2023 Design, Automation & Test in Europe Conference (DATE 2023)

Structural Generation of Virtual Prototypes for Smart
Sensor Development in SystemC-AMS from
Simulink Models

1%t Alexandra Kiister
Bosch Sensortec GmbH
Reutlingen, Germany
alexandra.kuester @bosch-sensortec.com

Abstract—We present a flow to reuse system-level analog/mixed-
signal (AMS) models developed in MATLAB/Simulink for the
extension of virtual prototypes in SystemC. To prevent time-
consuming co-simulation, our flow translates the Simulink model
into an equivalent SystemC-AMS model. Translation is supported
either by wrapping code generated by MATLAB’s Embedded
Coder or by instantiating previously generated models. Thus, a
one-to-one mapping of the model’s hierarchy is possible which
allows deep insights into the architecture and good traceability.
The conducted case study on an accelerometer model shows the
applicability of our approach. The generated hierarchical model is
half as fast as a monolithic version but allows better observability
and traceability of the system. It is tens of times faster than
simulation in Simulink. The extended virtual prototype aims to
support software engineers during development and validation of
firmware in smart sensors.

Index Terms—MATLAB/Simulink, SystemC-AMS, Virtual Pro-
totype, Smart Sensor

I. INTRODUCTION

Virtual prototypes (VPs) in SystemC are broadly used to
handle the complexity of heterogeneous systems and allow
the parallelization of hardware and software development.
Smart sensors composed of mechanical, analog/mixed-signal
(AMS), digital and software components show strong needs to
integrate AMS features into the prototype [1]. We identified
MATLAB/Simulink as an environment that is widely used for
creating abstract component models for first exploration tests.
We propose their reuse for the VP by automized translation into
equivalent SystemC-AMS models. The advantage compared to
the translation of RTL models as proposed in [2] is the early
availability of these models. Our flow goes along well with
existing translation options for digital parts (see [3], [4]). This
supports the software development without creating additional
modeling effort or co-simulation needs and ensures that de-
signers and software developers have a common information
and simulation base. Thereby, we achieve high modularity and
traceability by preserving the structure and hierarchy of the
model. It also allows good insights into the architecture.

II. PROPOSED TRANSLATION FLOW

The proposed flow includes two major features as shown in
Fig. 1. Monolithic modules can be generated for atomic blocks

2" Rainer Dorsch
Bosch Sensortec GmbH
Reutlingen, Germany

3" Christian Haubelt
University of Rostock
Rostock, Germany

Simulink Model or
Subsystem

Subsystem

Atomic Subsystem

Model File Model File
\ 4 v
Set Configuration, Model Missing?
Prepare Model
Run _ | Collect Block, Port and
Embedded Coder | Signal Information
|
|
codelnfo
-
C#+ Code Eetehe (extended)
Legend
Run Wrapper Writer Run Module Writer | [] Simulink
] Mat-file
[[] SystemC-AMS
use from
Monolithic Model Instantiating Model | previous run

Fig. 1: Automized translation flow with its two options for the
user. Some components are applicable to both branches.

or complete models. They are written in the timed dataflow
(TDF) model of computation of SystemC-AMS. Hierarchical
modules instantiate components of the hierarchy level below,
thus the generation can only be done as subsequent step.
The process is repeated recursively with the newly generated
instantiating modules to translate multiple hierarchy layers.
Thus, the structure of the Simulink model is preserved and
tracing is possible on each layer. Both steps are fully automized
using MATLAB scripts. One major restriction applies. The flow
is only supported for fixed-step models.

MATHWORKS provides the Embedded Coder to generate
C/C++ code from fixed-step Simulink models. The execution
semantics of the generated code is similar to a TDF model and
can thus be wrapped as SystemC-AMS module as shown by
Kleen et al. [5]. The Embedded Coder also extracts a mat-file
summarizing properties and interfaces of the generated code
(see Fig. 1) that can be used as information source for the
wrapper writing. Buses are set to non-virtual to avoid structural
loss, otherwise the EC coder splits them into independent

978-3-9819263-7-8/DATE23/© 2023 EDAA

signals which can lead to ambiguous naming. Special data types
as fixed-point formats are remapped with correct scaling.

The procedure for monolithic modules may be applied to all
hierarchy levels of the Simulink model if the subsystems are
set to atomic. Nevertheless, our flow allows using instantiation
to prevent the lack in traceability of internal signals and
readability. SystemC-AMS code must exist for all components.
We developed a SystemC-AMS library with the most important
primitives that are often used outside subsystems, i.e. to-
file blocks, memory and delay blocks, type conversions, rate
transitions and bus creators or selectors. All other primitives
must be sorted into subsystems as functional groups. Port and
signal information is collected to allow the correct connection
of the components. Moreover, parameters are fed through
to the higher level. Attention must be taken for multi-rate
systems as monolithic modules always run on their minimum
sampling time. If multiple multi-rate monolithic modules are
connected, this can lead to inconsistent timesteps. Our script
adds rate transitions where necessary. The modelers themselves
must only take care for the avoidance of algebraic loops.
MATLAB/Simulink can often resolve them itself but SystemC-
AMS cannot and requires the insertion of a delay element. As
delays in feedback loops can influence the simulation behavior
significantly, we decided not to insert them automatically.

III. EXPERIMENTAL RESULTS

We conducted performance tests to compare the efficiency
of generated code to handwritten modules. We used the sigma-
delta analog-to-digital (ADC) converter from ACCELERA’S
application examples [6] and created equivalent handwritten
and generated models for comparison. Results are given in
Table 1. The generated models do not suffer from significant
performance loss. The results also indicate that monolithic
models are slightly faster than composed ones which leads to
a trade-off between traceability and performance.

We investigated the applicability of the approach using a case
study of an accelerometer. A block diagram of the model is
given in Fig. 2. The model includes three levels of interest, i.e.
the full sensor, its split into micro-electro-mechanical system
(MEMS) and ASIC and the split into basic building blocks like
the CIC filter. Monolithic modules are marked yellow. Higher
levels are generated as instantiating models. For comparison,
the full accelerometer is additionally generated as monolithic
module. During the process, a delay has been added at the
output of the stimulus block inside the ASIC to avoid an
algebraic loop. We have validated that all three model versions
(Simulink, monolithic and instantiating SystemC-AMS) behave
similar. Their simulation performances are given in Table II.
The monolithic model is twice as fast as the hierarchical one
but it suffers from reduced observability as the structure and
internal signals are unaccessible. Both models are tens of times
faster than the Simulink version.

IV. CONCLUSION

We have presented a translation flow to generate SystemC-
AMS models from Simulink models to allow the fast generation
of heterogeneous virtual prototypes which are important for

Accel_tb.sIx

&

“$ Mems_ax_ip] 3

channel_x

NN s S

- - cv adc cic
~$ Mems_ax_ip

channel_y

°0—

--$Mems_ax_oop
channel_z
mems

volt_stim
asic

ove

environment accelerometer evaluation

Fig. 2: Schematical view of the system under test. Yellow
marked blocks are used for monolithic module generation. Red
and green ports describe different bus types.

TABLE I: Simulation performance of a sigma-delta ADC. 1.0 s
have been simulated with a step size of 1.0 us.

Language Model Specification Sim. Time

° Simulink basic blocks (discrete integrators) 4.8s
‘}a’ SystemC-AMS | loop filter, quantizer, DAC (all TDF) 0.90s
Z SystemC-AMS | single analytical TDF module 0.40s

SystemC-AMS | generated code with wrapper 0.31s
o Simulink basic blocks, ode8 (Dormand-Prince) 19.79s
£ | SystemC-AMS | ACCELERA’S application example 0.78s
© SystemC-AMS | generated code with wrapper 1.57s

TABLE II: Simulation times of the accelerometer model ver-
sions. 0.1s are simulated with t;=1 x 10~ 6.

Model Simulation Time
Simulink 78.11s
SystemC-AMS monolithic module 1.28s
SystemC-AMS hierarchical module 2.64s

firmware development. The translation offers the possibility to
preserve hierarchical structures. Experimental results show that
the SystemC-AMS models run much faster than their Simulink
twins and the simulation performance is not degraded compared
to hand-written models in our case.

REFERENCES

[1] A. Kiister, R. Dorsch, C. Haubelt and K. Einwich, "Virtual Prototyping
in SystemC AMS for Validation of Tight Sensor/Firmware Interaction
in Smart Sensors”, Proceedings of the 2022 Forum on specification and
Design Languages (FDL), 2022

[2] M. Lora, S. Vinco, E. Fraccaroli, D. Quaglia and F. Fummi, ”Analog
Models Manipulation for Effective Integration in Smart System Virtual
Platforms,” in IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 37, no. 2, pp. 378-391, Feb. 2018, doi:
10.1109/TCAD.2017.2705129.

[3] L. Zhang, M. Gla, N. Ballmann and J. Teich, “Bridging algorithm
and ESL design: Matlab/Simulink model transformation and validation,”
Proceedings of the 2013 Forum on specification and Design Languages
(FDL), 2013, pp. 1-8.

[4] K. Hylla, J. Oetjens and W. Nebel, “Using SystemC for an ex-
tended MATLAB/Simulink verification flow,” 2008 Forum on Speci-
fication, Verification and Design Languages, 2008, pp. 221-226, doi:
10.1109/FDL.2008.4641449.

[5] H. Kleen, S. Xiao, R. Gorgen, N. Bannow and W. Nebel, ”Automatische
Ubersetzung von MATLAB/Simulink-Modellen nach SystemC-AMS,”
ITG GMM GI, 2011

[6] Accellera Systems Initiative, “SystemC AMS Application
Examples”, Accellera Systems Initiative, 2022. [Online]. Available:
https://accellera.org/downloads/standards/systemc [Accessed: Dec. 14,
2022].

	Select a link below
	Return to Previous View
	Return to Main Menu

