capability, based on the bitwise OR 
operations with the original data. In addition to the data 

 
3 We only consider the working set of each workload, not the 

entire memory space. 

duplication, the ECC encoder applies the BCH(137,128,1) to 
each 128-bit of the 512-bit data. Since Twin ECC applies 
data duplication depending on the data type, it requires flag 
bits to distinguish data types. Thus, the flag encoder 
generates a 2-bit flag for each 64-bit data (totally 16-bit flag 
for a 512-bit data); to prevent error in the flag bits, it applies 
the BCH(13,8,1) to each 8-bit of the 16-bit flag. Lastly, to 
further improve DRAM reliability, the bitwise interleaver 
stores the encoded data, data parity, flag, and flag parity in a 
bitwise interleaved manner across DRAM chips. 

As shown in the bottom of Fig. 2, on a memory read 
operation (decoding), Twin ECC requires a bitwise de-
interleaver, flag decoder, bitwise OR operator, data 
deduplicator, and ECC decoder. When a memory read 
operation occurs, the bitwise de-interleaver loads the 
encoded data, data parity, flag, and flag parity from DRAM 
chips. Then, the flag decoder accurately decodes the 16-bit 
flag by exploiting the 10-bit flag parity. Based on the 16-bit 
decoded flag, the bitwise OR operator corrects ‘1’→‘0’ 
error(s) by performing bitwise OR operations between the 
original meaningful data and duplicated data in the 512-bit 
encoded data, if duplicated. After the bitwise OR operations, 
the bitwise OR results are stored in the original meaningful 
data locations in a 512-bit restored data, while the original 
meaningless zeros locations are filled with zeros by the data 
deduplicator to protect ‘0’→‘1’ error(s); the bitwise OR 
results for the same values are stored in both the locations of 
the original upper 32-bit same values and the original lower 
32-bit same values in a 512-bit restored data. Then, the ECC 
decoder checks the 512-bit restored data by exploiting the 
36-bit data parity. Lastly, the 512-bit decoded data (i.e., 
original data) is transferred to the processor.  

B. Encoding Process 

Since we classify a 64-bit data into four types, there 
needs to be a 2-bit flag to identify them. Thus, a 16-bit (=2-
bit * 8) flag is needed for each 512-bit data. To make room 
for the 16-bit flag without additional storage overhead in an 
ECC DIMM, we adopt the BCH(137,128,1) instead of 
baseline BCH(72,64,1); though BCH(137,128,1) causes only 
2.3% reliability degradation compared to the baseline 
BCH(72,64,1) [10], Twin ECC further improves the 
reliability through duplication. While the baseline 
BCH(72,64,1) for the 512-bit data requires 64-bit (=8-bit * 8) 
parity, the BCH(137,128,1) for the 512-bit data requires only 
36-bit (=9-bit * 4) parity. With the BCH(137,128,1), it is 
possible to free up 28-bit (=64-bit – 36-bit) space in the 576-
bit (corresponding to eight memory bursts). Accordingly, we 
store the 16-bit flag and 10-bit flag parity in this 28-bit freed 

 
Fig. 1. Proportion of 64-bit data types in DRAM.  

 
Fig. 2. Overview of Twin ECC. 
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space, and fill the remaining 2-bit space with 2’b00; 10-bit 
flag parity is generated by applying the BCH(13,8,1) to each 
8-bit of the 16-bit flag. As ‘1’→‘0’ error pattern is dominant 
in DRAM cells, it would be better for reliability to store ‘0’s 
rather than ‘1’s as many as possible. Thus, considering the 
portion of data types shown in Fig. 1, we configure the flag 
bits such that they are stored as ‘0’s in DRAM as many as 
possible. As described in Table I, the most prevalent data 
type (i.e., full-width value) has 2’b00 for its flag, while the 
least prevalent data type (i.e., same value) has 2’b11 for its 
flag. 

Fig. 3 illustrates the encoding process of our proposed 
Twin ECC with an example. To protect the 512-bit original 
data from ‘1’→‘0’ error(s), the data duplicator creates a 512-
bit encoded data by duplicating meaningful data into 
meaningless zeros in the 512-bit original data, if possible. 
Specifically, 64-bit zero values and upper 32 bits of 32-bit 
narrow-width values are exploited as a redundant space for 
64-bit full-width values and 32-bit narrow-width values, 
respectively; for same values, we consider the upper 32-bit 
same values as duplicated data of the lower 32-bit same 
values. To describe the duplication process for full-width 
values in detail, we depict how full-width values are 
duplicated to the redundant space depending on the number 
of zero values and full-width values in the 512-bit original 
data, as shown in Fig. 4. Within the 512-bit original data, the 
locations of zero values and full-width values are identified 
in the ascending address order; the earlier the values (zero 
values and full-width values) are identified, the higher the 
priority exploited for duplication. When there is no zero 
value or no full-width value in the 512-bit original data, the 
duplication of full-width values is not possible. When the 
number of zero values is less than the number of full-width 
values, the full-width values are duplicated to the zero values 
as many as possible, depending on the ascending address 
order. In this case, one or more full-width values cannot be 
duplicated. When the number of zero values is greater than 
or equal to the number of full-width values, the full-width 
values are duplicated to the zero values, depending on the 
ascending address order. In this case, one or more zero 
values are not exploited as a redundant space. For example, 
as shown in Fig. 3, there are four zero values, two full-width 
values, one narrow-width value, and one same value in the 
512-bit original data. To duplicate the full-width values into 
the zero values, the locations of zero values and full-width 
values are identified in the ascending address order (i.e., D0 
to D7), respectively. Since the number of zero values is 
greater than the number of full-width values, the two initially 
identified zero values (i.e., D0 and D2) are exploited as a 
redundant space for the two initially identified full-width 

values (i.e., D1 and D3) (❶); the remaining two zero values 

(i.e., D4 and D6) are not exploited. In case of the narrow-
width value, the 32-bit narrow-width value (i.e., D7) is 

duplicated to the upper 32 bits (i.e., meaningless zeros) (❷). 

In case of the same value, we consider the upper 32-bit same 
value (i.e., D5H) as duplicated data of the lower 32-bit same 
value (i.e., D5L). In addition, the ECC parity generator 
creates a 36-bit data parity by applying the BCH(137,128,1) 

to each 128-bit of the 512-bit original data (❸). Since we 

configure the 2-bit flag for each 64-bit data type, the flag 

encoder sets a 16-bit flag for the 512-bit original data (❹). 

Though Twin ECC improves DRAM reliability through data 
duplication and BCH(137,128,1), in case of errors occur in 
the flag bits it misclassifies the data types which may result 
in system failure. To resolve this problem, each 8-bit of the 
16-bit flag is protected by the BCH(13,8,1) in the flag 

encoder (❺). 
Lastly, to further improve DRAM reliability, the bitwise 

interleaver stores the encoded data, data parity, flag, and flag 
parity in a bitwise interleaved manner across eighteen x4 
DRAM chips, which is deployed in [10]. The bitwise 
interleaved mapping ensures that two bits in the same bit 
position between the original and duplicated data are not 
stored in the same DRAM chip. When all the meaningful 
data are duplicated in the 512-bit encoded data, Twin ECC is 
tolerable to any single chip failure based on the bitwise OR 
operation between the original and duplicated data. In case of 
36-bit data parity, each 9-bit of 36-bit is stored into different 
DRAM chips, so that any single chip failure is recovered by 
BCH(137,128,1). In case of 16-bit flag and 10-bit flag parity, 
each 13-bit (8-bit flag+5-bit flag parity) is scattered into 
different DRAM chips and thus any single chip failure is 
tolerable by BCH(13,8,1). However, when using the 
conventional mapping method, four consecutive bits in the 
72-bit (one memory burst) including encoded data, data 
parity, flag and flag parity are stored in a single DRAM chip. 
With the conventional mapping method, a single chip failure 
results in 4-bit error in the encoded data, data parity, flag, 
and/or flag parity of the consecutive 72-bit, which is 
uncorrectable by BCH(137,128,1) and/or BCH(13,8,1), 
leading to system failure.  

C. Decoding Process 

Fig. 5 illustrates the decoding process of our proposed 
Twin ECC with an example. To read data from main 
memory, the bitwise de-interleaver loads the encoded data, 
data parity, flag, and flag parity from DRAM chips. Then, as 
shown in the first process (i.e., leftmost in Fig. 5), each 8-bit 
of the 16-bit flag is accurately decoded by the BCH(13,8,1) 
in the flag decoder. Based on the 16-bit decoded flag, the 
locations of the original meaningful data and the duplicated 
data are identified within the 512-bit encoded data. Then, the 
bitwise OR operator corrects ‘1’→‘0’ error(s) by performing 
bitwise OR operations between the original meaningful data 
and duplicated data, if duplicated. After the bitwise OR 
operations, the bitwise OR results are stored in the original 
meaningful data locations in a 512-bit restored data, while 

TABLE I.    FLAG VALUES DEPENDING ON THE DATA TYPES FOR DATA 

CLASSIFICATION  

Data type Flag 

Full-width value 00 

Zero value 01 

Narrow-width value 10 

Same value 11 

 

 
 

Fig. 4. Duplication process for full-width values in the data duplicator. 

 
*D, DP, F, and FP denote data, data parity, flag, and flag parity, respectively. 

Fig. 3. Encoding process of our proposed Twin ECC.  

Identify the
locations of zero 

values & full-width 
values

Original 
data 

(512-bit)

No

Duplicate
full-width values to zero 
values in the ascending 
address order as many 

as possible

Yes

# of zero 
values < # of 

full-width 
values

Duplicate 
full-width values to
zero values in the 

ascending address 
order

Duplicate 
nothing

Yes

# of zero 
values = 0 or 

# of full-width 
values = 0

No

Duplicated D1 D1 (Full-width value) DP F FP

Duplicated D3 D3 (Full-width value) DP F FP

D4 (Zero value)
D5H (Same 

value)
D5L (Same 

value)
DP F FP

D6 (Zero value)
Duplicated

D7
DP F

D0 (Zero value) D1 (Full-width value)

D2 (Zero value) D3 (Full-width value)

D4 (Zero value)
D5H (Same 

value)
D5L (Same 

value)

D6 (Zero value) 32’b0

Original data 
(512-bit)

{Encoded data (512-bit), DP (36-bit), 
F (16-bit), FP (10-bit), 2’b00}

(576-bit)

❷

❶

❶

❸ ❹ ❺

143 79 15 6 2 0

00
D7 (Narrow-

width value) 00

127 63 0

D7 (Narrow-

width value)
FP

!

!



the original meaningless zeros locations are filled with zeros 
by the data deduplicator, as shown in the second process in 
Fig. 5; for same values, the bitwise OR results are stored in 
both the locations of the original upper 32-bit same values 
and the original lower 32-bit same values in a 512-bit 
restored data. To describe the second process in detail, we 
depict the bitwise OR operations and data deduplication 
process for each data type in the 512-bit encoded data, as 
shown in Fig. 6. For the (i) full-width values, 64-bit bitwise 
OR operations are performed between 64-bit full-width 
values (i.e., D1 and D3) and 64-bit duplicated data (i.e., 
duplicated D1 and duplicated D3). After the bitwise OR 
operations, the 64-bit bitwise OR results are stored in the 
locations of the original full-width values in the 512-bit 
restored data, while the locations of the original 64-bit zero 
values (i.e., D0 and D2) are filled with zeros. For the (ii) same 
value, 32-bit bitwise OR operations are performed between 
the upper 32-bit same value (i.e., D5H) and the lower 32-bit 
same value (i.e., D5L). After the bitwise OR operations, the 
32-bit bitwise OR result is stored in both the locations of the 
original upper 32-bit same value and the original lower 32-
bit same value in the 512-bit restored data. For the (iii) 
narrow-width value, 32-bit bitwise OR operations are 
performed between 32-bit narrow-width value (i.e., D7) and 
32-bit duplicated data (i.e., duplicated D7). After the bitwise 
OR operations, the 32-bit bitwise OR result is stored in the 
location of the original 32-bit narrow-width value in the 512-
bit restored data, while the upper 32-bit location of the 
original 32-bit narrow-width value is filled with zeros. 
Meanwhile, when ‘1’→‘0’ errors occur in the same bit 
position between the original and duplicated data, or ‘0’→‘1’ 
errors occur (which is expected to be very rare), they cannot 
be corrected by the bitwise OR operations. In this case, each 
128-bit of the 512-bit data is corrected by the 
BCH(137,128,1) in the ECC decoder, as shown in the last 
process (i.e., rightmost in Fig. 5).  

IV. EVALUATION 

A. Experimental Environment 

We evaluate Twin ECC in terms of DRAM reliability, 
performance, and area/power overhead, compared to the 
baseline (ECC DIMM with BCH(72,64,1)), BCH(573,512,6), 

and Stealth ECC (which adopts bitwise interleaving) [10]. 
We conduct our evaluations with nineteen workloads from 
SPEC CPU 2017 [3] and PARSEC [1] benchmark suites. 
Specifically, in case of the single-threaded SPEC benchmark 
suite, we run each workload with a single thread. In case of 
the PARSEC multi-threaded benchmark suite, we run each 
workload with four threads to consider the impact of atomic 
memory operations and thread synchronization. For each 
simulation, we fast-forward the first 10 billion instructions 
and then execute 1 billion instructions. We use Faultsim [13], 
a configurable memory-reliability simulator, to compare the 
reliability based on real-world failure statistics for DRAM 
devices. Considering the asymmetric error behavior of true-
cell regions, we set the portion of ‘1’→‘0’ DRAM error as 
100%, 90%, and 80%. To evaluate the system failure 
probability (i.e., the probability of an uncorrectable error in 
the system), we perform Monte-Carlo simulations for a 7-
year period with 10 million iterations. For performance 
evaluation, we calculate the decoding latency of BCH codes 
by exploiting Strukov’s model [15]. Based on the Strukov’s 
model, the decoding latency of BCH codes employed by 
Twin ECC is 6 cycles. In the case of Twin ECC, we also 
extract the latency of additional hardware components (e.g., 
bitwise de-interleaver, bitwise operator, data deduplicator, 
etc.) by implementing the hardware components in Verilog 
HDL and then synthesizing them at 3GHz frequency using 
the Synopsys Design Compiler with SAED 14nm FinFET 
process technology [12]. According to the synthesis results, 
one cycle is enough to execute the bitwise de-interleaver, 
bitwise OR operator, and data deduplicator (explained in 
Section III-C). We reflect the estimated latency (7 cycles = 6 
+ 1) to the gem5 simulator [2]. The detailed system 
parameters for performance evaluation are described in Table 
II. In addition, we analyze the area and power consumption 
of Twin ECC based on the synthesis result. 

B. Reliability Evaluation 

Fig. 7 compares the system failure probability across 
nineteen workloads. When the portion of ‘1’→‘0’ error is 
100/90/80%, Twin ECC reduces the average system failure 
probability by 64.8/56.9/49.5%, 50.3/39.2/28.8%, and 
31.9/16.7/2.5% compared to the baseline, BCH(573,512,6), 
and Stealth ECC [10], respectively, due to the following 
reasons. First, Twin ECC provides multi-bit (up to 64-bit) 
correction capability for zero, narrow-width, and same values, 

 
*D, DP, F, FP, and DF denote data, data parity, flag, flag parity, and decoded flag, respectively. 

Fig. 5. Decoding process of our proposed Twin ECC. Red dotted boxes indicate the data exploited in the next process.  

TABLE II.    CONFIGURATION PARAMETERS 

Parameter Configuration 

Processor 4 cores; out-of-order; x86; 3GHz 

Cache 
L1D/L1I: Private; 32KB; 8-way; 64B block 

L2: Shared; 256KB; 16-way; 64B block 

Memory  

controller 

Decoding latency including flag decoding and bitwise 

interleaving (cycle): 

Baseline* (3), BCH(573,512,6) (24),  

Stealth ECC (10), Twin ECC (7) 

Main memory DDR4-2400; x4 bus-width; 18 chips; 16GB 

*Note our baseline is ECC DIMM with BCH(72,64,1). 

 

 

 
 

Fig. 6. Bitwise OR operations and data deduplication process for each data 
type. 
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width value)

Data type Bitwise OR operation & data deduplication process

(i) Full-width 
value

(ii) Same value

(iii) Narrow-
width value

Duplicated D1 D1 (Full-width value) OR64

127 63 0
64

64
D0 (Zero value) OR result of D1

127 63 0

Duplicated D3 D3 (Full-width value) OR64

127 63 0
64

64
D2 (Zero value) OR result of D3

127 63 0

D4 (Zero value)
D5H (Same 

value) OR32

127 63 0
32

32
D4 (Zero value)

OR result 
of D5H

127 63 0

D5L (Same 
value)

OR result 
of D5L

31

D6 (Zero value)
Duplicated

D7
OR32

127 63 0
32

32
D4 (Zero value) 32’b0

127 63 0

D7 (Narrow-

width value)

31

OR result 
of D7

!

!



while the baseline provides only 1-bit correction capability 
for each 64-bit data. Second, Twin ECC provides stronger 
error resilience than BCH(573,512,6) and Stealth ECC in 
most workloads, since Twin ECC is capable of correcting 
20-bit per a 512-bit data, on average, in our simulation; 
BCH(573,512,6) and Stealth ECC correct average 6-bit and 
14-bit per a 512-bit data, respectively. Hence, as the 
proportion of data types for duplication (i.e., zero, narrow-
width, and same values) increases, Twin ECC further 
reduces the system failure probability. For example, as 
shown in Fig. 7, in the case of deepsjeng, gcc, leela, and 
canneal, Twin ECC leads to much lower system failure 
probability than the other ECC schemes, since the proportion 
of data types for duplication is higher (more than 70%). 
However, as the proportion of data types for duplication 
decreases, Twin ECC gets less efficient for system failure 
reduction than BCH(573,512,6), leading to higher system 
failure probability. For example, in the case of nab and lbm 
(the two leftmost workloads in Fig. 7), Twin ECC still shows 
lower system failure probability than baseline and Stealth 
ECC, but higher system failure probability than 
BCH(573,512,6). However, BCH(573,512,6) has 3.4x longer 
decoding latency compared to Twin ECC, causing worse 
system performance (will be described in the next 
subsection). 

To verify the effectiveness of Twin ECC, we evaluate 
average correction coverage for each data type across 
nineteen workloads shown in Table III; the correction 
coverage is ratio of error tolerance (the higher the better) for 
each data type in our simulation. In case of the zero and 
narrow-width values, Stealth ECC shows high correction 
coverage, since it adopts a strong BCH code with bitwise 
interleaved mapping method. Twin ECC also shows higher 
correction coverage through the bitwise OR operations and 
BCH(137,128,1). In case of the same and full-width values, 
since Stealth ECC employs the baseline or BCH(137,128,1), 
it shows lower correction coverage than the baseline. On the 
other hand, Twin ECC provides high correction coverage for 
the same values by performing bitwise OR operations 
between upper 32-bit same values and the lower 32-bit same 
values. Moreover, for full-width values, Twin ECC shows 
higher correction coverage compared to the other ECC 
schemes by exploiting a considerable portion of zero values 
as a redundant space. Accordingly, though Twin ECC adopts 
the BCH(137,128,1) with lower correction coverage than the 
baseline, it provides higher reliability by exploiting the 
bitwise OR operations with data duplication. 

C. Performance Evaluation 

Fig. 8 shows the normalized execution time of Twin ECC 
and the other ECC schemes across nineteen workloads. Twin 
ECC shows the performance overhead by only 0.7%, on 
average, compared to the baseline. Typically, the decoding 

latency rather than the encoding latency more affects the 
system performance. In the decoding process, Twin ECC 
with the bitwise OR operation, BCH(137,128,1), and 
BCH(13,8,1) is much simpler than the strong ECCs. As 
shown in Table II, Twin ECC needs 7 cycles for decoding 
latency for BCH codes and additional hardware components. 
In contrast, BCH(573,512,6) and Stealth ECC needs 24 
cycles and 10 cycles for decoding latency, which incurs 
performance overhead by average 4.0% and 1.3%, 
respectively.  

D. Area and Power Analysis  

As shown in Table IV, the area and power consumption 
of Twin ECC are 0.017mm2 and 2.38mW, respectively. 
Though the area of Twin ECC is larger than the area of 
baseline and Stealth ECC, the hardware components of Twin 
ECC incur negligible area overhead (i.e., 0.25%) compared 
to the memory controller area (i.e., 6.9mm2) of a state-of-the-
art server CPU [19]. Furthermore, the power consumption of 
Twin ECC is small compared to the thermal design power 
(i.e., 205W) of the state-of-the-art server CPU [19]. 

V. RELATED WORK 

Various previous studies have presented ECC schemes to 
enhance DRAM reliability. Among them, we describe the 
previous studies that provided Chipkill-level or near 
Chipkill-level ECC schemes, as shown in Table V. Kim et al. 
proposed Bamboo ECC which employs vertical RS code to 
protect any single DRAM chip failure at cache line 
granularity [6]. Kim et al. also proposed Frugal ECC, a 
compression-based ECC scheme, which is tolerable to a 

 
Fig. 8. Normalized execution time depending on ECC schemes. 

TABLE III. COMPARISON OF CORRECTION COVERAGE FOR EACH DATA 

TYPE  

ECC 

scheme 
Baseline 

BCH 

(573,512,6) 

Stealth 

ECC [10] 

Twin 

ECC 

(80%) 

Twin 

ECC 

(90%) 

Twin 

ECC 

(100%) 

Zero value 48.41% 59.65% 99.58% 89.71% 94.73% 99.92% 

Narrow-

width value 
48.17% 59.29% 99.5% 90.32% 95.76% 99.95% 

Same value 48.08% 59.27% 46.82% 89.13% 94.21% 99.79% 

 Full-width 

value 
47.63% 59.18% 46.36% 58.29% 59.63% 61.03% 

 

 
Fig. 7. System failure probability depending on ECC schemes.  
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single DRAM chip error by exploiting RS code [7]. Though 
Bamboo ECC [6] and Frugal ECC [7] provide DRAM chip 
error resilience, they incur performance overhead by average 
19.3% and 21.4%, respectively. In addition, Frugal ECC 
causes storage overhead by 12.0%, since it exploits extra 
memory space to store parity bits in case of compression 
failure. Chen et al. presented CARE, which exploits a 6-bit 
correctable BCH code with operating system (OS) support 
[4]. CARE tries to mitigate the storage overhead in DRAM 
by employing a cache-like structure (i.e., ECC cache) to 
store the parity bits of the BCH code. Based on the 
observation that initially correctable errors are converted into 
uncorrectable errors later, CARE corrects the errors through 
the ECC cache, and then retires the memory page. Though 
CARE enhances DRAM reliability thanks to the page 
retirement techniques, it causes average 10.0% performance 
overhead in error-dominant cases; in nearly error-free cases, 
CARE incurs about 1.0% performance overhead. Lee et al. 
proposed Stealth ECC, a data-width aware adaptive ECC 
scheme, which provides near Chipkill-level reliability by 
employing a narrow-width value feature [10]. Stealth ECC 
applies the BCH(51,32,3) to the meaningful part of narrow-
width values by exploiting the meaningless zeros as a storage 
space for the parity bits. However, since Stealth ECC adopts 
weak BCH codes (i.e., BCH(72,64,1) or BCH(137,128,1)) 
for full-width values, it may have worse reliability than the 
baseline (i.e., BCH(72,64,1)) for full-width values. On the 
other hand, Twin ECC provides strong protection for the 
full-width values by exploiting the bitwise OR operations 
with data duplication as well as BCH(137,128,1). Moreover, 
since the next-generation DRAM (e.g., DDR5 [20]) supports 
a mode that increases the memory burst length to 1024-bit 
rather than 512-bit, it is possible to duplicate more full-width 
values into the redundant space. 

VI. CONCLUSION 

We propose Twin ECC, a low-cost memory protection 
scheme which employs data duplication and ECCs to provide 
strong error resilience. To duplicate data without any storage 
overhead in an ECC DIMM, Twin ECC exploits meaningless 
zeros as a redundant space for meaningful data, within a 512-
bit data. Since ‘1’→‘0’ error pattern is dominant in DRAM 
cells, Twin ECC performs bitwise OR operations between 
the original meaningful data and duplicated data. After the 
bitwise OR operations, Twin ECC adopts the 
BCH(137,128,1) for further error resilience. Consequently, 
when the portion of ‘1’→‘0’ error is 100/90/80%, Twin ECC 
enhances the DRAM reliability by (64.8/56.9/49.5%), 
(50.3/39.2/28.8%), and (31.9/16.7/2.5%) compared to the 
baseline BCH(72,64,1), BCH(573,512,6), and Stealth ECC, 
respectively. Furthermore, Twin ECC incurs negligible 
performance overhead (0.7%, on average) and no storage 
overhead, compared to the baseline ECC DIMM with 
BCH(72,64,1). Though our proposed Twin ECC is based on 
true-cell regions in this paper, Twin ECC is applicable to 
anti-cell regions as well. Since ‘0’→‘1’ error pattern is 
dominant in anti-cell regions, it is possible to provide strong 
error resilience by performing bitwise AND operations 
between the original meaningful data and duplicated data. 
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TABLE IV.    AREA AND POWER COMPARISON 

ECC 

scheme 
Baseline BCH(573,512,6) 

Stealth 

ECC [10] 

Twin ECC 

(This work) 

Area 
0.001mm2 0.08mm2 0.01mm2 0.017mm2 

Power* 0.58mW 9.26mW 1.63mW 2.38mW 

*The sum of dynamic power and leakage power 

TABLE V. COMPARISON BETWEEN RELATED WORK WITH TWIN ECC    

ECC scheme 

Chipkill-level Near Chipkill-level 

Bamboo 

ECC [6] 

Frugal 

ECC [7] 
CARE [4]  

Stealth 

ECC [10] 

Twin ECC 

(This work) 

Storage overhead 

(vs. BCH(72,64,1)) 
0% 12.0% 0%a 0% 0% 

Avg. perf. overhead 
(vs. BCH(72,64,1)) 

19.3% 21.4% ~10.0%b 1.3% 0.7% 

OS support No No Needed No No 
a It additionally requires a 56KB ECC cache per 8GB DRAM. 

b It depends on whether the memory page is retired or not. 
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