

Hyeong Kon Bae1, Myung Jae Chung1, Young-Ho Gong2, and Sung Woo Chung1
1Department of Computer Science and Engineering, Korea University, Seoul 02841, South Korea

2School of Software, Soongsil University, Seoul 06978, South Korea

E-mail: {iqoong, qa7028, swchung}@korea.ac.kr; yhgong@ssu.ac.kr

Twin ECC: A Data Duplication Based ECC for

Strong DRAM Error Resilience

Abstract—With the continuous scaling of process

technology, DRAM reliability has become a critical challenge

in modern memory systems. Currently, DRAM memory

systems for servers employ ECC DIMMs with a single error

correction and double error detection (SECDED) code.

However, the SECDED code is insufficient to ensure DRAM

reliability since memory systems become more susceptible to

errors. Though various studies have proposed multi-bit

correctable ECC schemes, such ECC schemes cause

performance and/or storage overhead. To minimize

performance degradation while providing strong error

resilience, in this paper, we propose Twin ECC, a low-cost

memory protection scheme through data duplication. In a 512-

bit data, Twin ECC duplicates meaningful data into

meaningless zeros. Since ‘1’→‘0’ error pattern is dominant in

DRAM cells, Twin ECC provides strong error resilience by

performing bitwise OR operations between the original

meaningful data and duplicated data. After the bitwise OR

operations, Twin ECC adopts the SECDED code for further

enhancing data protection. Our evaluations show that Twin

ECC reduces the system failure probability by average 64.8%,

56.9%, and 49.5%, when the portion of ‘1’→‘0’ error is 100%,

90%, and 80%, respectively, while causing only 0.7%

performance overhead and no storage overhead compared to

the baseline ECC DIMM with SECDED code.

Keywords—DRAM reliability, data duplication, error

correction code, bitwise operation

I. INTRODUCTION

The density and capacity of DRAMs have grown rapidly
with the continued scaling of process technology. Though
the scaling to smaller technology nodes enables higher
density of DRAMs, it causes reliability challenges [5][8]. To
ensure the DRAM reliability, error correction code (ECC) is
widely exploited for modern memory systems. In general,
recent DRAM memory systems for servers employ ECC
DIMMs (Dual In-line Memory Modules) with a single error
correction and double error detection (SECDED) code,
which protects 64-bit data with 8-bit parity. However, as the
error rate increases due to the technology scaling, several
studies have proposed multi-bit correctable ECC schemes
that provide stronger error correction capability than the
SECDED code [4][6][7][10]. CARE adopts a 6-bit
correctable Bose-Chaudhuri-Hocquenghem (BCH) code with
memory page retirement techniques to prevent initially
correctable errors from developing into uncorrectable errors
later [4]. Stealth ECC has a 3-bit correctable BCH code in
the meaningless part of the narrow-width value to protect the
meaningful part from errors [10]; though Stealth ECC adopts
a single stronger BCH code for narrow-width values only,
we would like to leverage more meaningless parts more
efficiently. AMD Chipkill exploits an 8-bit symbol Reed-
Solomon (RS) code to correct any single symbol error from
eighteen DRAM chips [18]. However, previously proposed
ECC schemes incur substantial performance and/or storage
overhead compared to the SECDED code.

One important observation not considered in previous
ECC schemes is the asymmetric error behavior (‘1’→‘0’
error pattern is dominant in true-cell regions1). A retention
error occurs when a DRAM cell loses the charge before a
refresh operation. A disturbance error occurs when the
repetitive accesses lead a DRAM cell to lose the charge, such
as Row Hammer [8][17]. Thus, it is natural that ‘1’→‘0’
error pattern is dominant. A radiation induced error is caused
by alpha particles and cosmic neutrons. When the radiation
induced error occurs in DRAM cells, it is reported that
‘1’→‘0’ error pattern is dominant [11][14][16]. However,
when the radiation induced error occurs on the other circuits
such as sense amplifiers and registers, it has the symmetric
error behavior [11][14][16]. In other words, only except the
case of the radiation induced error on the other circuits,
‘1’→‘0’ error pattern is dominant in the true-cell region
[8][9][11][14][16][17]. Note some studies have reported that
DRAM error behavior was not asymmetric, since they
evaluated the true-cell and anti-cell regions together.

In this paper, we propose Twin ECC, a low-cost memory
protection scheme providing strong error correction
capability through data duplication. By exploiting the
asymmetric error behavior of DRAM cells, Twin ECC
improves the error correction capability with the bitwise OR
operations between the original meaningful data and
duplicated data; the result of the bitwise OR operations
recovers all the ‘1’→‘0’ errors only if any ‘1’→‘0’ error
does not occur in the same bit position between the original
and duplicated data. To duplicate data without storage
overhead in an ECC DIMM, Twin ECC classifies 64-bit data
into four types: zero, narrow-width, same2, and full-width
values; since the zero value is a subset of the same value and
narrow-width value, we classify them as mutually exclusive.
In a 512-bit data, Twin ECC exploits meaningless zeros
(zero values and upper bits of 32-bit narrow-width values) as
a redundant space for meaningful data. Twin ECC also
adopts the BCH (137,128,1) to correct any 1-bit error.
Additionally, Twin ECC stores data with an interleaved
manner to DRAM chips. The key contributions of this paper
are as follows:

• Based on the asymmetric error behavior of DRAM
cells, we propose Twin ECC, a strong error correction
scheme through data duplication and ECCs.

• To duplicate data without additional storage overhead
in an ECC DIMM, Twin ECC exploits meaningless
zeros accounting for a considerable portion in DRAM.

• With bitwise OR operations instead of strong ECCs,
Twin ECC achieves a short decoding latency leading
to much less performance overhead compared to the
previously proposed strong ECC schemes.

1 In this paper, we focus on true-cell regions for simplicity.
2 We define same value as a 64-bit value in which the upper 32-bit

value is same as the lower 32-bit value.

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

II. BACKGROUND AND MOTIVATION

 To protect memory systems against errors, various
studies have employed multi-bit correctable BCH codes.
Note the encoding process of BCH(n,k,t) converts k-bit data
into n-bit codeword by exploiting (n-k)-bit parity for t-bit
error correction and (t+1)-bit error detection. Typically, there
is a trade-off among decoding latency, storage overhead, and
error correction capability for BCH codes. For example, for
64-bit data, a 1-bit correctable BCH(72,64,1) requires 3
cycles of decoding latency with 8-bit parity (storage
overhead), while a 3-bit correctable BCH(86,64,3) requires
10 cycles of decoding latency with 22-bit parity, which is
calculated by Strukov’s model based on the 22nm
technology nodes [15]. Thus, ECC schemes employing
strong BCH codes (i.e., multi-bit correctable BCH codes)
increase the error correction strength at the expense of
performance and storage overhead.

To provide strong error resilience while mitigating the
performance and storage overhead, we exploit meaningless
zeros of narrow-width data values. According to [10], 32-bit
narrow-width values (i.e., a 64-bit data consists of 32-bit
zero values with 32-bit non zero values) in DRAM account
for more than 40%, on average. We investigate the
proportion of 64-bit data types for duplication (i.e., zero,
narrow-width, and same values) in DRAM for SPEC CPU
2017 [3] and PARSEC [1] workloads3. As shown in Fig. 1,
the proportion of 64-bit data types for duplication in DRAM
accounts for 50.2% (30.6/16.8/2.8% for zero/narrow-
width/same values, respectively), on average. Therefore, it is
efficient to enhance DRAM reliability through duplication.

III. TWIN ECC: DATA DUPLICATION BASED ECC

In this section, we first describe a brief overview of our
proposed Twin ECC, followed by a detailed description of
the encoding and decoding process.

A. Overview

Fig. 2 depicts the hardware components of Twin ECC in
the memory controller. As shown in the top of Fig. 2, on a
memory write operation (encoding), Twin ECC requires a
data duplicator, ECC encoder, flag encoder, and bitwise
interleaver. In case of a memory write operation, the data
duplicator reorganizes the 512-bit data by duplicating 64-bit
full-width values and 32-bit narrow-width values into zero
values and upper 32 bits of 32-bit narrow-width values,
respectively, if possible; for the same values, we consider the
upper 32-bit same values as duplicated data of the lower 32-
bit same values. The duplicated data is exploited to improve
error correction capability, based on the bitwise OR
operations with the original data. In addition to the data

3 We only consider the working set of each workload, not the

entire memory space.

duplication, the ECC encoder applies the BCH(137,128,1) to
each 128-bit of the 512-bit data. Since Twin ECC applies
data duplication depending on the data type, it requires flag
bits to distinguish data types. Thus, the flag encoder
generates a 2-bit flag for each 64-bit data (totally 16-bit flag
for a 512-bit data); to prevent error in the flag bits, it applies
the BCH(13,8,1) to each 8-bit of the 16-bit flag. Lastly, to
further improve DRAM reliability, the bitwise interleaver
stores the encoded data, data parity, flag, and flag parity in a
bitwise interleaved manner across DRAM chips.

As shown in the bottom of Fig. 2, on a memory read
operation (decoding), Twin ECC requires a bitwise de-
interleaver, flag decoder, bitwise OR operator, data
deduplicator, and ECC decoder. When a memory read
operation occurs, the bitwise de-interleaver loads the
encoded data, data parity, flag, and flag parity from DRAM
chips. Then, the flag decoder accurately decodes the 16-bit
flag by exploiting the 10-bit flag parity. Based on the 16-bit
decoded flag, the bitwise OR operator corrects ‘1’→‘0’
error(s) by performing bitwise OR operations between the
original meaningful data and duplicated data in the 512-bit
encoded data, if duplicated. After the bitwise OR operations,
the bitwise OR results are stored in the original meaningful
data locations in a 512-bit restored data, while the original
meaningless zeros locations are filled with zeros by the data
deduplicator to protect ‘0’→‘1’ error(s); the bitwise OR
results for the same values are stored in both the locations of
the original upper 32-bit same values and the original lower
32-bit same values in a 512-bit restored data. Then, the ECC
decoder checks the 512-bit restored data by exploiting the
36-bit data parity. Lastly, the 512-bit decoded data (i.e.,
original data) is transferred to the processor.

B. Encoding Process

Since we classify a 64-bit data into four types, there
needs to be a 2-bit flag to identify them. Thus, a 16-bit (=2-
bit * 8) flag is needed for each 512-bit data. To make room
for the 16-bit flag without additional storage overhead in an
ECC DIMM, we adopt the BCH(137,128,1) instead of
baseline BCH(72,64,1); though BCH(137,128,1) causes only
2.3% reliability degradation compared to the baseline
BCH(72,64,1) [10], Twin ECC further improves the
reliability through duplication. While the baseline
BCH(72,64,1) for the 512-bit data requires 64-bit (=8-bit * 8)
parity, the BCH(137,128,1) for the 512-bit data requires only
36-bit (=9-bit * 4) parity. With the BCH(137,128,1), it is
possible to free up 28-bit (=64-bit – 36-bit) space in the 576-
bit (corresponding to eight memory bursts). Accordingly, we
store the 16-bit flag and 10-bit flag parity in this 28-bit freed

Fig. 1. Proportion of 64-bit data types in DRAM.

Fig. 2. Overview of Twin ECC.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

P
ro

p
o

rt
io

n
 o

f
th

e
n
u
m

b
er

o
f

d
at

a
in

 D
R

A
M

Zero value 32-bit narrow-width value Same value 64-bit full-width value

Twin ECC

Memory controller

P
ro

ce
ss

o
r

D
R

A
M

64*8

Encoded data

Data parity

Encoded data
Restored data

Data error corrector

ECC
decoder

Data parity

Data
deduplicator

Flag
decoder

Bitwise
interleaver

36

512

36

26

512

512

Flag
encoder

64*8 72*8

72*8

Bitwise
de-interleaver

Data
duplicator

ECC
encoder

{Flag (16-bit), Flag parity (10-bit), 2’b00}

28

Bitwise OR
operator

16

Decoded
flag

Bitwise OR results

Write path
Read path

512

{Flag (16-bit), Flag parity (10-bit)}

!

!

space, and fill the remaining 2-bit space with 2’b00; 10-bit
flag parity is generated by applying the BCH(13,8,1) to each
8-bit of the 16-bit flag. As ‘1’→‘0’ error pattern is dominant
in DRAM cells, it would be better for reliability to store ‘0’s
rather than ‘1’s as many as possible. Thus, considering the
portion of data types shown in Fig. 1, we configure the flag
bits such that they are stored as ‘0’s in DRAM as many as
possible. As described in Table I, the most prevalent data
type (i.e., full-width value) has 2’b00 for its flag, while the
least prevalent data type (i.e., same value) has 2’b11 for its
flag.

Fig. 3 illustrates the encoding process of our proposed
Twin ECC with an example. To protect the 512-bit original
data from ‘1’→‘0’ error(s), the data duplicator creates a 512-
bit encoded data by duplicating meaningful data into
meaningless zeros in the 512-bit original data, if possible.
Specifically, 64-bit zero values and upper 32 bits of 32-bit
narrow-width values are exploited as a redundant space for
64-bit full-width values and 32-bit narrow-width values,
respectively; for same values, we consider the upper 32-bit
same values as duplicated data of the lower 32-bit same
values. To describe the duplication process for full-width
values in detail, we depict how full-width values are
duplicated to the redundant space depending on the number
of zero values and full-width values in the 512-bit original
data, as shown in Fig. 4. Within the 512-bit original data, the
locations of zero values and full-width values are identified
in the ascending address order; the earlier the values (zero
values and full-width values) are identified, the higher the
priority exploited for duplication. When there is no zero
value or no full-width value in the 512-bit original data, the
duplication of full-width values is not possible. When the
number of zero values is less than the number of full-width
values, the full-width values are duplicated to the zero values
as many as possible, depending on the ascending address
order. In this case, one or more full-width values cannot be
duplicated. When the number of zero values is greater than
or equal to the number of full-width values, the full-width
values are duplicated to the zero values, depending on the
ascending address order. In this case, one or more zero
values are not exploited as a redundant space. For example,
as shown in Fig. 3, there are four zero values, two full-width
values, one narrow-width value, and one same value in the
512-bit original data. To duplicate the full-width values into
the zero values, the locations of zero values and full-width
values are identified in the ascending address order (i.e., D0
to D7), respectively. Since the number of zero values is
greater than the number of full-width values, the two initially
identified zero values (i.e., D0 and D2) are exploited as a
redundant space for the two initially identified full-width

values (i.e., D1 and D3) (❶); the remaining two zero values

(i.e., D4 and D6) are not exploited. In case of the narrow-
width value, the 32-bit narrow-width value (i.e., D7) is

duplicated to the upper 32 bits (i.e., meaningless zeros) (❷).

In case of the same value, we consider the upper 32-bit same
value (i.e., D5H) as duplicated data of the lower 32-bit same
value (i.e., D5L). In addition, the ECC parity generator
creates a 36-bit data parity by applying the BCH(137,128,1)

to each 128-bit of the 512-bit original data (❸). Since we

configure the 2-bit flag for each 64-bit data type, the flag

encoder sets a 16-bit flag for the 512-bit original data (❹).

Though Twin ECC improves DRAM reliability through data
duplication and BCH(137,128,1), in case of errors occur in
the flag bits it misclassifies the data types which may result
in system failure. To resolve this problem, each 8-bit of the
16-bit flag is protected by the BCH(13,8,1) in the flag

encoder (❺).
Lastly, to further improve DRAM reliability, the bitwise

interleaver stores the encoded data, data parity, flag, and flag
parity in a bitwise interleaved manner across eighteen x4
DRAM chips, which is deployed in [10]. The bitwise
interleaved mapping ensures that two bits in the same bit
position between the original and duplicated data are not
stored in the same DRAM chip. When all the meaningful
data are duplicated in the 512-bit encoded data, Twin ECC is
tolerable to any single chip failure based on the bitwise OR
operation between the original and duplicated data. In case of
36-bit data parity, each 9-bit of 36-bit is stored into different
DRAM chips, so that any single chip failure is recovered by
BCH(137,128,1). In case of 16-bit flag and 10-bit flag parity,
each 13-bit (8-bit flag+5-bit flag parity) is scattered into
different DRAM chips and thus any single chip failure is
tolerable by BCH(13,8,1). However, when using the
conventional mapping method, four consecutive bits in the
72-bit (one memory burst) including encoded data, data
parity, flag and flag parity are stored in a single DRAM chip.
With the conventional mapping method, a single chip failure
results in 4-bit error in the encoded data, data parity, flag,
and/or flag parity of the consecutive 72-bit, which is
uncorrectable by BCH(137,128,1) and/or BCH(13,8,1),
leading to system failure.

C. Decoding Process

Fig. 5 illustrates the decoding process of our proposed
Twin ECC with an example. To read data from main
memory, the bitwise de-interleaver loads the encoded data,
data parity, flag, and flag parity from DRAM chips. Then, as
shown in the first process (i.e., leftmost in Fig. 5), each 8-bit
of the 16-bit flag is accurately decoded by the BCH(13,8,1)
in the flag decoder. Based on the 16-bit decoded flag, the
locations of the original meaningful data and the duplicated
data are identified within the 512-bit encoded data. Then, the
bitwise OR operator corrects ‘1’→‘0’ error(s) by performing
bitwise OR operations between the original meaningful data
and duplicated data, if duplicated. After the bitwise OR
operations, the bitwise OR results are stored in the original
meaningful data locations in a 512-bit restored data, while

TABLE I. FLAG VALUES DEPENDING ON THE DATA TYPES FOR DATA

CLASSIFICATION

Data type Flag

Full-width value 00

Zero value 01

Narrow-width value 10

Same value 11

Fig. 4. Duplication process for full-width values in the data duplicator.

*D, DP, F, and FP denote data, data parity, flag, and flag parity, respectively.

Fig. 3. Encoding process of our proposed Twin ECC.

Identify the
locations of zero

values & full-width
values

Original
data

(512-bit)

No

Duplicate
full-width values to zero
values in the ascending
address order as many

as possible

Yes

of zero
values < # of

full-width
values

Duplicate
full-width values to
zero values in the

ascending address
order

Duplicate
nothing

Yes

of zero
values = 0 or

of full-width
values = 0

No

Duplicated D1 D1 (Full-width value) DP F FP

Duplicated D3 D3 (Full-width value) DP F FP

D4 (Zero value)
D5H (Same

value)
D5L (Same

value)
DP F FP

D6 (Zero value)
Duplicated

D7
DP F

D0 (Zero value) D1 (Full-width value)

D2 (Zero value) D3 (Full-width value)

D4 (Zero value)
D5H (Same

value)
D5L (Same

value)

D6 (Zero value) 32’b0

Original data
(512-bit)

{Encoded data (512-bit), DP (36-bit),
F (16-bit), FP (10-bit), 2’b00}

(576-bit)

❷

❶

❶

❸ ❹ ❺

143 79 15 6 2 0

00
D7 (Narrow-

width value) 00

127 63 0

D7 (Narrow-

width value)
FP

!

!

the original meaningless zeros locations are filled with zeros
by the data deduplicator, as shown in the second process in
Fig. 5; for same values, the bitwise OR results are stored in
both the locations of the original upper 32-bit same values
and the original lower 32-bit same values in a 512-bit
restored data. To describe the second process in detail, we
depict the bitwise OR operations and data deduplication
process for each data type in the 512-bit encoded data, as
shown in Fig. 6. For the (i) full-width values, 64-bit bitwise
OR operations are performed between 64-bit full-width
values (i.e., D1 and D3) and 64-bit duplicated data (i.e.,
duplicated D1 and duplicated D3). After the bitwise OR
operations, the 64-bit bitwise OR results are stored in the
locations of the original full-width values in the 512-bit
restored data, while the locations of the original 64-bit zero
values (i.e., D0 and D2) are filled with zeros. For the (ii) same
value, 32-bit bitwise OR operations are performed between
the upper 32-bit same value (i.e., D5H) and the lower 32-bit
same value (i.e., D5L). After the bitwise OR operations, the
32-bit bitwise OR result is stored in both the locations of the
original upper 32-bit same value and the original lower 32-
bit same value in the 512-bit restored data. For the (iii)
narrow-width value, 32-bit bitwise OR operations are
performed between 32-bit narrow-width value (i.e., D7) and
32-bit duplicated data (i.e., duplicated D7). After the bitwise
OR operations, the 32-bit bitwise OR result is stored in the
location of the original 32-bit narrow-width value in the 512-
bit restored data, while the upper 32-bit location of the
original 32-bit narrow-width value is filled with zeros.
Meanwhile, when ‘1’→‘0’ errors occur in the same bit
position between the original and duplicated data, or ‘0’→‘1’
errors occur (which is expected to be very rare), they cannot
be corrected by the bitwise OR operations. In this case, each
128-bit of the 512-bit data is corrected by the
BCH(137,128,1) in the ECC decoder, as shown in the last
process (i.e., rightmost in Fig. 5).

IV. EVALUATION

A. Experimental Environment

We evaluate Twin ECC in terms of DRAM reliability,
performance, and area/power overhead, compared to the
baseline (ECC DIMM with BCH(72,64,1)), BCH(573,512,6),

and Stealth ECC (which adopts bitwise interleaving) [10].
We conduct our evaluations with nineteen workloads from
SPEC CPU 2017 [3] and PARSEC [1] benchmark suites.
Specifically, in case of the single-threaded SPEC benchmark
suite, we run each workload with a single thread. In case of
the PARSEC multi-threaded benchmark suite, we run each
workload with four threads to consider the impact of atomic
memory operations and thread synchronization. For each
simulation, we fast-forward the first 10 billion instructions
and then execute 1 billion instructions. We use Faultsim [13],
a configurable memory-reliability simulator, to compare the
reliability based on real-world failure statistics for DRAM
devices. Considering the asymmetric error behavior of true-
cell regions, we set the portion of ‘1’→‘0’ DRAM error as
100%, 90%, and 80%. To evaluate the system failure
probability (i.e., the probability of an uncorrectable error in
the system), we perform Monte-Carlo simulations for a 7-
year period with 10 million iterations. For performance
evaluation, we calculate the decoding latency of BCH codes
by exploiting Strukov’s model [15]. Based on the Strukov’s
model, the decoding latency of BCH codes employed by
Twin ECC is 6 cycles. In the case of Twin ECC, we also
extract the latency of additional hardware components (e.g.,
bitwise de-interleaver, bitwise operator, data deduplicator,
etc.) by implementing the hardware components in Verilog
HDL and then synthesizing them at 3GHz frequency using
the Synopsys Design Compiler with SAED 14nm FinFET
process technology [12]. According to the synthesis results,
one cycle is enough to execute the bitwise de-interleaver,
bitwise OR operator, and data deduplicator (explained in
Section III-C). We reflect the estimated latency (7 cycles = 6
+ 1) to the gem5 simulator [2]. The detailed system
parameters for performance evaluation are described in Table
II. In addition, we analyze the area and power consumption
of Twin ECC based on the synthesis result.

B. Reliability Evaluation

Fig. 7 compares the system failure probability across
nineteen workloads. When the portion of ‘1’→‘0’ error is
100/90/80%, Twin ECC reduces the average system failure
probability by 64.8/56.9/49.5%, 50.3/39.2/28.8%, and
31.9/16.7/2.5% compared to the baseline, BCH(573,512,6),
and Stealth ECC [10], respectively, due to the following
reasons. First, Twin ECC provides multi-bit (up to 64-bit)
correction capability for zero, narrow-width, and same values,

*D, DP, F, FP, and DF denote data, data parity, flag, flag parity, and decoded flag, respectively.

Fig. 5. Decoding process of our proposed Twin ECC. Red dotted boxes indicate the data exploited in the next process.

TABLE II. CONFIGURATION PARAMETERS

Parameter Configuration

Processor 4 cores; out-of-order; x86; 3GHz

Cache
L1D/L1I: Private; 32KB; 8-way; 64B block

L2: Shared; 256KB; 16-way; 64B block

Memory

controller

Decoding latency including flag decoding and bitwise

interleaving (cycle):

Baseline* (3), BCH(573,512,6) (24),

Stealth ECC (10), Twin ECC (7)

Main memory DDR4-2400; x4 bus-width; 18 chips; 16GB

*Note our baseline is ECC DIMM with BCH(72,64,1).

Fig. 6. Bitwise OR operations and data deduplication process for each data
type.

D0 (Zero value) OR result of D1 DP

D2 (Zero value) OR result of D3 DP

D4 (Zero value)
OR result

of D5H

OR result
of D5L

DP

D6 (Zero value) 32’b0
OR result

of D7
DP

143 79 15 6 2 0 140 76 12 3 0 136 72 8 0 127 63 0

FP 00

Duplicated D1 D1 (Full-width value) DP F FP

Duplicated D3 D3 (Full-width value) DP F FP

D4 (Zero value)
D5H (Same

value)
D5L (Same

value)
DP F FP

D6 (Zero value)
Duplicated

D7
DP F

D7 (Narrow-

width value)

Duplicated D1 D1 (Full-width value) DP DF

Duplicated D3 D3 (Full-width value) DP DF

D4 (Zero value)
D5H (Same

value)
D5L (Same

value)
DP DF

D6 (Zero value)
Duplicated

D7
DP DF

D7 (Narrow-

width value)
00FP

D0 (Zero value) D1 (Full-width value)

D2 (Zero value) D3 (Full-width value)

D4 (Zero value)
D5H (Same

value)
D5L (Same

value)

D6 (Zero value) 32’b0

{Restored data (512-bit), DP (36-bit)}
(548-bit)

{Encoded data (512-bit), DP (36-bit), DF (16-bit)}
(564-bit)

Decoded data
(512-bit)

{Encoded data (512-bit), DP (36-bit),
F (16-bit), FP (10-bit), 2’b00}

(576-bit)

D7 (Narrow-

width value)

Data type Bitwise OR operation & data deduplication process

(i) Full-width
value

(ii) Same value

(iii) Narrow-
width value

Duplicated D1 D1 (Full-width value) OR64

127 63 0
64

64
D0 (Zero value) OR result of D1

127 63 0

Duplicated D3 D3 (Full-width value) OR64

127 63 0
64

64
D2 (Zero value) OR result of D3

127 63 0

D4 (Zero value)
D5H (Same

value) OR32

127 63 0
32

32
D4 (Zero value)

OR result
of D5H

127 63 0

D5L (Same
value)

OR result
of D5L

31

D6 (Zero value)
Duplicated

D7
OR32

127 63 0
32

32
D4 (Zero value) 32’b0

127 63 0

D7 (Narrow-

width value)

31

OR result
of D7

!

!

while the baseline provides only 1-bit correction capability
for each 64-bit data. Second, Twin ECC provides stronger
error resilience than BCH(573,512,6) and Stealth ECC in
most workloads, since Twin ECC is capable of correcting
20-bit per a 512-bit data, on average, in our simulation;
BCH(573,512,6) and Stealth ECC correct average 6-bit and
14-bit per a 512-bit data, respectively. Hence, as the
proportion of data types for duplication (i.e., zero, narrow-
width, and same values) increases, Twin ECC further
reduces the system failure probability. For example, as
shown in Fig. 7, in the case of deepsjeng, gcc, leela, and
canneal, Twin ECC leads to much lower system failure
probability than the other ECC schemes, since the proportion
of data types for duplication is higher (more than 70%).
However, as the proportion of data types for duplication
decreases, Twin ECC gets less efficient for system failure
reduction than BCH(573,512,6), leading to higher system
failure probability. For example, in the case of nab and lbm
(the two leftmost workloads in Fig. 7), Twin ECC still shows
lower system failure probability than baseline and Stealth
ECC, but higher system failure probability than
BCH(573,512,6). However, BCH(573,512,6) has 3.4x longer
decoding latency compared to Twin ECC, causing worse
system performance (will be described in the next
subsection).

To verify the effectiveness of Twin ECC, we evaluate
average correction coverage for each data type across
nineteen workloads shown in Table III; the correction
coverage is ratio of error tolerance (the higher the better) for
each data type in our simulation. In case of the zero and
narrow-width values, Stealth ECC shows high correction
coverage, since it adopts a strong BCH code with bitwise
interleaved mapping method. Twin ECC also shows higher
correction coverage through the bitwise OR operations and
BCH(137,128,1). In case of the same and full-width values,
since Stealth ECC employs the baseline or BCH(137,128,1),
it shows lower correction coverage than the baseline. On the
other hand, Twin ECC provides high correction coverage for
the same values by performing bitwise OR operations
between upper 32-bit same values and the lower 32-bit same
values. Moreover, for full-width values, Twin ECC shows
higher correction coverage compared to the other ECC
schemes by exploiting a considerable portion of zero values
as a redundant space. Accordingly, though Twin ECC adopts
the BCH(137,128,1) with lower correction coverage than the
baseline, it provides higher reliability by exploiting the
bitwise OR operations with data duplication.

C. Performance Evaluation

Fig. 8 shows the normalized execution time of Twin ECC
and the other ECC schemes across nineteen workloads. Twin
ECC shows the performance overhead by only 0.7%, on
average, compared to the baseline. Typically, the decoding

latency rather than the encoding latency more affects the
system performance. In the decoding process, Twin ECC
with the bitwise OR operation, BCH(137,128,1), and
BCH(13,8,1) is much simpler than the strong ECCs. As
shown in Table II, Twin ECC needs 7 cycles for decoding
latency for BCH codes and additional hardware components.
In contrast, BCH(573,512,6) and Stealth ECC needs 24
cycles and 10 cycles for decoding latency, which incurs
performance overhead by average 4.0% and 1.3%,
respectively.

D. Area and Power Analysis

As shown in Table IV, the area and power consumption
of Twin ECC are 0.017mm2 and 2.38mW, respectively.
Though the area of Twin ECC is larger than the area of
baseline and Stealth ECC, the hardware components of Twin
ECC incur negligible area overhead (i.e., 0.25%) compared
to the memory controller area (i.e., 6.9mm2) of a state-of-the-
art server CPU [19]. Furthermore, the power consumption of
Twin ECC is small compared to the thermal design power
(i.e., 205W) of the state-of-the-art server CPU [19].

V. RELATED WORK

Various previous studies have presented ECC schemes to
enhance DRAM reliability. Among them, we describe the
previous studies that provided Chipkill-level or near
Chipkill-level ECC schemes, as shown in Table V. Kim et al.
proposed Bamboo ECC which employs vertical RS code to
protect any single DRAM chip failure at cache line
granularity [6]. Kim et al. also proposed Frugal ECC, a
compression-based ECC scheme, which is tolerable to a

Fig. 8. Normalized execution time depending on ECC schemes.

TABLE III. COMPARISON OF CORRECTION COVERAGE FOR EACH DATA

TYPE

ECC

scheme
Baseline

BCH

(573,512,6)

Stealth

ECC [10]

Twin

ECC

(80%)

Twin

ECC

(90%)

Twin

ECC

(100%)

Zero value 48.41% 59.65% 99.58% 89.71% 94.73% 99.92%

Narrow-

width value
48.17% 59.29% 99.5% 90.32% 95.76% 99.95%

Same value 48.08% 59.27% 46.82% 89.13% 94.21% 99.79%

 Full-width

value
47.63% 59.18% 46.36% 58.29% 59.63% 61.03%

Fig. 7. System failure probability depending on ECC schemes.

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

N
o
rm

al
iz

ed
 e

x
ec

u
ti

o
n
 t

im
e

Baseline BCH(573,512,6) Stealth ECC Twin ECC

0

0.01

0.02

0.03

0.04

S
y
st

em
 f

ai
lu

re
 p

ro
b

ab
il

it
y

in
 7

 y
ea

rs
Baseline BCH(573,512,6) Stealth ECC
Twin ECC w/o bitwise interleaving (80%) Twin ECC w/o bitwise interleaving (90%) Twin ECC w/o bitwise interleaving (100%)
Twin ECC w/ bitwise interleaving (80%) Twin ECC w/ bitwise interleaving(90%) Twin ECC w/ bitwise interleaving (100%)

!

!

single DRAM chip error by exploiting RS code [7]. Though
Bamboo ECC [6] and Frugal ECC [7] provide DRAM chip
error resilience, they incur performance overhead by average
19.3% and 21.4%, respectively. In addition, Frugal ECC
causes storage overhead by 12.0%, since it exploits extra
memory space to store parity bits in case of compression
failure. Chen et al. presented CARE, which exploits a 6-bit
correctable BCH code with operating system (OS) support
[4]. CARE tries to mitigate the storage overhead in DRAM
by employing a cache-like structure (i.e., ECC cache) to
store the parity bits of the BCH code. Based on the
observation that initially correctable errors are converted into
uncorrectable errors later, CARE corrects the errors through
the ECC cache, and then retires the memory page. Though
CARE enhances DRAM reliability thanks to the page
retirement techniques, it causes average 10.0% performance
overhead in error-dominant cases; in nearly error-free cases,
CARE incurs about 1.0% performance overhead. Lee et al.
proposed Stealth ECC, a data-width aware adaptive ECC
scheme, which provides near Chipkill-level reliability by
employing a narrow-width value feature [10]. Stealth ECC
applies the BCH(51,32,3) to the meaningful part of narrow-
width values by exploiting the meaningless zeros as a storage
space for the parity bits. However, since Stealth ECC adopts
weak BCH codes (i.e., BCH(72,64,1) or BCH(137,128,1))
for full-width values, it may have worse reliability than the
baseline (i.e., BCH(72,64,1)) for full-width values. On the
other hand, Twin ECC provides strong protection for the
full-width values by exploiting the bitwise OR operations
with data duplication as well as BCH(137,128,1). Moreover,
since the next-generation DRAM (e.g., DDR5 [20]) supports
a mode that increases the memory burst length to 1024-bit
rather than 512-bit, it is possible to duplicate more full-width
values into the redundant space.

VI. CONCLUSION

We propose Twin ECC, a low-cost memory protection
scheme which employs data duplication and ECCs to provide
strong error resilience. To duplicate data without any storage
overhead in an ECC DIMM, Twin ECC exploits meaningless
zeros as a redundant space for meaningful data, within a 512-
bit data. Since ‘1’→‘0’ error pattern is dominant in DRAM
cells, Twin ECC performs bitwise OR operations between
the original meaningful data and duplicated data. After the
bitwise OR operations, Twin ECC adopts the
BCH(137,128,1) for further error resilience. Consequently,
when the portion of ‘1’→‘0’ error is 100/90/80%, Twin ECC
enhances the DRAM reliability by (64.8/56.9/49.5%),
(50.3/39.2/28.8%), and (31.9/16.7/2.5%) compared to the
baseline BCH(72,64,1), BCH(573,512,6), and Stealth ECC,
respectively. Furthermore, Twin ECC incurs negligible
performance overhead (0.7%, on average) and no storage
overhead, compared to the baseline ECC DIMM with
BCH(72,64,1). Though our proposed Twin ECC is based on
true-cell regions in this paper, Twin ECC is applicable to
anti-cell regions as well. Since ‘0’→‘1’ error pattern is
dominant in anti-cell regions, it is possible to provide strong
error resilience by performing bitwise AND operations
between the original meaningful data and duplicated data.

ACKNOWLEDGMENT

This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea
government (MSIT) (No. 2020R1A2C2003500), Institute of
Information & Communications Technology Planning &
Evaluation (IITP) grant funded by the Korea government
(MSIT) (No. 2022-0-00441-001, Memory-Centric Architecture
Using the Reconfigurable PIM Devices), and Samsung
Electronics. We would like to thank Prof. Jung Ho Ahn for
providing helpful insights. Sung Woo Chung and Young-Ho
Gong are the co-corresponding authors of this paper.

REFERENCES

[1] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC
benchmark suite: Characterization and architectural implications,” in
PACT, 2008.

[2] N. Binkert et al., “The gem5 simulator,” ACM SIGARCH Computer
Architecture News, vol. 39, no. 2, pp. 1-8, 2011.

[3] J. Bucek, K.-D. Lange, and J. Kistowski, “SPEC CPU2017: Next-
generation compute benchmark,” in ICPE, 2018.

[4] J. Chen et al., “CARE: Coordinated augmentation for elastic
resilience on DRAM errors in data centers,” in HPCA, 2021.

[5] A. Fakhzadehgan et al., “Safeguard: Reducing the security risk from
Row-Hammer via low-cost integrity protection,” in HPCA, 2022.

[6] J. Kim, M. Sullivan, and M. Erez, “Bamboo ECC: Strong, safe, and
flexible codes for reliable computer memory,” in HPCA, 2015.

[7] J. Kim, M. Sullivan, S.-L. Gong, and M. Erez, “Frugal ECC: Efficient
and versatile memory error protection through fine-grained
compression,” in SC, 2015.

[8] Y. Kim et al., “Flipping bits in memory without accessing them: An
experimental study of DRAM disturbance errors,” in ISCA, 2014.

[9] K. Kraft et al., “Improving the error behavior of DRAM by exploiting
its Z-channel property,” in DATE, 2018.

[10] Y. S. Lee, G. Koo, Y.-H. Gong, and S. W. Chung, “Stealth ECC: A
data-width aware adaptive ECC scheme for DRAM error resilience,”
in DATE, 2022.

[11] S. Liu et al., “Exploiting asymmetry in eDRAM errors for
redundancy-free error-tolerant design,” IEEE Transactions on
Emerging Topics in Computing, vol. 9, no. 4, pp. 2064-2075, 2021.

[12] V. Melikyan et al., “14nm educational design kit: Capabilities
deployment and future,” Small Systems Simulation Symposium, 2018.

[13] P. J. Nair, D. A. Roberts, and M. K. Qureshi, “Faultsim: A fast,
configurable memory-reliability simulator for conventional and 3D-
stacked systems,” ACM Transactions on Architecture and
Optimization, vol. 12, no. 4, pp. 1-24, 2016.

[14] B. Narasimham and W. K. Luk, “A multi-bit error detection scheme
for DRAM using partial sums with parallel counters,” in IEEE
International Symposium on Reliability Physics, 2008.

[15] D. Strukov, “The area and latency tradeoffs of binary bit-parallel
BCH decoders for prospective nanoelectronic memories,” Fourtieth
Asilomar Conference on Signals, Systems and Computers, 2006.

[16] S. Wang et al., “Content aware refresh: Exploiting the asymmetry of
DRAM retention errors to reduce the refresh frequency of less
vulnerable data,” IEEE Transactions on Computers, vol. 68, no. 3,
pp.362-374, 2019.

[17] X.-C. Wu et al., “Protecting page tables from RowHammer attacks
using monotonic pointers in DRAM true-cells,” in ASPLOS, 2019.

[18] Advanced Micro Devices, “BIOS and kernel developer’s guide
(BKDG) for AMD family 15h models 00h-0fh processors,” 2013.

[19] Intel, “Intel® Xeon® Gold 6338 Processor,” 2021. [Available]:
https://ark.intel.com/content/www/us/en/ark/products/212285/intel-
xeon-gold-6338-processor-48m-cache-2-00-ghz.html.

[20] JEDEC, “DDR5 SDRAM,” 2020.

TABLE IV. AREA AND POWER COMPARISON

ECC

scheme
Baseline BCH(573,512,6)

Stealth

ECC [10]

Twin ECC

(This work)

Area
0.001mm2 0.08mm2 0.01mm2 0.017mm2

Power* 0.58mW 9.26mW 1.63mW 2.38mW

*The sum of dynamic power and leakage power

TABLE V. COMPARISON BETWEEN RELATED WORK WITH TWIN ECC

ECC scheme

Chipkill-level Near Chipkill-level

Bamboo

ECC [6]

Frugal

ECC [7]
CARE [4]

Stealth

ECC [10]

Twin ECC

(This work)

Storage overhead

(vs. BCH(72,64,1))
0% 12.0% 0%a 0% 0%

Avg. perf. overhead
(vs. BCH(72,64,1))

19.3% 21.4% ~10.0%b 1.3% 0.7%

OS support No No Needed No No
a It additionally requires a 56KB ECC cache per 8GB DRAM.

b It depends on whether the memory page is retired or not.

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

