
A Decentralized Frontier Queue for Improving
Scalability of Breadth-First-Search on GPUs

Chou-Ying Hsieh1, Po-Hsiu Cheng2, Chia-Ming Chang1 and Sy-Yen Kuo1

1Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
2Graduate Institute of Electronic Engineering, National Taiwan University, Taipei, Taiwan

{f07921043, r10943151, r10921101, sykuo}@ntu.edu.tw

Abstract—Breath-first-search (BFS) algorithm is the fundamen-
tal building block of broad applications from the electronic design
automation (EDA) field to social network analysis. With the target-
ing data set size growing considerable, researchers have turned
to developing parallel BFS (PBFS) algorithms and accelerating
them with graph processing units (GPUs). The frontier queue,
the core idea among state-of-the-art designs of PBFS, opens the
door to neighbor visiting parallelism. However, the traditional
centralized frontier queue in PBFS suffers from a dramatic
collision and explosive growth of memory space when excessive
threads simultaneously operate on it. Therefore, we identify the
challenges of current frontier queue implementations. To solve
these challenges, we proposed the decentralized frontier queue
(DFQ), which separates a centralized queue into multiple tiny
sub-queues for scattering the atomic operation collision on these
queues. We also developed the novel overflow-free enqueue and
asynchronous sub-queue drain methods to avoid dramatic growing
size of the frontier queue and the overflow issue on the naive sub-
queue design. In our experiments, we showed that our design
could have better scalability and grain averagely 1.04x speedup
on the execution in the selected benchmark suit with considerable
memory space efficiency.

Index Terms—breadth-first-search, parallel computing, GPU,
scalability, queue

I. INTRODUCTION

The graph can model massive physical phenomena. From
modeling integrated circuit [1], human brain [2] to social
network [3], the graph can represent almost anything around us.
How efficient a graph traversal is can determine how fast we
can analyze and get information from the graph. Breadth-first
search (BFS), as the fundamental algorithm for exploring nodes
in a graph plays an essential role in mining different graph
properties, for example the graph pattern matching (GPM),
the strongly connected component (SCC) detection, and the
betweenness centrality (BC) analysis. In addition, Graph 500,
which is the prestigious international supercomputer ranking
organization, uses the BFS execution time to rank a super-
computer. The action emphasizes the importance of the BFS
algorithm again.

With the development of graphic processing unit (GPU), the
specialized SIMT(Single-Instruction-Multiple-Data) machine,
more and more algorithms, including convolution neural net-
works and wireless communication, have adopted on the GPU
to utilize its massively parallel computing. The GPU provides
remarkable computing power and memory capabilities, which
brings significant performance enhancement on these applica-

Fig. 1: The memory consumption across different frontier queue
implementations.

tions. The BFS algorithm has also evolved to different parallel
BFS (PBFS) algorithms on GPUs [4]–[9].

The traditional BFS starts from a source node. At first visits
the source’s neighbors connected to the source node are called
frontiers. These frontiers then become the next level’s source
nodes. Once there are no unvisited nodes, the algorithm finishes
the graph traversal. Generally, the GPU can parallelly find
frontiers, called frontier generation. Suppose we can collect
these frontiers in a shared data structure, usually a frontier
queue. In that case, the GPU can further assign multiple threads
to visit a frontier’s neighbor nodes, called neighbor visiting. The
frontier queue acts as the bridge between frontier generation
and neighbor visiting parallelism. However, the centralized
frontier queue (CFQ) is a double-edged sword. As the CUDA
core count increases rapidly in the GPU, the contention of
enqueue and dequeue on the CFQ will worsen in the future,
significantly decreasing the scalability of PBFS.

To address the future concern on the contention of
CFQ, we proposed a decentralized frontier queue (DFQ).
(https://github.com/NTUDDSNLab/DFQ-BFS) The main idea
is to distribute the massive atomic operations to different
sub-queues, shown in Figure 1. In addition, we observe that
the naive DFQ consumes excessive memory space. Hence,
we proposed two novel methods overflow-free enqueue and
asynchronous queue drain to maintain our queue size at the
constant level. The overflow-free enqueue method avoids the
sub-queue from overflow, while the asynchronous queue drain
allows asynchronous frontier visiting between warps (the basic
compute unit in a GPU) when the potential overflow detects.
We can decouple the frontier queue size from the graph vertex

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

(a) (b) (c)

Fig. 2: The execution flow of different PBFS on GPUs (a) without the the frontier queue support. (b) with the traditional
centralized frontier queue support. (c) with our decentralized frontier queue support. The SA is the status array; NL means the
neighbor list; FQ is the frontier queue; DFQ is the decentralized frontier queue. The red line represents the synchronized barrier
and its length identifies different computing level synchronization.

number with these two methods. We significantly reduce the
memory usage to c×|SQ|, whose complexity is O(|SQ|). The
|SQ| is the number of sub-queue.

We summarize our contributions as follows:

• DFQ is the first frontier queue design for PBFS on GPUs
to alleviate contention with the minimum and constant
memory consumption.

• DFQ has better scalability than the traditional centralized
frontier queue and hierarchical queue, the state-of-the-art
PBFS sub-queue implementation on GPUs.

• DFQ can utilize the fast accessing latency of shared
memory because of the constant consumption of sub-
queue memory.

We organize the rest of this paper as follows: Section II
introduces the background and related works. In Section III,
we highlight two main challenges of CFQ. We will discuss
our DFQ implementation in Section IV. Section V presents
the evaluation of our design compared to the state-of-the-arts.
Section VI concludes.

II. BACKGROUND

A. Architecture and Execution Model on GPUs

Generally, a GPU consists of hierarchical computing units
and memory. A GPU often accommodates several streaming
processors (SM). All SMs can access the same memory called
the global memory. A SM comprises multiple cooperative
thread arrays (CTAs). An additional scratchpad memory called
shared memory can serve as the data cache for each CTA.
According to previous studies, the accessing speed of shared
memory is roughly 100 times faster than the global memory
[10]. Within each CTA, there are multiple subgroups of threads
called warps. A warp is the primary computing unit where
the threads share the same program counter (PC); threads in a
warp will execute the same instruction. Because of the single
instruction, multiple threads (SIMT) programming model of
GPUs, every thread in a GPU has the same code path. Once a
warp has early finished its work or reached the synchronization
point, it will idle until the longest executing warp completes.

B. Frontier Queue in Parallel Breadth-First-Search

Harish et.al [4] proposed CUDA_BFS, which is the first
research to adapt BFS with Nvidia GPU. It used three arrays:
frontier, visited, and cost array, to store the information of
each vertex and each level’s frontiers. CUDA_BFS parallelly
generates frontiers by scanning the status array (Figure 2(a) ➀),
Moreover, it parallelly visits the scanned frontiers’ neighbor
list for updating the status array.(Figure 2(a) ➁➂) Hierarchical
queue [1] pointed out that a frontier queue can dramatically
reduce the computational complexity of finding frontiers by
only checking the last-level frontiers’ neighbors, which is
called frontier propagation or scan-free method [8]. The frontier
queue gathers the next level frontier visited by all the threads
once, which can know exactly how many frontiers are in this
level and compress them to a continuously allocated memory
range. (Figure 2(b) ➁) By doing this frontier gathering, the
frontier queue provides another parallelizing opportunity to
visit frontiers. Hence, the succeeding research [7], [8] working
on parallel BFS has leveraged the frontier queue for the frontier
generation until now.

Figure 2 (a) and (b) illustrate the difference with and without
the frontier support in a GPU. Without the frontier queue, after
a thread scans the status array and finds the next level’s frontier
vertex, this thread has to visit all the neighbors of the vertex
by itself iteratively. With the frontier queue support, on the
other hand, because the frontier queue collects all frontiers in
a continuous space previously, all threads can be synchronized
and rearranged, which enables GPU to assign multiple threads
for visiting a frontier vertex. Based on this observation, Hong
et al.al [6] proposed a virtual warp-centric approach to assign
a warp to parallelly visit a frontier vertex, which gained up to
9x speedup compared to thread-centric BFS implementation on
GPU.

C. Related Works

Hierarchical queue [1] is the most related work to our DFQ.
It first pointed out that the contention on the frontier queue
caused severe performance degradation. It allowed a warp first
to append frontiers to the lower level queue and gathered all

!

!

Fig. 3: The execution flow chart of our DFQ used in PBFS.

frontiers by batch uploading from low-level queues to high-
level ones to avoid load imbalance among each sub-queue.
Our DFQ can avoid the copy data procedure but maintain the
workload balance. We will compare the hierarchical queue to
our DFQ design in Section V.

There is still other research aiming to improve the utilization
of different aspects of the PBFS on the GPU. Beamer et.al [11]
found that their bottom-up BFS algorithm can remarkably re-
duce the waste of edge visits and proposed directed-optimizing
BFS to switch from top-down to bottom-up BFS dynamically.
Gaihre et.al [8] extended this concept to the GPU and made
adaptive scanning optimizations on the status array. In addition,
there were several studies [7]–[9] assigning different thread
counts by the frontier’s fan-out degree for improving the uti-
lization in neighbor visiting. The above research is orthogonal
to our decentralized frontier queue design.

Merrill et.al [5] claimed that the atomic operation which
serializes the instruction is expensive for GPUs. They proposed
an efficient prefix-sum to calculate the scatter offsets for the
de/enqueue. However, as the core count in a GPU becomes
considerable, the synchronization overhead of prefix-sum grows
dramatically; hence the modern PBFS designs used the atomic
operation for the enqueue method. [7]–[9]

III. CHALLENGES OF FRONTIER QUEUE DESIGN IN BFS
ON GPUS

A. Intensive Accessing Contention on Centralized Frontier
Queue

The centralized frontier queue enjoys several advantages,
including ease of maintenance, enough allocating space, and
workload balance. However, those advantages are declining.
Since we can easily foresee that the core number in a GPU will
keep increasing through observing history, the dramatic growth
of collision on the centralized frontier queue will become the
scalable bottleneck in PBFS algorithms [1]. We can observe
that the number of the core has grown extremely fast of GPUs.
Notably, the newest RTX 4090 Ti might equip up to 18,434
CUDA cores, which boosts a 71% higher core count than the
last version RTX 3090 Ti. The expanding hardware parallelism
does not directly transform into the speedup since not all
the parts in PBFS can be fully parallelized, which degrades
the scalability. Significantly, over 10,000 threads could push
frontiers to the same address simultaneously. Although some

previous research has used the atomic fetch-and-add operation
instead of the compare-and-swap to avoid the retry time of
serialization. [12] The most advanced atomic fetch-and-add
operation needs to be serialized, which takes about 10,000
cycles to increment the same address or value. [13]

B. Inflexible Memory Management of Sub-queues

One concept to reduce the collision is to use a set of sub-
queues instead of a single queue that serializes all operations.
Different threads can parallelly append their frontiers on each
sub-queue. The naive approach shown in Figure 1 requires
excessive |SQ| times memory space, where |SQ| denotes
the number of sub-queue. Hierarchical queue [1] utilizes this
concept to implement multi-level queues in both global and
shared memory. It allows the thread first to append frontiers
to its lower queues, and then aggregates all the frontiers to
the global queue. The hierarchical queue can reduce the space
complexity from O(|V | × |SQ|) to O(|V | × |H|), where |V |
is the graph vertex number and |H| means the hierarchy level.
However, the small capacity of the shared memory limits what
graph the hierarchical queue can run, thus it can only run the
graph with the small outgoing degree to avoid the lower queue
overflow.

If a warp wants to append two frontiers to the queue whose
size and capacity are 2 and 3, respectively. There is one frontier
that has no space to place. Since there are no dynamic memory
allocation or exception handling mechanisms in GPUs, this
overflow causes the segment fault in GPUs. Furthermore, the
frontier propagation method in the hierarchical queue requires
the lower queues to aggregate their frontier to higher queues
to ensure all the threads will not visit repeated frontiers.
This aggregation takes additional synchronization and memory
usage, which generates considerable overhead.

IV. DECENTRALIZED FRONTIER QUEUE

A. Overview

Figure 2(c) shows architecture of DFQ in the GPU, and Fig-
ure 3 is the execution flow chart of our DFQ design. Figure 4 is
the pseudo code snippet of its kernel function. Fundamentally,
DFQ separated the traditional centralized frontier queue into
multiple decentralized sub-queues with a buffer (the red parts
in Figure 2(c)) for each to avoid overflow. We gave each CTA a
sub-queue to accommodate its frontiers. We propose two novel
sub-queue operations, overflow-free enqueue and asynchronous
sub-queue drain, to ensure no overflow happens when threads
want to append frontiers to the DFQ. Besides, with these two
optimizations, we can maintain the DFQ in slight synchronized
overhead and extremely low memory space consumption.

B. Overflow-free Enqueue

We used the following equation to detect the overflow before
assigning a warp to scan the status array and append frontiers
to the corresponding sub-queue.

atomic_add(size, stride) <= capacity (1)

The size and capacity stand for the current size and maximum
capacity of the sub-queue, respectively. The stride represents

!

!

1 __global__ void CUDA_BFS_KERNEL():
2 /* Scanning */
3 foreach v in graph:
4 /* Overflow checking */
5 i f(size >= capacity - stride):
6 foreach ftr in DFQ:
7 VISIT(ftr, 32) /* Drain */
8 __syncthreads()
9 i f(threadIdx.x == 0):
10 size = 0
11 __syncthreads()
12 i f (v.level == cur_level):
13 /* Enqueue */
14 atomic_add(size, 1);
15 DFQ[size] = v;
16 __syncthreads()
17 foreach ftr in DFQ:
18 VISIT(ftr, 32); /* Drain */
19 grid.sync();

Fig. 4: The code snippet of PBFS using our decentralized
frontier queue.

the number of threads in a warp. In Figure 4, before a warp
starts to scan the status array (line:3), we first assign a delegated
thread within the warp to atomically reserve the space of stride
(line:6). If the current size exceeds the capacity, the sub-queue
has a chance to overflow once we start the scanning this time.
In this case, we will first stop the status array scanning of this
warp. Then, we synchronize all the warps which attempt to
append to this sub-queue and drain out the queue. We use
a warp whose size is 32 to parallelly visit a frontier node
ftr’s neighbors (line: 8), and assign delegated thread to reset
size (line: 10-11). We will discuss the details of the drain
in the next section. Otherwise, the warp can scan the status
array successfully and append all its frontiers to the sub-queue
without overflow (line: 14-18). After scanning this level, we
will visit the rest frontiers in the DFQ by warps (line: 20).
Because we always prepare for the worst case that every thread
in the warp will have a frontier to append to the sub-queue,
it is intrusive to derive that our queue will never overflow.
Furthermore, the overflow-free enqueue method enables the
constant size of sub-queues to work correctly, hence we can
place sub-queues to the size-limited shared memory and enjoy
its fast access latency.

C. Asynchronous Sub-queue Drain

The overflow-free enqueue method requires additional syn-
chronization when the potential overflow is detected. Because
the update of the status array is independent of the BFS
level, namely, a warp can update the status array at this level
even though other warps are still scanning the status array,
asynchronously popping frontiers from a sub-queue to visit
is possible. In Figure 4, We allow each sub-queue to drain
when its size is almost approaching its capacity. During the
draining process, we synchronize all the warps that append
frontiers to this sub-queue. We use the cooperative groups
libary [14], CUDA’s latest and flexible synchronization libary,

TABLE I: Benchmark data set and the description

Data set Type Description

Amazon0302 Product network
Amazon product co-purchasing network
from March 2 2003

appu Random generated
Random sparse matrix used in app
benchmark, NASA AMES Research Cente

com-lj LiveJournal online social network
com-orkut

Ground-truth
communities Orkut online social network

graph500 Synthesis
The synthesis graph used in the benchmark
of evaluating supercomputers

soc-castor Social Network
This Network contains friendships between
users of the Catster web site

web-Berkstan Web graph of Berkeley and Stanford
web-Google Web graph Web graph from Google

to group multiple warps to a same tile and use __syncthreads()
to synchronize between warps. (Actually, we previously used
tile_partition() to partition a CTA to different tiles(warps)
instead of grouping them.) After that, we use all threads in
the tile for neighbor visiting until the sub-queue is empty.
Different tiles can drain asynchronously; thus, the frontier
number imbalance can be alleviated.

V. EVALUATION

This section will first introduce the experiment setup. Then,
we will evaluate the performance between our decentralized
frontier queue and the state-of-the-art design. We first discuss
the overall speedup of execution time, then we point out that
the improvement of our design comes from better scalability.
Last, we calculate the memory space complexity of the state-
of-the-art design and our DFQ.

A. Experiment Setup

We selected the following graph from SNAP [15] shown in
Table I for benchmark, since they represent different kinds of
the graph in various domains. We used CSR format to represent
all these data sets, and all the node numbers were first shuffled
to simulate the real-world condition. Before recording the
performance, we prefetched the neighbor list and status array to
the global memory. We ran the experiments on the AMD 3950x
16-core processor @ 2.2GHz with 128GB DDR4 and an Nvidia
RTX 3090 GPU, which has 10496 Cuda cores (maximum 82
CTAs), 24GB global memory, and 128KB L1 cache/shared
memory for each stream processor. We ran 100 times to get
the average execution time in each experiment. We faithfully
implemented three types of frontier queues and one state-of-
the-art together with the virtual warp-centric neighbor visiting
[6] method to analyze the frontier generation performance:

• BASE: The single centralized frontier queue locates in the
global memory.

• HQ: The state-of-the-art hierarchical queue [1]. We faith-
fully implement the scan-free and virtual warp-centric
version on it.

• DFQ-G-2048: This is the decentralized frontier queue
located in the global memory. We created 82 sub-queues
with 2048 frontier capacity and assigned each CTA per
sub-queue.

!

!

Fig. 5: The execution time of four frontier queue implementations on eight data set. HQ fails to execute com-lj, com-orkut, and
graph500, since the maximum fan-out degree of these data set exceeds the capacity of the shared memory in the RTX 3090
GPU, which causes overflow on the low level sub-queue.

Fig. 6: Execution time speedup across different CTA number

• DFQ-S-2048: The configuration is the same as DFQ-G-
2048, but we placed the 82 sub-queues to each CTA’s
shared memory.

B. Scalability

To prove that the decentralized queue can indeed reduce the
contention on the frontier queue and then improve the scala-
bility, we compared BASE and DFQ-G-2048 shown in Figure
6. We measured the scalability by comparing the speedup of
different frontier queue implementations with increasing thread
(CTA) numbers. The speedup is computed relative to each work
with only one CTA (each CTA comprises 1024 threads). We
selected four different types of the graph to discuss. Generally,
the DFQ-G-2048 has better scalability than BASE except for
the appu data set. This graph is a small data set with few
frontiers on each level; hence the number of frontiers in each

sub-queue might be pretty different. This imbalanced condition
hurts the scalability of DFQ. On the other hand, the reduction
of contention on the frontier queue can reflect the scalability
enhancement on the graph, which has more vertexes and larger
fan-out degree nodes, such as web networks or social networks
like web-BerkStan and com-orkut, respectively.

C. Speedup

Figure 5 shows the speedup compared to the above four
implementations. We utilized the full RTX 3090 computing
power for every case. Surprisingly, HQ performed the worst
among all implementations. It gains from -2.94x to 1.06x
execution time speedup relative to the BASE. HQ encounter
overflow error in com-lj, com-orkut, and graph500 because
the ready-to-append frontier number exceed the low-level sub-
queue during the execution. The terrible performance of HQ
might come from the atomic compare-and-swap (CAS). To
avoid repeatedly visiting the same frontier by different warps,
HQ needs to use atomic CAS on status array updating, which
is proven to be slower than atomic fetch-and-add operation in
modern GPUs [12]. Moreover, we observed that the frontier
propagation method only benefits those graphs with few fan-
out degree nodes. Using single-scan on status array updating
is more solid than the frontier propagation. DFQ-G-2048 and
DFQ-S-2048 have equal or even better execution times than
BASE across most of the data sets, except for appu and com-
orkut. Com-orkut has numerous communities; while appu is a
tiny data set whose frontier number in each BFS level is far
less than the frontier queue size. Since we used single scan on
status array and enqueue frontiers to each sub-queue based on
the thread’s block ID, both of these properties exacerbate the
imbalance of frontier number among all sub-queus This frontier
imbalance directly leads to workload imbalances and hides the
improvement of contention reduction. Generally, DFQ-S-2048
can gain a slight 1.04x speedup over DFQ-G-2048 because
of the fast accessing time of the shared memory. We argue
that despite the speedup of DFQ designs is not obvious, the
enhancement of scalability will finally transform into speedup
when the CUDA core in a GPU keeps increasing.

!

Fig. 7: The execution time speedup of different sub-queue capacities across eight data set.

TABLE II: The memory usage of the frontier queue across
different scales of the graph500 data set. The unit is megabytes
(MB), and the number in the bracket shows the usage growth
rate compared to scale-18 work.

scale-18 scale-20 scale-22 scale-24 scale-26
BASE 0.69 2.58 (207%) 9.58 (1288%) 18.44 (2572%) 131.21 (18915%)
DFQ-G-2048 0.67 0.67 (0%) 0.67 (0%) 0.67 (0%) 0.67 (0%)

D. Space Complexity

The overflow-free enqueue method (Section IV) significantly
reduce the minimum requirement of the DFQ’s capacity to
a constant level. We evaluated the memory usage of static
frontier allocation across the above data set shown in Table
II. We can observe that the centralized frontier queue requires
O(|V |) space, which increases usage through the growth of
graph size. (|V | denotes the number of graph vertex) On the
contrary, the space complexity of our DFQ is O(|SQ|), where
the |SQ| denotes the number of sub-queue. The usage of our
DFQ depends on how much the number of CTA a GPU has.

E. Sub-queue Capacity

In this section, we evaluated the impact of different sub-
queue capacities on the execution time speedup in Figure 7. The
DFQ-G-1024 is the baseline, which remains the least capacity
of the frontier sub-queue. A CTA contains 1024 threads, so if
any thread adds a frontier to the sub-queue, this queue must
drain before adding another frontier. We used the whole RTX
3080 and ran all the cases. We found that increasing capacity
has limited improvement in execution time (averagely 1.09x
speedup). The DFQ-G-2048 and 4096 are two competitive
configurations in this experiment.

VI. CONCLUSION

In this paper, we argued that the increasing contention on
the centralized frontier queue would become the scalability
bottleneck of the parallel breadth-first-search algorithm on
GPUs. Therefore, we proposed a novel decentralized frontier
queue (DFQ), which alleviates the contention on the single
queue by distributing atomic operations to multiple sub-queues.
Besides, we designed two optimizations that solve the excessive
memory space problem and performance issue in naive DFQ.
We demonstrated that our DFQ had better scalability compared
to state-of-the-art designs. Besides, it also gained an average
1.04x execution speedup and significant memory efficiency in
our experiments.

ACKNOWLEDGMENT

We thank to National Center for High-performance Comput-
ing (NCHC) for providing computational and storage resources.
This research was supported by the National Science and
Technology Council under grant NSTC 111-2221-E-002 -133
-MY3

REFERENCES

[1] L. Luo, M. Wong, and W.-m. Hwu, “An effective gpu implementation of
breadth-first search,” in Design Automation Conference. IEEE, 2010,
pp. 52–55.

[2] D. S. Bassett and O. Sporns, “Network neuroscience,” Nature neuro-
science, vol. 20, no. 3, pp. 353–364, 2017.

[3] S. A. Myers, A. Sharma, P. Gupta, and J. Lin, “Information network or
social network? the structure of the twitter follow graph,” in Proceedings
of the 23rd International Conference on World Wide Web, 2014, pp. 493–
498.

[4] P. Harish and P. J. Narayanan, “Accelerating large graph algorithms on
the gpu using cuda,” in International conference on high-performance
computing. Springer, 2007, pp. 197–208.

[5] D. Merrill, M. Garland, and A. Grimshaw, “Scalable gpu graph traversal,”
ACM Sigplan Notices, vol. 47, no. 8, pp. 117–128, 2012.

[6] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun, “Accelerating cuda
graph algorithms at maximum warp,” Acm Sigplan Notices, vol. 46, no. 8,
pp. 267–276, 2011.

[7] H. Liu and H. H. Huang, “Enterprise: breadth-first graph traversal on
gpus,” in Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, 2015, pp. 1–12.

[8] A. Gaihre, Z. Wu, F. Yao, and H. Liu, “Xbfs: exploring runtime
optimizations for breadth-first search on gpus,” in Proceedings of the 28th
International Symposium on High-Performance Parallel and Distributed
Computing, 2019, pp. 121–131.

[9] Y. Wang, Y. Pan, A. Davidson, Y. Wu, C. Yang, L. Wang, M. Osama,
C. Yuan, W. Liu, A. T. Riffel et al., “Gunrock: Gpu graph analytics,”
ACM Transactions on Parallel Computing (TOPC), vol. 4, no. 1, pp.
1–49, 2017.

[10] X. Mei and X. Chu, “Dissecting gpu memory hierarchy through mi-
crobenchmarking,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 28, no. 1, pp. 72–86, 2016.

[11] S. Beamer, K. Asanovic, and D. Patterson, “Direction-optimizing breadth-
first search,” in SC’12: Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis. IEEE,
2012, pp. 1–10.

[12] D. Troendle, T. Ta, and B. Jang, “A specialized concurrent queue for
scheduling irregular workloads on gpus,” in Proceedings of the 48th
International Conference on Parallel Processing, 2019, pp. 1–11.

[13] L. Nyland and S. Jones, “Understanding and using atomic memory
operations,” in 4th GPU Technology Conf.(GTC’13), March, 2013, pp.
1–61.

[14] M. Harris and K. Perelygin, “Cooperative groups: Flexible cuda thread
programming,” NVIDIA Developer Blog, 2017.

[15] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

!

	Select a link below
	Return to Previous View
	Return to Main Menu

