
On the Degree of Parallelism in Real-Time
Scheduling of DAG Tasks

Qingqiang He1, Nan Guan2, Mingsong Lv1,3, Zonghua Gu4

1The Hong Kong Polytechnic University, China 2City University of Hong Kong, China
3Northeastern University, China 4Umea University, Sweden

Abstract—Real-time scheduling and analysis of parallel tasks
modeled as directed acyclic graphs (DAG) have been intensively
studied in recent years. The degree of parallelism of DAG tasks is
an important characterization in scheduling. This paper revisits
the definition and the computing algorithms for the degree of
parallelism of DAG tasks, and clarifies some misunderstandings
regarding the degree of parallelism which exist in real-time
literature. Based on the degree of the parallelism, we propose
a real-time scheduling approach for DAG tasks, which is quite
simple but rather effective and outperforms the state-of-the-art
by a considerable margin.

I. INTRODUCTION

Multi-cores are becoming the mainstream of real-time systems
for performance and energy efficiency. Real-time applications
must be parallelized to fully utilize the power of multi-cores.
Many parallel applications can be represented as directed acyclic
graph (DAG) tasks to model the dependency and parallelism
within these applications [1], [2]. Real-time analysis of DAG
tasks has gained much attention in recent years [3]–[7].

One of the important characterizations of a DAG task is the
degree of parallelism which, intuitively, measures how much the
task can execute concurrently. In this paper, we want to employ
the degree of parallelism to improve the system schedulability in
real-time scheduling of DAG tasks. However, the exact definition
and the computing algorithm of the degree of parallelism have
been long eluding the researchers in real-time community. Some
works (e.g, [8]) successfully identify the definition of the degree
of parallelism for simple parallel task graphs (e.g., the gang
task model [8] or the fork-join task model [9]). Some works
(e.g, [10]) use the degree of parallelism of DAG tasks vaguely
without defining and providing algorithms to compute it. Some
works (e.g, [11]) give a primitive definition of the degree of
parallelism but mistakenly believe that this problem cannot
be computed in polynomial time. See Section II for a detailed
discussion of the status quo concerning the degree of parallelism
in real-time area. This paper revisits the definition of the degree
of parallelism for a DAG task by relating it to the width of a
partially ordered set (poset) [12] (Section IV-A), and clarifies
some misunderstandings in real-time literature (Section IV-B).

Based on the degree of the parallelism, this paper proposes
a real-time scheduling approach for DAG tasks (Section V).
First, we present a response time bound for a DAG task under
work-conserving scheduling by minimally decomposing the

This work is partially supported by Research Grants Council of Hong Kong
(GRF 11208522, 15206221).

DAG into disjoint parallel chains. Different from the traditional
critical-path based analysis (such as [4], [6], [13]) where vertices
not in the longest path cannot execute in parallel with the
longest path, in our analysis, these disjoint chains can execute in
parallel with each other, thus reducing the response time bound
and improving system schedulability. Second, we propose an
algorithm to schedule multiple DAG tasks under the federated
scheduling paradigm. Third, to further reduce the proposed
response time bound and enhance system schedulability, we
improve an existing algorithm to compute the minimum chain
decomposition by jointly utilizing the information of topology
and the WCET of vertices. Our approach is simple but rather
effective, outperforming the state-of-the-art by 18.6% on average
and 83.1% at the maximum.

II. RELATED WORK

For the degree of parallelism in real-time scheduling of
parallel task graphs, the definition of the degree of parallelism
for the gang task model is given as “the number of concurrent
processors needed to execute any job released by the gang task”
[8]. In the fork-join task model [9], the “parallelism” is defined
as the number of threads in each parallel segment [14]. Since
the structure of the gang or fork-join task model is simple,
the definition and computation of the degree of parallelism are
straightforward. For the DAG task model, [15] mentioned the
degree of parallelism, but did not illustrate its meaning. [16]
defined the degree of parallelism by an equation to facilitate the
design of their scheduling algorithm, where the meaning of the
degree of parallelism is the ratio between the total workload
and the length of the longest path and adding a parameter.
[17] used the degree of parallelism to refer to parameters for
generating DAG tasks, where the degree of parallelism means
the number of successors for a vertex in the DAG task. In [18],
the degree of parallelism means the number of parallel threads.
[19] mentioned that “the maximal number of eligible vertices is
bounded by the parallelism of the task graph”, but it is not clear
what “the parallelism of the task graph” exactly means and
how it can be computed. [10] discussed the “parallelism” or the
“parallel degree” of DAG tasks to design real-time scheduling
algorithms, the meaning of which vaguely refers to the number
of concurrently executed vertices at different times during the
execution of the DAG task. [11] pointed out that computing the
degree of parallelism is “identifying the largest set of subtasks
that can execute concurrently”. However, they deemed that this
problem is NP-hard and turned to study a restricted version of

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

1 6 13

8
0v

1v

2v

3v
4v 5v

13

Fig. 1. Illustration of the DAG task model.

DAG called “nested fork-join DAG”. All of the above-mentioned
literature tried to use the term “degree of parallelism” to measure
how the task can execute concurrently. But different of them
refer to similar but different things.

For real-time scheduling of DAG tasks, existing approaches
can be categorized into three major paradigms: decomposition-
based scheduling [20], global scheduling [3], [21], federated
scheduling [4]. The closely related approach to this work
is federated scheduling where each DAG task is scheduled
independently on a set of dedicated processors. Federated
scheduling was generalized to constrained deadline tasks [5],
arbitrary deadline tasks [22], and conditional DAG tasks [23]. To
address the resource-wasting problem in federated scheduling,
a series of federated-based scheduling algorithms [6], [7], [13],
[24] were proposed.

III. TASK MODEL

A parallel real-time task is modeled as a DAG G = (V,E),
where V is the set of vertices and E ⊆ V ×V is the set of edges.
Each vertex v ∈ V represents a piece of sequentially executed
workload with worst-case execution time (WCET) c(v). An
edge (vi, vj) ∈ E represents the precedence relation between vi
and vj , i.e., vj can start execution only after vertex vi finishes
its execution. A path λ = (π0, · · · , πk) is a set of vertices such
that ∀i ∈ [0, k − 1] : (πi, πi+1) ∈ E. The length of a path λ is
defined as len(λ) :=

∑
πi∈λ c(πi). The longest path is a path

with largest len(λ) among all paths in G, and we use len(G) to
denote the length of the longest path. For any vertex set V ′ ⊂ V ,
vol(V ′) :=

∑
v∈V ′ c(v). The volume of G is the total workload

in the DAG task, defined as vol(G) := vol(V) =
∑
v∈V c(v).

If there is an edge (u, v) ∈ E, u is a predecessor of v, and v
is a successor of u. If there is a path in G from u to v, u is
an ancestor of v and v is a descendant of u. We use pre(v),
suc(v), anc(v) and des(v) to denote the set of predecessors,
successors, ancestors and descendants of v, respectively. Fig. 1
shows an example DAG G where the number inside vertices is
the WCET. For this DAG, len(G) = 16, vol(G) = 32.

IV. DEGREE OF PARALLELISM

This section introduces the degree of parallelism for DAG
tasks. The concept of degree of parallelism has long existed
in the literature concerning real-time scheduling [8]–[11], [14]–
[19]. However, these works only mention it in a primitive or
vague manner. Intuitively, the degree of parallelism should mean
the maximum number of vertices that can run in parallel or the
minimum number of cores (or processors) such that no vertices
can be blocked. A DAG is a poset (partially ordered set) and
the degree of parallelism for a DAG is actually the width of a
poset, which corresponds to the maximum number of mutually

incomparable elements in the poset. In this section, we illustrate
this concept under the context of DAG tasks.

A. Definition

This subsection presents the precise definition of the degree of
parallelism for DAG tasks. For two distinct vertices u, v, we say
that u is parallel to v if and only if u /∈ anc(v) ∧ v /∈ anc(u).
For example, in Fig. 1, v1 is parallel to v2.

Definition 1 (Antichain [25]). An antichain is a set of vertices
such that any two distinct vertices in this antichain are parallel
to each other. In particular, a vertex set containing only one
vertex is an antichain.

For example, in Fig. 1, {v1, v2, v3} is an antichain. The size
of an antichain is the number of vertices in this antichain.

Definition 2 (Chain [25]). A chain γ = (π0, · · · , πk) is a set
of vertices such that ∀i ∈ [0, k − 1], πi is an ancestor of πi+1.
In particular, a vertex set containing only one vertex is a chain.

For example, in Fig. 1, (v0, v2, v5) is a chain. In contrast to
antichain, any two distinct vertices in a chain are not parallel
to each other.

Definition 3 (Chain Decomposition). A chain decomposition
σ is a partition of the vertex set V of the DAG task G into
disjoint chains.

The size of a chain decomposition σ is the number of chains
in this chain decomposition. A minimum chain decomposition
is a chain decomposition with the minimum size. For example,
in Fig. 1, {(v0, v3), (v2, v4), (v1, v5)} is a chain decomposition
and the size of this chain decomposition is 3.

Theorem 1 (Dilworth’s Theorem [26]). For a DAG task G, the
maximum size of antichains of G is the same as the minimum
size of chain decompositions of G.

Since the maximum size of antichains and the minimum size
of chain decompositions are the same by Dilworth’s theorem,
the degree of parallelism for a DAG task is given as follows.

Definition 4 (Degree of Parallelism [12]). For a DAG task G,
the degree of parallelism is defined as the maximum size of
antichains of G or the minimum size of chain decompositions
of G.

For example, for the DAG task in Fig. 1, the degree of
parallelism is 3. The definition of the degree of parallelism
for the gang task model in [8] and the definition for the fork-
join task model in [14] are consistent with Definition 4 (note
that gang tasks and fork-join tasks are simplified versions of
DAG tasks). A DAG is a poset and a poset can also be viewed
as a DAG. So the concepts introduced in this subsection are
also applicable to poset. Actually Definition 4 is exactly the
definition of the width for a poset [12].

B. Clarification

Concerning the concept of the degree of parallelism, this
subsection clarifies some misunderstandings that exist in real-
time literature.

!

!

Clarification on Complexity. [11] claims that computing the
degree of parallelism for a DAG is NP-hard. [11] states that
computing the degree of parallelism consists in “identifying the
largest set of subtasks that can execute concurrently”, which
is the same as Definition 4. [11] continues observing that the
complexity of computing the degree of parallelism for a DAG
is “therefore equivalent to the problem known as the maximum
independent set problem in graph theory”, which is not true.
Even if the degree of parallelism for a DAG can be reduced
to the maximum independent set problem in a graph, since
DAG is a restricted case of graph, the fact that the maximum
independent set problem in a graph is NP-hard does not imply
that computing the degree of parallelism for a DAG is NP-hard.

In fact, by Definition 4, the degree of parallelism for a DAG is
the width of a poset. And the width of a poset can be computed
in polynomial time [27]–[29]. We summarize this fact into
Theorem 2.

Theorem 2. The problem of computing the degree of parallelism
for a DAG task is in P .

Clarification on Algorithm. [10] claims that the workload
distribution function in [11] can describe the “parallel degree”
of a DAG task. First, it is not clear in [10] what it means by
“parallel degree”. Second, the degree of parallelism can not
be computed by using the workload distribution function. The
workload distribution function in [11] is defined by (1) and (2).

f(v) := c(v) + max
u∈pre(v)

{f(u)} (1)

wd(t) :=
∑
v∈V

{
1, if t ∈ [f(v)− c(v), f(v))
0, otherwise

(2)

In (1), the finish time f(v) of each vertex is computed
assuming the DAG executes on an infinite number of cores.
Then for a time t, (2) computes the number of vertices that
execute in parallel at time t. The maximum value of a workload
distribution wd(t) is defined to be max{wd(t)}. For example,
the maximum value of the workload distribution for Fig. 1 is 3.

Theorem 3. For a DAG task, the maximum value of the
workload distribution in [11] is a lower bound on the degree
of parallelism.

Proof. Suppose that the maximum value is d and is reached
at time t. Therefore, at time t, the number of vertices that are
executing in parallel is d. These vertices constitute an antichain
of the DAG task, and the size of this antichain is d. By Definition
4, the degree of parallelism is the maximum size of antichains
of the DAG task, which is equal to or larger than d.

For the algorithms of computing the degree of parallelism for
a DAG, in [27], this problem is solved by partitioning the DAG
greedily into several initial chains, and reducing the number of
chains by finding the alternating sequences with time complexity
O(|V |3). [30] shows that this problem can be reduced to the
bipartite matching problem. The bipartite matching problem [31]
is solved by the Hopcroft-Karp algorithm in time O(|E|

√
|V |)

[32]. The bipartite matching problem can be treated as the graph

matching problem, thus solved by the blossom algorithm in time
O(|E||V |2) [33], or be treated as the maximum flow problem,
thus solved by the Ford-Fulkerson algorithm [34]. The bipartite
matching problem can also be solved by the alternating path
algorithm which is a simplified version of [33] and [34], and
has time complexity O(|V |3) (see [35] for details)

V. REAL-TIME SCHEDULING

This section presents the real-time scheduling approach of
DAG tasks based on the degree of parallelism.

A. Scheduling One Task

The DAG task is scheduled on a multi-core platform with
m identical cores. A vertex v is eligible if all its predecessors
have finished and thus v can immediately execute if there are
available cores. The DAG task is scheduled by any algorithm
that satisfies the work-conserving property, i.e., an eligible vertex
must be executed if there are available cores. Without loss of
generality, we assume the DAG task starts execution at time 0.
Next, we derive an upper bound on the response time R of the
DAG task G under work-conserving scheduling.

Given a minimum chain decomposition σ∗ of G (the compu-
tation of σ∗ will be discussed in Section V-C), we arbitrarily
select n number of chains from σ∗ such that n ≤ m. The set of
vertices that are in the selected n number of chains is denoted as
Vpr. Vsr := V \ Vpr. We partition the interval between the start
time of G and the finish time of G into two types of intervals.
• Isr: time interval during which ∃v ∈ vsr, v is executing;
• Ipr: time interval during which ∀v ∈ vsr, v is not

executing.
Note that a time interval is not necessarily continuous. For a
time interval I , we denote the length of this interval as |I|.

Lemma 1.
|Isr| ≤ vol(Vsr) (3)

Proof. Since the scheduling algorithm is work-conserving, by
the definition of Isr, (3) holds.

Lemma 2.
|Ipr| ≤ len(G) (4)

Proof. By the definition of Ipr, only vertices in Vpr can execute
in Ipr. Recall that there are n number of chains in Vpr,
which is no larger than the number of cores m. This means
that during Ipr, ∀v ∈ V , if vertex v is eligible, v will be
executed immediately on some core, since the scheduling is
work-conserving. Therefore, during Ipr, the execution of any
path of G is not delayed. If we assume |Ipr| > len(G), then
there must be a chain whose length is larger than the length of
the longest path of G, which is a contradiction. The conclusion
is reached.

Theorem 4. The response time R of the DAG G is bounded
by:

R ≤ len(G) + vol(Vsr) (5)

Proof. By the definitions of Isr and Ipr, we have R = |Ipr|+
|Isr|. By Lemma 1 and Lemma 2, the conclusion follows.

!

!

Corollary 1. If the DAG G with the degree of parallelism p is
scheduled by work-conserving scheduling on a platform with
the number of cores m ≥ p, the response time R of the DAG
is bounded by the length of the longest path of the DAG, i.e.,

R ≤ len(G) (6)

Proof. Let σ∗ be the minimum chain decomposition of G =
(V,E). By Definition 4, p equals the size of σ∗. Since p ≤ m, let
Vpr be the set of vertices that are in the p number of chains from
σ∗. Note that σ∗ is a chain decomposition of G, so Vpr = V .
Therefore, Vsr = V \ Vpr = ∅, which means vol(Vsr) = 0. By
(5), we reach the conclusion.

Corollary 1 shows that our bound in (5) perfectly degrades
to the bound in (6) for the special case of m ≥ p, which is a
well-established result in literature [9], [36].

B. Scheduling Multiple Tasks

In a task set, a sporadic parallel real-time task is represented
as (G,D, T) where G = (V,E) is the DAG; D is the relative
deadline; T is the period. We consider constrained deadline,
i.e., D ≤ T . We schedule the task set by the widely-used
federated scheduling [4], which is simple to implement and has
good guaranteed real-time performance. In the original federated
scheduling [4], each heavy task (tasks with vol(G) ≥ D) is
assigned and executed exclusively on m cores under a work-
conserving scheduler, where m is computed by (7).

m =

⌈
vol(G)− len(G)
D − len(G)

⌉
(7)

The correctness of (7) is proved in [4]. The light tasks (tasks
with vol(G) < D) are treated as sequential sporadic tasks and
are scheduled on the remaining cores by sequential scheduling
algorithms such as global EDF [37] or partitioned EDF [38].

In our scheduling approach, the number of cores m assigned
to each heavy task is computed by (8).

m = min

{
m′,

⌈
vol(G)− len(G)
D − len(G)

⌉}
(8)

where m′ is computed by Alg. 1.
In Alg. 1, the computation of the minimum chain decom-

position (γi)
p
1 will be discussed in Section V-C. (γi)

p
1 is the

compact representation of γ1, γ2, · · · , γp and p is the degree of
parallelism of the DAG task. In the for-loop, we use Theorem
4 to search for the minimum number of core m′ such that the
computed response time bound (Line 4) is no larger than the
deadline. The for-loop in Alg. 1 runs no more than p times,
which is bounded by |V |. If the number of cores assigned to a
heavy task is computed using (8), then the task will not miss its
deadline, which is a result of (7) and Theorem 4. The method
of scheduling light tasks is the same as [4].

C. Computing Minimum Chain Decomposition

This subsection discusses how to compute the minimum
chain decomposition required by Alg. 1. As stated in Section
IV-B, a minimum chain decomposition can be computed by
algorithms for the degree of parallelism or by solving the

Algorithm 1: Computing the Number of Cores
Input :G = (V,E); the deadline D; the minimum chain

decomposition (γi)
p
1 of G

Output : the number of cores m′

1 foreach n← p, p− 1, · · · , 1 do
2 Vpr ← the set of vertices that are in (γi)

n
1

3 Vsr ← V \ Vpr
4 if len(G) + vol(Vsr) ≤ D then
5 m′ ← n
6 else
7 break
8 end
9 end

bipartite matching problem. However, these existing algorithms
such as [27], [32]–[34] only consider the topology of the DAG,
not taking into account the WCET of vertices. For purpose of
solely computing the degree of parallelism (i.e., minimizing the
number of chains in a chain decomposition), the information of
topology is sufficient. However, in Alg. 1, we want that not only
the number of chains in this chain decomposition is minimized,
but also the volume of Vsr is minimized, such that the response
time bound in Theorem 4 is minimized and the number of cores
returned by Alg. 1 is minimized. Next, by jointly utilizing the
information of topology and the WCET of vertices, we propose
an approach that computes a minimum chain decomposition
such that vol(Vsr) is reduced as much as possible.

Our approach is presented in Alg. 3, which first reduces
this problem to bipartite matching by [30], second employs
the alternating path algorithm (see Section IV-B) to solve the
bipartite matching problem. [30] presents a reduction from
the problem of degree of parallelism to the bipartite matching
problem. [30] also describes the correspondence between a DAG
and a bipartite graph, and the correspondence between a chain
decomposition and a matching. A matching ϕ of a bipartite graph
BG is a set of edges such that no edge in ϕ shares a vertex with
any other edge in ϕ. A maximum matching is a matching with the
maximum cardinality. A maximum matching corresponds to a
minimum chain decomposition [30]. All Correspond procedures
in Alg. 3 can be found in [30]. Line 1 first converts the DAG
G into its corresponding bipartite graph BG. Line 2 calls Alg.
2 to compute a simple greedy chain decomposition σ. Alg. 2
iteratively computes a longest path of the DAG (Line 3), then
deducts this longest path from the DAG (Line 5) until there
are no vertices in the DAG (Line 2), thus yielding a chain
decomposition of the DAG. Line 4 of Alg. 2 ensures that there
are no common vertices among different chains of the chain
decomposition. Line 3 of Alg. 3 computes the corresponding
matching ϕ of σ. In Line 4, the alternating path algorithm
takes an initial matching ϕ as input, and outputs a maximum
matching ϕ∗. Line 5 computes the corresponding minimum
chain decomposition σ∗ of ϕ∗. The while-loop in Alg. 2 can
execute no more than |V | times. Since the alternating path
algorithm runs in time O(|V |3), the time complexity of Alg. 3
is also O(|V |3).

!

!

Algorithm 2: GreedyDecomposition(G)
Input : DAG G = (V,E)
Output : a chain decomposition (γi)

k
0

1 G′ ← G; i← 0
2 while vol(G′) 6= 0 do
3 γi ← the longest path of G′

4 γi ← γi \ {v ∈ γi|c(v) of G′ is 0}
5 for each vertex v ∈ γi, let c(v) of G′ be 0
6 i← i+ 1
7 end

Algorithm 3: Our Approach
Input : DAG G = (V,E)
Output : a minimum chain decomposition σ∗

1 BG← CorrespondBipartite(G)
2 σ ← GreedyDecomposition(G)
3 ϕ← CorrespondMatching(σ)
4 ϕ∗ ← BipartiteMatching(BG,ϕ)
5 σ∗ ← CorrespondDecomposition(ϕ∗)

For the input of the alternating path algorithm in Line 4, the
initial matching ϕ can trivially be ∅ or any other matchings.
Since the target of existing algorithms [27], [32]–[34] is to
compute the degree of parallelism, none of them uses an
initial matching as the input that takes the information of
WCETs of vertices into account. We observe that the initial
matching has a big influence on the computed minimum chain
decomposition and thus the computed number of cores in
Alg. 1. In our approach of Alg. 3, the chain decomposition
σ and its corresponding matching ϕ carry the information of
the WCET of vertices (Line 2, 3); then the alternating path
algorithm (Line 4) iteratively adjusts this initial matching ϕ
into a maximum matching ϕ∗ (thus a corresponding minimum
chain decomposition σ∗) using the information of the topology
of the DAG.

Example 1. For the DAG in Fig. 1, suppose the deadline
D is 20. The number of cores in the original federated
scheduling computed by (7) is 4. Existing algorithms for
computing the degree of parallelism may output minimum
chain decompositions such as {(v0, v3), (v2, v4), (v1, v5)}, or
{(v0, v1, v5), (v2, v4), (v3)}. Using these chain decompositions
for Alg. 1, the computed number of cores is 3, which is the degree
of parallelism. In our approach, the initial chain decomposition
computed by Alg. 2 is {(v0, v3, v4, v5), (v1), (v2)}, which is
already a minimum chain decomposition and is the output of
Alg. 3. And the number of cores computed by Alg. 1 is 2.

VI. EVALUATION

This section evaluates the proposed scheduling approach in
Section V. The following methods are compared.

• OUR. Our method presented in Section V.
• FED. The original federated scheduling proposed in [4].

• VFED. The virtually-federated scheduling in [7], by adding
servers on top of federated scheduling to reclaim unused
computing capacity.

As shown in [7], VFED has the best performance among
all existing multi-DAG scheduling algorithms of different
paradigms (federated, global and partitioned), so we only include
VFED in our comparison.

Task Generation. The DAG tasks are generated using the
Erdös-Rényi method [39], where the number of vertices |V | is
randomly chosen in a specified range. For each pair of vertices,
it generates a random value in [0, 1] and adds an edge to the
graph if the generated value is less than a predefined parallelism
factor pf . The larger pf , the more sequential the graph is. The
period T (which equals D in the experiment) is computed by
len(G)+α(vol(G)− len(G)), where α is a parameter. By (7),
the number of cores required by a task is at most

⌈
1
α

⌉
. We

consider α in [0, 0.5] to let heavy tasks require at least two cores.
The default settings are as follows. The WCETs of vertices
c(v), the parallelism factor pf , the vertex number |V | and α are
randomly and uniformly drawn in [50, 100], [0.1, 0.9], [50, 250]
and [0, 0.5], respectively. The number of cores m is set to be
32 (but changing in Fig. 2) and the normalized utilization nu of
task sets is randomly and uniformly drawn in [0, 0.8]. For each
configuration (i.e., each data point in the figures), we randomly
generate 1000 task sets to compute the average acceptance ratio.

We evaluate the schedulability of task sets using the ac-
ceptance ratio as the metric. The larger acceptance ratio, the
better the performance. Fig. 2 shows the results by changing
the number of cores on which the task set is scheduled.
As mentioned before, other parameters (i.e., nu , α, pf and
|V |) are randomly selected in their intervals. Compared to
VFED, the maximum performance improvement of our method
is 21.6% among all numbers of cores. With the number
of cores increasing, the performances of FED and VFED
decrease. This is because most existing multi-core scheduling
analysis techniques (for example, those of FED and VFED)
are inherently unable to utilize the resources enabled by multi-
core computing in an efficient manner, thus their performances
cannot scale proportionally to the increase of the number
of cores. Our method by using the degree of parallelism of
tasks can exploit the resources more efficiently, almost scaling
proportionally to the increase of the number of cores. In the
following experiments, we use the core number m = 32 as a
representative for evaluation.

In Fig. 3a, compared to VFED, the improvement of ac-
ceptance ratio is up to 83.1% with nu = 0.35. Fig. 3b
presents the result by changing α. Different α means different
deadlines. When α approaches 0, the deadline D approaches
len(G); the core number computed in (7) approaches infinite;
the acceptance ratio of FED and VFED approaches 0. Our
method for computing the core number in (8) does not have
this limitation. Even if the deadline equals the length of the
longest path, our method can still achieve good performance
(our acceptance ratio is 57.7%, while the acceptance ratio of
the other two methods is 0). When α increases, the computed
core numbers approach 1, and the performances of FED and

!

!

8 16 24 32 40 48 56 64
m

0

0.2

0.4

0.6

0.8

A
cc

ep
ta

nc
e

R
at

io

FED VFED OUR

Fig. 2. Evaluation of different numbers of cores.

0 0.2 0.4 0.6 0.8
nu

0

0.2

0.4

0.6

0.8

1

A
cc

ep
ta

nc
e

R
at

io

FED
VFED
OUR

(a) normalized utilization

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

A
cc

ep
ta

nc
e

R
at

io

FED VFED OUR

(b) deadline

0.1 0.3 0.5 0.7 0.9
pf

0

0.2

0.4

0.6

0.8

A
cc

ep
ta

nc
e

R
at

io

FED VFED OUR

(c) parallelism factor

50 100 150 200 250
|V|

0

0.2

0.4

0.6

0.8

A
cc

ep
ta

nc
e

R
at

io FED VFED OUR

(d) vertex number

Fig. 3. Evaluation results (m = 32).

OUR become indistinguishable. When α increases, VFED
outperforms FED and OUR slightly. This is because VFED
can potentially reclaim the computing resources which are
wasted by the analysis technique behind (7). Fig. 3c shows
the result by changing the parallelism factor pf . When pf
increases, the DAG becomes more sequential which means that
the volume vol(G) becomes close to the length of the longest
path len(G). Therefore, by the task generation method, the
deadline D becomes close to len(G), which means that the
core number computed by (7) becomes large. Subsequently, the
performances of FED and VFED decrease. The results with
changing vertex number are reported in Fig. 3d, which shows
that the evaluated methods are insensitive to the vertex number
of the graph. Compared to VFED, our method can improve the
acceptance ratio by 18.6% on average.

VII. CONCLUSION

In this paper, based on the degree of parallelism, we propose
a real-time scheduling approach for DAG tasks, which is simple
and effective. Experiments show that compared to the state-of-
the-art, our method can improve the system schedulability by
18.6% on average and 83.1% at the maximum.

REFERENCES

[1] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte, “Synthesizing
job-level dependencies for automotive multi-rate effect chains,” in RTCSA,
2016.

[2] M. Verucchi, M. Theile, M. Caccamo, and M. Bertogna, “Latency-aware
generation of single-rate dags from multi-rate task sets,” in RTAS, 2020.

[3] J. Li, K. Agrawal, C. Lu, and C. Gill, “Outstanding paper award: Analysis
of global edf for parallel tasks,” in ECRTS, 2013.

[4] J. Li, J. J. Chen, K. Agrawal, C. Lu, C. Gill, and A. Saifullah, “Analysis
of federated and global scheduling for parallel real-time tasks,” in ECRTS,
2014.

[5] S. Baruah, “The federated scheduling of constrained-deadline sporadic
dag task systems,” in DATE, 2015.

[6] N. Ueter, G. Von Der Brüggen, J.-J. Chen, J. Li, and K. Agrawal,
“Reservation-based federated scheduling for parallel real-time tasks,” in
RTSS, 2018.

[7] X. Jiang, N. Guan, H. Liang, Y. Tang, L. Qiao, and W. Yi, “Virtually-
federated scheduling of parallel real-time tasks,” in RTSS, 2021.

[8] Z. Dong and C. Liu, “Analysis techniques for supporting hard real-time
sporadic gang task systems,” Real-Time Systems, 2019.

[9] K. Lakshmanan, S. Kato, and R. Rajkumar, “Scheduling parallel real-time
tasks on multi-core processors,” in RTSS, 2010.

[10] S. Zhao, X. Dai, and I. Bate, “DAG scheduling and analysis on multi-core
systems by modelling parallelism and dependency,” TPDS, 2022.

[11] J. Fonseca, G. Nelissen, and V. Nélis, “Improved response time analysis
of sporadic DAG tasks for global FP scheduling,” in RTNS, 2017.

[12] G. Grätzer, General lattice theory. Springer Science & Business Media,
2002.

[13] X. Jiang, N. Guan, X. Long, and W. Yi, “Semi-federated scheduling of
parallel real-time tasks on multiprocessors,” in RTSS, 2017.

[14] Y. Tang, N. Guan, and W. Yi, “Real-time task models,” Handbook of
Real-Time Computing, 2022.

[15] W. Wu, A. Bouteiller, G. Bosilca, M. Faverge, and J. Dongarra, “Hierar-
chical dag scheduling for hybrid distributed systems,” in IPDPS, 2015.

[16] K. Nikolova, A. Maeda, and M. Sowa, “Parallelism-independent scheduling
method,” IEICE FOECC, 2000.

[17] L. He and S. Jarvis et al., “Mapping dag-based applications to multiclusters
with background workload,” in CCGrid, 2005.

[18] Z. Houssam-Eddine, N. Capodieci, R. Cavicchioli, and G. Lipari et al.,
“The hpc-dag task model for heterogeneous real-time systems,” TC, 2020.

[19] Q. He, X. Jiang, N. Guan, and Z. Guo, “Intra-task priority assignment in
real-time scheduling of DAG tasks on multi-cores,” TPDS, 2019.

[20] X. Jiang, X. Long, N. Guan, and H. Wan, “On the decomposition-based
global edf scheduling of parallel real-time tasks,” in RTSS, 2016.

[21] Q. He, M. Lv, and N. Guan, “Response time bounds for dag tasks with
arbitrary intra-task priority assignment,” in ECRTS, 2021.

[22] S. Baruah, “Federated scheduling of sporadic dag task systems,” in IPDPS,
2015.

[23] ——, “The federated scheduling of systems of conditional sporadic dag
tasks,” in ICESS, 2015.

[24] X. Jiang, N. Guan, X. Long, Y. Tang, and Q. He, “Real-time scheduling
of parallel tasks with tight deadlines,” JSA, 2020.

[25] A. Frank, “On chain and antichain families of a partially ordered set,”
Journal of Combinatorial Theory, Series B, 1980.

[26] R. Dilworth, “A decomposition theorem for partially ordered sets,” Annals
of Mathematics, 1950.

[27] K. P. Bogart, Introductory combinatorics. Saunders College Publishing,
1989.

[28] S. Felsner, V. Raghavan, and J. Spinrad, “Recognition algorithms for
orders of small width and graphs of small dilworth number,” Order, 2003.

[29] S. Ikiz and V. K. Garg, “Online algorithms for dilworth’s chain partition,”
University of Texas at Austin, Tech. Rep, 2004.

[30] D. R. Fulkerson, “Note on dilworth’s decomposition theorem for partially
ordered sets,” in Proc. Amer. Math. Soc, 1956.

[31] M. R. Garey and D. S. Johnson, “Computers and intractability: A guide
to the theory of NP-completeness,” WH Freeman and Company, 1979.

[32] J. E. Hopcroft and R. M. Karp, “An n5/2 algorithm for maximum
matchings in bipartite graphs,” SIAM Journal on computing, 1973.

[33] J. Edmonds, “Paths, trees, and flowers,” Canadian Journal of mathematics,
1965.

[34] L. R. Ford and D. R. Fulkerson, “Maximal flow through a network,”
Canadian journal of Mathematics, 1956.

[35] “lec4.pdf,” http://www.columbia.edu/%7ecs2035/courses/ieor8100.F12/
lec4.pdf.

[36] A. I. Tomlinson and V. K. Garg, “Monitoring functions on global states
of distributed programs,” JPDC, 1997.

[37] S. Baruah, “Techniques for multiprocessor global schedulability analysis,”
in RTSS, 2007.

[38] S. Baruah and N. Fisher, “The partitioned multiprocessor scheduling of
sporadic task systems,” in RTSS, 2005.

[39] D. Cordeiro, G. Mounié, S. Perarnau, D. Trystram, J.-M. Vincent, and
F. Wagner, “Random graph generation for scheduling simulations,” in
SIMUTools, 2010.

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

