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Abstract—Optimizing the efficiency of neural networks is cru-
cial for ubiquitous machine learning on the edge. However, it
requires specialized expertise to account for the wide variety of
applications, edge devices, and deployment scenarios. An attrac-
tive approach to mitigate this bottleneck is Neural Architecture
Search (NAS), as it allows for optimizing networks for both
efficiency and task performance. This work shows that includ-
ing hyperparameter optimization for training-related parameters
alongside NAS enables substantial improvements in efficiency and
task performance on a predictive maintenance task. Furthermore,
this work extends the combination of NAS and hyperparameter
optimization with INT8 quantization to enhance efficiency further.
Our combined approach, which we refer to as Quantization-Aware
NAS (QA-NAS), allows for further improvements in efficiency on
the predictive maintenance task. Consequently, our work shows
that QA-NAS is a promising research direction for optimizing
neural networks for deployment on resource-constrained edge
devices in industrial applications.

I. INTRODUCTION

The overwhelming success of neural networks (NNs) has
led to an increasing demand for their deployment on resource-
constrained edge devices. Consequently, optimizing their ef-
ficiency has become crucial for many deployment scenarios.
A popular approach for optimizing the task performance and
efficiency of a network architecture of interest, henceforth
called the seed network, is Neural Architecture Search (NAS).
After defining a search space with variations of the seed
network, NAS aims to find architectures with optimal trade-
offs between task performance and efficiency.

Various approaches exist besides NAS for optimizing the task
performance and efficiency of NNs, such as hyperparameter
optimization (HPO) for training-related parameters and quanti-
zation. While HPO for training-related parameters optimizes
their task performance by altering their training procedure,
quantization optimizes their efficiency by reducing their nu-
merical precision. Typically, these three approaches are treated
in isolation. However, they all play a relevant, intertwined, and
potentially conflicting role in optimizing NNs.

This work proposes two easy-to-integrate extensions of NAS
based on HPO and quantization that enhance task performance
and efficiency. Specifically, the contributions of this work are

• a comparison of NAS with and without HPO for training-
related parameters, demonstrating that extending NAS
with HPO enables substantial improvements in both task
performance and efficiency,

• a straightforward and effective approach for model com-
pression that extends NAS and HPO with quantization,
which we refer to as Quantization-Aware NAS (QA-NAS)
with HPO,

• and a comparison of NAS with HPO and QA-NAS with
HPO, demonstrating the added benefit of QA-NAS as it
further enhances efficiency.

II. NAS WITH HYPERPARAMETER OPTIMIZATION

We demonstrate that HPO for training-related parameters
allows for further improvement upon NAS by applying NAS
with and without HPO for two different seed networks on a
popular predictive maintenance task, namely the NASA Turbo-
fan Jet Engine dataset [3]. We use a Long Short-Term Memory
(LSTM) [1] and Temporal Convolutional Network (TCN) [2]
as seed networks. For evaluating the task performance of each
network candidate (trial), we use the Mean Absolute Error
(MAE) because the dataset consists of a regression task in
which the objective is to predict the number of remaining cycles
until engine failure. Additionally, we use the model size as the
efficiency metric. This metric acts as a secondary objective next
to task performance. For HPO, we include the learning rate
and its scheduler, optimizer, initialization, and regularization.
Lastly, we run NAS for 100 trials with 100 epochs per trial with
both random search (RS) and Bayesian optimization (BO).

Comparisons of the Pareto-optimal networks found by ap-
plying NAS with and without HPO to the LSTM and TCN
seed network are shown in Fig. 1. First, the Pareto-dominance
shown by NAS with HPO using RS, abbreviated “NAS & HPO
(RS)”, compared to NAS without HPO using RS, abbreviated
“NAS (RS)”, indicates the importance of the training paradigm
when using NAS for model compression. Secondly, the overall
Pareto-dominance shown by NAS with HPO using BO, abbre-
viated “NAS & HPO (BO)”, indicates the significance of a
sophisticated search strategy in the search space extended by
HPO. For instance, NAS & HPO (BO) finds a network ∼13×
smaller than NAS (RS) with ∼40% improved MAE (Fig. 1a),
which can be essential for deployment on edge devices.

III. QUANTIZATION-AWARE NAS

Although NAS with HPO has shown strong results in Sec-
tion II, edge devices can further benefit from INT8 format
for deployment. To that end, we extend the combination of
NAS and HPO with INT8 quantization, which we refer to
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Fig. 1: The Pareto curves found by NAS with and without
HPO for training-related parameters for the LSTM and TCN
seed network on the NASA Turbofan Jet engine dataset.

as QA-NAS with HPO. We demonstrate the added benefit
of QA-NAS with HPO over NAS with HPO by applying
both approaches to the LSTM and TCN seed networks. For
QA-NAS, we perform INT8 quantization for the weights and
activations with per-channel min-max quantization, which is
the standard quantization strategy in TFLite [4].

Comparisons of the Pareto-optimal networks found by ap-
plying NAS with HPO and QA-NAS with HPO for both RS
and BO are shown in Fig. 2. First, these comparisons highlight
the added benefit of QA-NAS over NAS as significantly smaller
networks can be found with equivalent MAE across all sampled
regions for both the LSTM and TCN. For instance, QA-NAS
& HPO (BO) finds a network ∼3× smaller than NAS & HPO
(BO). However, this finding does not hold for LSTMs larger
than ∼1.25 kB. These larger FP32 networks may outperform
quantized networks in both size and MAE. Despite quantization
being more challenging in this case, QA-NAS & HPO (BO)
still outperforms NAS & HPO (BO) for networks smaller
than ∼1.25 kB. Noteworthy, QA-NAS & HPO (RS) does not
showcase similar behavior. As suggested by our results, a more
sophisticated search strategy that considers performance (e.g.,
BO) may help avoid network configurations that are challenging
to quantize, thereby likely leading to improved performance.

IV. CONCLUSION

Optimizing the efficiency of NNs is crucial for ubiquitous
machine learning on the edge. A popular approach to optimize
efficiency is to search for more efficient network variants

Fig. 2: The Pareto curves found by NAS with HPO and QA-
NAS with HPO through random search (RS) and Bayesian
optimization (BO) for the LSTM and TCN seed network on
the NASA Turbofan Jet Engine dataset.

through NAS. This work has shown that extending NAS with
HPO for training-related parameters can enable substantial
improvements in efficiency and task performance, as validated
on an industrial predictive maintenance task.

Furthermore, we have extended NAS and HPO with INT8
quantization, which we refer to as QA-NAS with HPO. Our
results on the predictive maintenance task demonstrate that
this extension can enable further improvements in efficiency.
Consequently, this work has laid out a straightforward and
effective approach for further enhancing task performance and
efficiency. Despite the surprisingly little attention this approach
has received from the research community, our results demon-
strate that it can lead to vast improvements in task performance
and efficiency. Therefore, we strongly encourage future work
in this direction to further boost industry-wide adoption of
efficient NNs for resource-constrained edge devices.
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