
FastRW: A Dataflow-Efficient and Memory-Aware Accelerator
for Graph Random Walk on FPGAs

Yingxue Gao, Teng Wang, Lei Gong*, Chao Wang*, Xi Li, Xuehai Zhou
University Of Science and Technology Of China

{gyingxue, wangt635}@mail.ustc.edu.cn, {leigong0203, cswang, llxx, xhzhou}@ustc.edu.cn

Abstract—Graph random walk (GRW) sampling is becoming
increasingly important with the widespread popularity of graph
applications. It involves some walkers that wander through the
graph to capture the desirable properties and reduce the size
of the original graph. However, previous research suffers long
sampling latency and severe memory access bottlenecks due to
intrinsic data dependency and irregular vertex distribution.

This paper proposes FastRW, a dedicated accelerator to release
GRW acceleration on FPGAs. FastRW first schedules walkers’
execution to address data dependency and mask long sampling
latency. Then, FastRW leverages pipeline specialization and bit-
level optimization to customize a processing engine with five
modules and achieve a pipelining dataflow. Finally, to alleviate
the differential accesses caused by irregular vertex distribution,
FastRW implements a hybrid memory architecture to provide
parallel access ports according to the vertex’s degree. We evaluate
FastRW with two classic GRW algorithms on a wide range of real-
world graph datasets. The experimental results show that FastRW
achieves a speedup of 14.13× on average over the system running
on two 8-core Intel CPUs. FastRW also achieves 3.28×∼198.24×
energy efficiency over the architecture implemented on V100
GPU.

Index Terms—graph random walk, accelerator, dataflow, mem-
ory architecture.

I. INTRODUCTION

Graph random walk (GRW) sampling aims to capture the
desirable graph properties that are used to estimate the original
graph. It involves some sampling walkers that wander through
the whole graph to collect paths, which has been applied to
many application fields, such as graph learning [1], embedding
representation [2], [3], and graph ranking.

Unlike traditional graph algorithms, which treat all neighbor
vertices similarly, GRW sampling performs a more sparse
operation. It only selects one neighbor of interest among
many potential candidates to follow. Intuitively, the bulk of
computation resides in the neighbor vertex selection. This
process is expensive and has become a performance bottleneck.

Some existing general graph frameworks are configured to
accelerate GRW sampling, such as DrunkardMob [4] and Deep
Graph Library (DGL) [5]. However, they lack customized
optimizations oriented to the sampling process. Then, many
specialized software systems have been developed to boost
the sampling operation, such as KnightKing [6], NextDoor
[7], GraphWalker [8], and C-SAW [9]. The above CPU or
GPU-based systems fail to provide appreciable performance
due to random memory accesses and intrinsic data dependency
during the sampling process. As a promising platform, FPGAs

*Corresponding authors: Lei Gong and Chao Wang.

can offer ideal parallelism in many fields, such as [10]–
[12]. In addition, [13] implements an FPGA-based architecture
to accelerate GRW sampling. However, it still faces two
problems, limiting its efficiency and versatility. First, it suffers
from inefficient dataflow due to a lack of efficient pipeline
parallelism. Second, it lacks support for more challenging
dynamic GRW sampling.

This paper concludes that GRW sampling has the following
characteristics that make it difficult to accelerate efficiently. 1)
Intrinsic data dependency: The sampling operation leverages
a walker-centric computation model to perform. However,
it involves strict data dependency, which invalids pipeline
parallelism and leads to long sampling latency. 2) Frequent
random accesses: The vertex selection process involves sparse
and random accesses. Predicting which vertices will be visited
is difficult. So it fails to preload data on-chip and introduces
a large number of off-chip accesses. 3) Unbalanced vertex
distribution: Dynamic GRW sampling needs to check con-
nectivity between vertices, which involves the loading of a
large number of neighbor vertices. Even worse, the vertex
distribution is unbalanced. The vertices with fewer neighbors
need to wait for vertices with more neighbors to transfer.

To address the above problems, this paper proposes FastRW,
a dedicated accelerator to boost GRW sampling on FPGAs.
FastRW first schedules walkers’ execution to address data
dependency and mask long sampling latency. Then, FastRW
leverages pipeline specialization and bit-level optimization to
customize a processing engine with five modules and achieve
a pipelining dataflow. Finally, to alleviate the differential
accesses caused by unbalanced vertex distribution, FastRW
implements a hybrid memory architecture to provide the
parallel access ports according to the vertex’s degree. FastRW
also designs a bit-level structure unit with low hardware
overhead for fast connectivity checking. We evaluate FastRW
on the Xilinx Alveo U50 card. The results show that FastRW
achieves a speedup of 14.13× on average over the CPU
system and 3.28×∼198.24× energy efficiency over the GPU
implementation.

To summarize, the main contributions are as follows:

• We identify the characteristics of the GRW sampling and
propose FastRW, an accelerator to boost both static and
dynamic GRW samplings on FPGAs.

• FastRW first schedules walkers’ execution to address data
dependency. Then, FastRW leverages pipeline specializa-
tion and bit-level optimization to customize a processing

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

V2

V0

V1

V4

V30.6 0.2

0.1

w1

0.33

0.66

1

Alias table of V0

V1

V3

V2

V2

V2

null

prob vertex1 vertex2

bucket0

bucket1

bucket2

① rand1 = 4 -> 4%3 = 1 bucket1

② rand2 = 0.5 -> 0.5<0.66 next: V2

Graph

3①
②

Fig. 1. The left is a GRW sampling schematic, including a graph entry and a
walker w1 starting from vertex V0. The right side is the alias-based sampling
process.

engine.
• FastRW also presents a hybrid memory architecture de-

sign adapted to differential accesses caused by unbalanced
vertex distribution.

• FastRW achieves a speedup of 14.13× on average over
the system running on two 8-core Intel processors. Fas-
tRW also achieves 3.28×∼198.24× energy efficiency
over the architecture implemented on V100 GPU.

II. BACKGROUND

In this section, we first describe the preliminaries of GRW
sampling and its algorithm variants. Then, we introduce a
walker-centric computation model.

A. Graph Random Walk

GRW sampling takes a graph as input, along with some
walkers. Fig. 1 shows an example of the sampling operation.
The walker w1 starts from vertex V0. Then, it needs to select
one neighbor vertex (V1, V2, or V3) to follow. To boost sam-
pling efficiency, we adopt the alias-based sampling method [6].
It needs to construct the alias table in advance, which records
the vertex connections and edge properties information. The
right side of Fig. 1 shows an alias table built for V0. The
primary cell is the bucket. Each bucket contains three elements,
prob, vertex1, vertex2. The sampling operation is based on
the alias table to perform and contains two steps. First, the
random number rand1 (4) performs the remainder operation
on the out-degree of V0 (3), and the result is used as an index to
access the bucket1. Second, the random number rand2 (0.5) is
less than probability prob (0.66), so the second vertex vertex2

in bucket1 is selected as a candidate.
This work focuses on two key GRW sampling algorithms:

static sampling [2] and dynamic sampling [3]. For static sam-
pling, the vertex selection is only related to the walker’s current
residing vertex. The dynamic algorithm needs to consider the
vertices it has previously visited. It is more potent in reality
and has more deployment challenges.

B. Walker-centric Computation Model

The sampling operation can be further abstracted as a
walker-centric computation model, as shown in Algorithm
1. First, the walker’s state parameters are initialized (line
1). Then, with the pre-built alias table aliasTable and the
random number rand1 as inputs, one bucket in the alias table
is selected (line 4). Next, with the random number rand2

Algorithm 1: Walker-centric computation model
Input: alias table, random number
Output: sampled path

1 init: walker’s state parameters;
2 while checkLength(walker) do
3 rand1, rand2 =getRands();
4 bucket=Sample(walker, aliasTable, rand1);
5 candidate=Select(bucket, rand2);
6 if isAccepted(candidate) then
7 walker.Update(candidate);
8 path.Add(candidate);
9 end

10 end

as input, one vertex in bucket is selected as a candidate
vertex (line 5). If the candidate is accepted, the walker’s
state parameters are updated with candidate and add this
candidate to the sampled path (lines 6-9). There is a strict
data dependency during the sampling process. Specifically, the
output of the previous round (line 7) is the input of the next
round (line 4). The sampling operation will finish until the
walker’s length reaches a threshold.

III. FASTRW DESIGN OVERVIEW

In this section, we first introduce the architecture design of
FastRW and its execution flow. Then, we present the pipeline
specialization and bit-level optimization.

A. FastRW Architecture

Fig. 2(a) illustrates the overall architecture of FastRW, which
contains multiple parallel processing engines (PEs) specialized
for GRW sampling. Each PE is responsible for processing a
group of sampling walkers. In addition, each PE occupies some
private storage resources, including on-chip buffers and HBM
channels (PC). Multiple PEs leverage the data-level parallelism
of the overall architecture. The path buffers are responsible for
storing the sampled paths.

The block diagram of the processing engine (PE) is shown in
Fig. 2(b), which consists of five customized modules and some
local buffers. Next, we present the function of each module.

• Scheduler: A lightweight control core that coordinates the
execution of sampling walkers inside a PE.

• Sample module: A memory-efficient module is respon-
sible for loading the alias table from off-chip memory,
which involves a multi-issue address generation unit, a
data reception unit, and a comparator.

• Degree module: A module that is used to interface with
customized memory architecture for neighbor vertices’
loading, which contains an address analysis unit and a
local buffer.

• Connector module: A customized module comprises a bit-
level structure unit with low hardware complexity and a
comparator. It is responsible for connectivity checking
between vertices.

!

!

...

...Path 0 Path 1 Path k-1 Path k

PE 0

w
al

ke
r

gr
o

u
p

PE 0

w
al

ke
r

gr
o

u
p

PE 1

w
al

ke
r

gr
o

u
p

PE 1

w
al

ke
r

gr
o

u
p

PE k-1

w
al

ke
r

gr
o

u
p

PE k-1

w
al

ke
r

gr
o

u
p

PE k

w
al

ke
r

gr
o

u
p

PE k

w
al

ke
r

gr
o

u
p

Lo
w

H
igh

Lo
w

H
igh

Lo
w

H
igh

Lo
w

H
igh

Lo
w

H
igh

Lo
w

H
igh

Lo
w

H
igh

Lo
w

H
igh ...

Write back

Rand buffer

Output buffer

req

req

resres

d
at

a

Scheduler

(HBM Read)
local buffer

Degree moduleSample module

...

(a) (b) (c)

②

③
④

⑤

co
m

p
arato

r

Connector
module

rand1
rand2

rand3

pre_v
cu_v

cu_v

candi
date

probd

signal

neigh
bors

candi
date

comparator

Data
Rec

Addr

Gen

⑤

Connectivity

checking

On-chip

addr gen

Off-chip

addr gen

an
al

ys
is

• vertex1 : 1st candidate

• vertex2 : 2nd candidate

• prob: selected probability

walker

Walker
module

aliasTable

• ID : walker's identification

• step: current length

• pre_v: previous vertex

• cu_v : current vertex

……

①

alias
table

Fig. 2. (a) Overall architecture of FastRW (b) Single processing engine (c) The structure variables contained in the walker and alias table

• Walker module: A module that is used to buffer and
update walkers’ state parameters. Fig. 2(c) shows the
structure variables contained in the walker and alias table.

• Output buffer and Rand buffer are used to store sampled
paths and random numbers generated by the host side.

B. FastRW Execution Flow

We take dynamic sampling as an example to introduce
the execution flow in FastRW, as shown in Fig. 2(b). 1⃝At
the beginning, the scheduler selects a walker to launch the
sampling operation. 2⃝The walker’s current residing vertex
cu v and the random number rand1 are sent to the sample
module for accumulation. The first operand is the remainder
of rand1 and the cu v’s out-degree, and the second operand
is the offset of cu v. The sum serves as an address to
load the alias table stored off-chip. Then, according to the
comparison result between random number rand2 and prob
in the alias table, one vertex in the alias table is selected as
a candidate. 3⃝At the same time, the walker’s previous visited
vertex (pre v) is sent to the degree module for neighbor
vertices’ loading. The hybrid memory architecture is designed
for differentiated vertex accesses. Section IV will present more
design details. The loaded neighbors will be buffered on-chip.
4⃝The connector module receives the candidate and neighbors

for connectivity checking. A bit-level structure unit is designed
to check connectivity and output probability probd. Then, the
comparison result of random number rand3 and probability
probd will be sent to the walker module. 5⃝It is decided
whether to accept the candidate according to the received
signal. If accepted, the walker module will update the state
parameters and send the candidate to the output buffer. For the
static sampling, steps 3-4 are omitted.

C. Pipeline Parallelization and Bit-level Optimization

This subsection presents the details of pipeline specializa-
tion and bit-level optimization to enable a high-performance
architecture.

1) Dataflow and Pipeline Parallelization: For walker sam-
pling, the output of the previous round is the input of the
next round. Fig. 3(a) shows its execution schematic, where the
intrinsic data dependency severely limits sampling efficiency.

T0

M

C

Mem latency (LM)

Comp latency (LC)

Dependency

C0 M0 C0W0
…

M0 C0

M0

M1 C1

M2 C2

W0

W1

W2

W0

M0 C0

M0 C0

M1 C1

M2 C2

W1

W2

W0

W0

(a)

(b)

(c)

Task Latency

Task Latency

Ti = LMi + LCi ,
i ∈ N+

LM0

T0

II

roundi roundi+1

M0

LC0

C0

Fig. 3. (a) The original execution diagram with data dependency. (b) The
execution diagram that computation latency is masked. (c) The execution
diagram that both computation and memory access latency are masked.

Even worse, the sampling operation involves long computation
and memory access latency. The computation latency comes
from the address generation process. The remainder calculation
of the random number and vertex’s out-degree consumes about
35 cycles. One off-chip access takes about 81 cycles. So a total
of 116 cycles is required in one round of sampling.

Fortunately, the sampling operation between multiple walk-
ers is independent, and the sampling execution is lightweight.
So in our architecture, each PE is assigned a group of walkers.
The scheduler is responsible for alternating walkers’ execution
to achieve a pipelining dataflow. As shown in Fig. 3(b),
between the two rounds of sampling of walker0, unrelated
walker1 and walker2 can be inserted to address data depen-
dency and mask long computation latency. Then, each walker
with a separate ID is treated as a private execution, and
multiple walkers work together to achieve pipeline parallelism.

After data dependency is addressed, sampling efficiency is
still limited by random memory access. Specifically, the access
of the alias table involves small individual transmission, which
disables burst transmission and requires a more flexible design.
So the sample module in FastRW is implemented to allow
multiple outstanding memory requests, which can keep the
pipelining of data transmission by consuming more BRAM
for the interface buffer. Fig. 3(c) shows the final execution
schematic. Both computation and memory access latency can
be masked. Note that II represents the iteration interval, and
the latency of one sampling consumes T cycles. The number

!

!

1

2

…

6

7

8

0

1

…

candidate

0
1
0

0
0
0

flag

partial neighbors
……

segment
checking

9

pre_v

9

nerighbors

8 7 6

2 0 1

…

graph entry

previous vertex: 9

neighbors (9):

0, 1, 2, 6, 7, 8 …

current vertex: 6

candidate vertex: 1

walker

context

path

path

… 9 -> 6 -> 1？ …

Fig. 4. An example for illustrating connectivity checking. The sampling
walker currently resides at vertex 6. It needs to check the connectivity between
candidate vertex 1 and previous vertex 9. On the right is a bit-level structure
unit for checking connectivity.

of walkers num needs to be greater than T/II to enable the
correctness of pipelining execution.

2) Bit-level connectivity checking: The bit-level structure
unit is designed to check connectivity. It converts element-level
checking to bit-level checking. Fig. 4 shows how it works.
The sampling walker currently resides on vertex 6, and vertex
1 is selected as a candidate. Then, it needs to check the
connectivity between vertex 1 and previously visited vertex
9 and output a probability. We leverage the flag to keep the
connectivity information between vertices. By querying vertex
9’s neighbors with the key ’1’, we get a bitset ’010 ... 000’.
The non-zero flag indicates vertex 1 is connected with vertex
9. Otherwise, there is no connection. When the number of
neighbors is too large, this method will consume lots of LUT
resources. So we divide neighbors into some segments and
use the n-th bit of flag to check the n-th, 2n-th, . . . neighbors
simultaneously, called segment checking.

3) Bit-width customization: The walker-centric computa-
tion involves the structure variables to record running contexts,
as shown in Fig. 2(c). The alias table with larger bit width and
more quantity becomes a storage bottleneck. When the size of
the alias table is out of range, it requires the allocation of
more channels for access. For the previous CPU/GPU-based
design, the parameter type is rough and limited, such as 16-bit
or 32-bit. In contrast, FPGA-based design can customize bit
width according to actual requirements and reduce storage.
For example, the index of the vertex can be represented
by 24-bit, and the offset can be represented by 27-bit. Bit
width customization is crucial for memory-intensive sampling
operations. We present more analysis in the experimental
section.

IV. MEMORY DESIGN

In this section, we first introduce the memory hierarchy in
FastRW. Then, we present our hybrid memory design adapted
to differential vertex accesses.

A. Memory Hierarchy

Fig. 5(a) shows the memory hierarchy of our architecture,
which contains three levels. The local buffer in each PE is
responsible for buffering intermediate and output data. When a
PE generates a memory request, it will send a request through
the memory controller. Then, the corresponding response is
returned to PE. The global buffer is divided into two parts:

Memory Controller

Lo
w

-p
ri

o
ri

ty

b
u

ff
er

H
ig

h
-p

ri
o

ri
ty

b

u
ff

er

P
C

 0

P
C

 1

P
C

 n
-1

P
C

 n

...

…

Vertices

Edges

Vertices

Edges

Vertices

Edges

Vertices

Edges

BRAM
Groups

36b * 512

URAM
72b * 4096
URAM
Groups

72b * 4096

(a)

(b)

(c)

PEsLocal
buffer

Golbal
buffer

Off-chip
memory

......

neighbors1

neighbors2

store

store

Load Load

Load

request

Block 0 Block 1 Block n-1 Block n

Fig. 5. Hybrid memory architecture design

low-priority and high-priority buffers. Low-priority buffer is
used as an intermediate between the local buffer and off-chip
memory. High-priority buffer is used to buffer the frequently
accessed vertices. Implementing a shared buffer to support
concurrent accesses from multiple PEs is inefficient, leading
to unexpected bank conflicts. So we partition the high-priority
buffer into several isolated blocks, as shown in Fig. 5(b). The
number of separate blocks is equal to the number of PEs,
which can ensure the accesses from multiple PEs do not affect
each other. This design can facilitate the scalability of the
architecture while ensuring high performance. The off-chip
memory serves as the last level of memory architecture. It
is responsible for storing the large-scale alias table and most
vertices, which interact with the on-chip buffer via the HBM
channels. Each PE occupies several private channels to avoid
off-chip access conflicts.

B. Hybrid Memory Design

The real-world graph usually follows a power-law distri-
bution [14], [15]. The vertices with more neighbors occupy
a small proportion. Based on the above observation, we
implement a hybrid memory design, which can provide parallel
access ports according to the degree of the vertex. We first
divide vertices into two subsets: low-degree and high-degree
vertices, and design them separately.

High-degree vertices: The off-chip HBM can provide high
external bandwidth (U50: 316GB/s), but leveraging higher
internal bandwidth (24TB/s) to provide more parallel ports is
attractive. Considering that the vertices with more neighbors
have a higher probability of being visited, and the capacity of
the on-chip buffer is limited in size. So we only buffer a small
proportion of high-degree vertices on-chip to improve data
locality. Fig 5(c) shows the on-chip hybrid design. The targeted
U50 card involves two key buffer resources: Ultra RAMs
(URAM) and Block RAMs (BRAM). URAM is characterized
by a large capacity, which can be configured as 72-bit*4096
depth and achieve on-chip data packing. Suppose the vertex
is represented by 24-bit, and each cell in URAM can pack
3 vertices. BRAM is characterized by more quantities, which
can be configured as 36-bit*512 depth. For each vertex, we
allocate appropriate buffer space based on the number of its
neighbors. Then, we leverage URAM with large depth and bit
width as a primary buffer (buffer all high-degree vertices) and
leverage BRAM for the secondary buffer (only buffer some
higher-degree vertices).

!

!

TABLE I
GRAPH BENCHMARK DATASETS

Datasets #Vertex #Edge Field Size

amazon0601 (AM) 0.40M 3.39M Product 75MB
RoadNet-CA (RC) 1.98M 5.53M Road 131MB
web-Google (WG) 0.92M 5.11M Web 115MB

cit-Patents (CP) 3.77M 16.52M Citation 361MB
Reddit (RE) 0.23M 23.21M Community 509MB

As-skitter (AS) 1.70M 22.19M Internet 496MB
wiki-topcats (WT) 1.79M 28.51M Community 674MB
LiveJournal (LJ) 4.85M 68.99M Social 1.58GB

Low-degree vertices: It occupies the majority of all ver-
tices. We leverage large-capacity HBM (8GB) to buffer. To
improve off-chip access efficiency, we also pack these vertices
for merge transmission. The available off-chip bus width is
N -bit, each vertex is represented by p-bit, and each pack can
contain n = N/p vertices. For Alveo U50, when the clock
frequency is set to 200Mhz, the bus width can be set to 512-
bit. Suppose the vertex is represented by 24-bit. We can put 21
vertices in each pack, which can improve bandwidth utilization
effectively.

V. EXPERIMENTAL EVALUATION

In this section, we first describe the experimental setup.
Then, we compare FastRW against previous implementations
to demonstrate its effectiveness.

A. Experimental Setup

Platform. We deploy FastRW on the Xilinx Alveo U50
card, which contains 8GB HBM memory with 316GB/s off-
chip bandwidth. FastRW is implemented with the Xilinx Vitis
tool chain (v2020.2). The frequencies of FastRW architecture
for static and dynamic samplings are 300MHz and 200Mhz,
respectively. We report the running time includes initializing
walkers and the sampling process but excludes the path col-
lection. The runtime is collected from on-board execution.
Power consumption is obtained from the place-and-route report
in Vivado. The average power consumptions of static and
dynamic samplings are 32.15W and 32.68W, respectively.

Models and Graph datasets. We evaluate two representa-
tive GRW sampling, static and dynamic sampling algorithms
described in Section II. Table I lists the graph datasets used for
evaluation. They come from different fields, such as product
purchase, community, citation networks, etc. All datasets are
stored in CSR format. For unweighted graphs, we randomly
generate edge weights from the range [0.1-1.1). Size indicates

0

0.5

1

1.5

2

AM RC WG CP WT

Sp
e

e
d

u
p

KnightKing Ours

-1

-0.5

0

0.5

1

1.5

2

AM RC WG RE CP AS WT LJ

Sp
e

e
d

u
p

KnightKing C-SAW (1 GPU) C-SAW (6 GPUs) Ours
1e+2.0

1e+1.5

1e+1.0

1e+0.5

1e+0.0

1e-0.5

1e-1.0

1e+2.0

1e+1.5

1e+1.0

1e+0.5

1e+0.0

Static # Dynamic

Fig. 6. Performance comparison of FastRW with KnightKing and C-SAW
with 1 GPU and 6 GPUs. (Higher is better.)

0

300

600

900

1200

1500

1800

AM RC WG CP WT

FastRW-Base FastRW-Op1 FastRW-Ours

0

75

150

225

300

375

450

AM RC WG RE CP AS WT LJ

La
te

n
cy

 (
n

s)

FastRW-Base FastRW-Op1 FastRW-Ours

Static # Dynamic

Fig. 7. Latency comparison. (Lower is better.)

the graph size after generating weights for them. For the
undirected graph, the number of edges is doubled to report.

B. Overall Comparison

1) FastRW vs KnightKing: KnightKing [6] is a software
system for GRW sampling implemented on CPUs. We deploy
it on a server with two 8-core Intel Xeon E5-2620v4 pro-
cessors and 32 threads operating at 2.10GHz. Fig. 6 depicts
the comparison results, where all numbers are normalized to
the KnightKing. The static and dynamic samplings results
are reported separately. For a fair comparison, we measure
KnightKing with only sampling latency. On average, FastRW
achieves 14.13× and 36.71× speedups on static and dynamic
sampling compared to KnightKing. The higher speedup is
achieved on dynamic sampling, which can be attributed to
two reasons: i) KnightKing suffers severe performance loss
due to inefficient execution flow. On the contrary, FastRW
leverages the advantage of FPGA to customize the data path
and achieve a pipelining dataflow. ii) The hybrid memory
architecture and bit-level structure unit design in FastRW can
check connectivity between vertices quickly.

2) FastRW vs C-SAW: C-SAW [9] is evaluated on NVIDIA
Teala V100 GPU with 900GB/s bandwidth operating at
1.455GHz. The thermal design power (TDP) is 250W, and we
use it to estimate GPU power. FastRW is compared against C-
SAW implemented on 1 GPU and 6 GPUs. The performance of
C-SAW is from the published paper, and RC and WT datasets
are not evaluated. As shown in Fig. 6, in terms of performance,
on average, FastRW achieves 10.48× and 8.15× speedup
compared to C-SAW with 1 GPU and 6 GPUs, respectively.
For energy efficiency, FastRW achieves remarkable benefits
of 3.28×∼198.24× compared with C-SAW implemented on
a single GPU. For the LJ dataset, although FastRW obtains
a lower performance, it still achieves a significant energy
efficiency benefit of 3.28× compared to C-SAW. The reasons
that FastRW can achieve higher gains are as follows: i) FastRW
customizes an alias-based sampling architecture, while C-
SAW supports ITS sampling, which requires expensive running
overhead. ii) Although the targeted U50 card has a lower
bandwidth than V100 GPU, 316GB/s vs. 900GB/s, the isolated
memory design (Section IV.A) in FastRW enables accurate
accesses and no conflicts between multiple PEs, showing the
advantages of customization.

C. Effectiveness of FastRW Designs

1) Dataflow and Pipeline Specialization: We further eval-
uate the effectiveness of FastRW by comparing it with two
baselines: i) FastRW-base: The basic architecture that suffers

!

!

0

20

40

60

80

100

120

140

AM RC WG CP WT

N100, L200

N60, L200

N100, L100

N60, L100

0

20

40

60

80

100

120

140

AM RC WG CP RE AS WT LJ

La
te

n
cy

 (
n

s)

N100, L500

N200, L1000

N200, L500

N100, L1000

Static # Dynamic

Fig. 8. The sampling latency under different parameter settings (N : the
number of walkers. L: the sampling length of walkers.)

inefficient dataflow. Previous FPGA-based work [13] also
adopts a similar design. ii) FastRW-op1: The architecture
that integrates the dataflow scheduling to mask computation
latency. iii) FastRW-final: The architecture that integrates the
dataflow scheduling and multi-issue design. To make a fair
comparison, we deploy them on the same U50 platform. Fig.
7 shows the comparison results, where less latency corresponds
to higher sampling performance.

For static sampling, compared to FastRW-base and FastRW-
op1, FastRW-final achieves 22.12× and 6.50× speedup on
average, showing the effectiveness of the dataflow schedul-
ing and pipeline specialization. To be specific, FastRW-final
achieves 38.75×∼40.24× speedup on the small-scale dataset
(e.g., AM, RC), and achieves 3.12×∼6.21× speedup on the
larger dataset (e.g., WT, LJ) compared to FastRW-base. The
main reason is that sampling latency is affected by the stride
of random access. Larger datasets correspond to larger strides,
resulting in longer sampling latency. For dynamic sampling,
FastRW-final achieves 40.01× and 4.14× speedup on average
compared with FastRW-base and FastRW-op1 baselines.

2) Bit-width Customization: Each PE occupies several
private HBM channels for access. The alias table with larger
bit width and more quantities requires the vast majority of
channels for its intensive accesses. So the number of PEs is
affected by the storage size of the alias table. Our architecture
with customized bit width can reduce the storage of the alias
table by 23.81% and 21.32% for static and dynamic samplings,
respectively. Finally, FastRW can deploy up to 6 and 3 parallel
PEs for static and dynamic samplings. The number of parallel
PEs for dynamic sampling is less due to it requires additional
channels for connectivity checking.

D. Sensitivity of FastRW

We investigate the sampling efficiency of FastRW by adjust-
ing the numbers and length of sampling walkers in a single PE.
Fig. 8 depicts the sampling latency of FastRW under different
parameter settings. Within the margin of error, the length and
number have little effect on the sampling efficiency of FastRW,
reflecting its excellent scalability. Certainly, it is crucial that
the number of walkers is greater than the threshold to enable
the correction of the pipeline, as mentioned in Section III. The
selection of the sampling length should also be large enough
to mask the start-stop overhead of the pipeline.

VI. CONCLUSION

This paper presents FastRW, a dedicated accelerator to
release GRW acceleration on FPGAs. FastRW first schedules
walkers’ execution to address data dependency and leverages

pipeline and bit-level optimization to customize a processing
engine and achieve efficient dataflow. Finally, FastRW imple-
ments a hybrid memory architecture adapted to differential
vertex accesses. The results show FastRW achieves a 14.13×
speedup on average over the CPU system and 3.28×∼198.24×
energy efficiency over the GPU implementation.

ACKNOWLEDGMENTS

This work was supported in part by the National Key
R&D Program of China under Grants 2017YFA0700900 and
2017YFA0700903, in part by the National Natural Science
Foundation of China under Grants 62102383, 61976200, and
62172380, in part by Jiangsu Provincial Natural Science Foun-
dation under Grant BK20210123, in part by Youth Innovation
Promotion Association CAS under Grant Y2021121, and in
part by the USTC Research Funds of the Double First-Class
Initiative under Grant YD2150002005.

REFERENCES

[1] H. Zeng, H. Zhou, and A. S. et al., “Graphsaint: Graph sampling based
inductive learning method,” in 8th International Conference on Learning
Representations, ICLR, 2020.

[2] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
ser. KDD ’14, 2014, p. 701–710.

[3] A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’16,
2016, p. 855–864.

[4] A. Kyrola, “Drunkardmob: Billions of random walks on just a pc,” in
Proceedings of the 7th ACM Conference on Recommender Systems, ser.
RecSys ’13, 2013, p. 257–264.

[5] M. Wang, L. Yu, and D. Z. et al., “Deep graph library: Towards efficient
and scalable deep learning on graphs,” CoRR, vol. abs/1909.01315, 2019.

[6] Y. Ke, Z. MingXing, and C. K. et al., “Knightking: A fast distributed
graph random walk engine,” in Proceedings of the 27th ACM Symposium
on Operating Systems Principles, ser. SOSP ’19, 2019, p. 524–537.

[7] J. Abhinav, P. Sandeep, and G. A. et al., “Accelerating graph sampling for
graph machine learning using gpus,” ser. EuroSys ’21, 2021, p. 311–326.

[8] R. Wang, Y. Li, and H. X. et al., “GraphWalker: An I/O-Efficient and
Resource-Friendly graph analytic system for fast and scalable random
walks,” in 2020 USENIX Annual Technical Conference, 2020, pp. 559–
571.

[9] S. Pandey, L. Li, and A. H. et al., “C-SAW: a framework for graph
sampling and random walk on gpus,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC 2020, 2020.

[10] C. Wang, L. Gong, X. Li, and X. Zhou, “A ubiquitous machine learning
accelerator with automatic parallelization on fpga,” IEEE Transactions
on Parallel and Distributed Systems, pp. 2346–2359, 2020.

[11] C. Wang, L. Gong, F. Jia, and X. Zhou, “An fpga based accelerator for
clustering algorithms with custom instructions,” IEEE Transactions on
Computers, pp. 725–732, 2021.

[12] C. Wang, L. Gong, X. Ma, X. Li, and X. Zhou, “Wookong: A ubiquitous
accelerator for recommendation algorithms with custom instruction sets
on fpga,” IEEE Transactions on Computers, 2020.

[13] C. Su, H. Liang, and W. Z. et al., “Graph sampling with fast ran-
dom walker on hbm-enabled FPGA accelerators,” in 31st International
Conference on Field-Programmable Logic and Applications, FPL 2021,
2021, pp. 211–218.

[14] J. E. Gonzalez, Y. Low, and H. G. et al., “Powergraph: Distributed graph-
parallel computation on natural graphs,” in 10th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2012, 2012, pp.
17–30.

[15] C. Xie, L. Yan, W. Li, and Z. Zhang, “Distributed power-law graph
computing: Theoretical and empirical analysis,” in Advances in Neural
Information Processing Systems 27, 2014, pp. 1673–1681.

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

