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Abstract—Sparse convolution neural network (CNN) accelera-
tors have shown to achieve high processing speed and low energy
consumption by leveraging zero weights or activations, which can
be further optimized by finely tuning the sparse activation maps in
training process. In this paper, we propose a CNN training frame-
work targeting at reducing energy consumption and processing
cycles in sparse CNN accelerators. We first model accelerator’s
energy consumption and processing cycles as functions of layer-
wise activation map sparsity. Then we leverage the model and
propose a hybrid regularization approximation method to further
sparsify activation maps in the training process. The results show
that our proposed framework can reduce the energy consumption
of Eyeriss by 31.33%, 20.6% and 26.6% respectively on MobileNet-
V2, SqueezeNet and Inception-V3. In addition, the processing
speed can be increased by 1.96×, 1.4× and 1.65× respectively.

Index Terms—CNN Accelerator, Training, Activation Map
Sparsification, Energy Consumption, Processing Speed

I. INTRODUCTION

Last decade has witnessed the development of convolution
neural networks (CNNs). CNNs achieve fantastic accuracy in
different inference tasks such as image classification and object
detection. These neural networks usually contain large amount
of parameters, thus bring significant computation burden to the
hardware, especially the mobile devices. Large computation
requirements also pose significant challenges to the energy
consumption and processing time of the hardware. In order
to reduce the computation complexity, researchers have pro-
posed various design techniques such as compact convolution
neural networks (compact CNNs) [1]–[3], reducing precision
of weights or activations [4] and sparse convolution neural
networks (sparse CNNs) [5]. Among them, sparse CNNs have
become a hot topic in recent literature [6]–[8].

In sparse CNNs, people have proposed to explore either
weight or activation (input) sparsity to reduce their compu-
tation complexity. At the algorithm level, weight sparsity can
be achieved by pruning methods [5], [9]. Activation sparsity
naturally occurs in neural networks because of the widely used
rectified linear unit (ReLU) activation function. The activation
sparsity varies with different inputs, and thus is often regarded
as uncontrolled features and draws less attention. There is
only one kind of methods to sparsify the activation map –
utilizing L0 regularization of activation maps in the training
process [10], [11]. As L0 regularization is non-differentiable
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and can not be optimized with back propagation training
method, [10] utilizes L1 regularization to approximation L0
regularization. [11] uses Hoyer regularization approximation to
further increase the overall activation map sparsity.

At the hardware level, customized sparse CNN accelerators
have been developed to reduce the computation complexity
of CNNs by skipping or gating the operations with zero
weights or activations. Sparse CNN accelerators utilize special
hardware techniques such as sparse tensor compression and
zero detection scheme [12]–[14]. On contrary, general plat-
forms such as CPU, GPU can hardly make fully use of such
sparse features. Evaluation results show that, compared with
general platforms, such accelerators do consume less energy
consumption and achieve faster processing speed in sparse
CNN inference tasks [15]–[17].
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Fig. 1. Activation sparsity, energy consumption and processing cycles of layer
3 and layer 10 in MobileNet-V2, when applying different activations.

Although the state-of-the-art works [10], [11] try to develop
activation sparsification methods to increase the overall acti-
vation sparsity, we find that the total sparsity doesn’t work
as an appropriate indicator of accelerator behaviours, such
as energy consumption and processing speed in sparse CNN
accelerators. We evaluate the impact of activation sparsity on
different layers of MobileNet-V2 [2] by Timeloop [18], an
accelerator simulator. Fig. 1 shows the accelerator’s energy
consumption and processing cycles of layer 3 and layer 10 fed
by activations with different sparsity levels (marked as different
colors). As shown in the figure, although the total activation
density (indicated by ‘Density’, the percentage of non-zero
values) of the blue one is smaller than that of the orange one,
it still consumes more energy and takes more processing cycles
in the accelerator. The reason is that the energy consumption
in layer 3 is more likely to be influenced by the increasing
activation sparsity. Such layer-wise difference is enlarged in
compact CNNs which have convolution layers of various shapes
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Fig. 2. The Proposed Framework.

and sizes, such as SqueezeNet [3] and MobileNet [19].
Motivated by the aforementioned observation, we explore the

layer-wise sparsity of a given CNN in the training process to
reduce the energy consumption and also increase the speed
of sparse CNN accelerators. We propose a modeling method
which translates the layer-wise activation sparsity in CNNs into
measurable hardware improvements, such as the reduction of
energy consumption and processing cycles. Our model not only
calculates the relative computation cost across the layers, but
also considers the mapping (dataflow) influences in accelera-
tors. Then we utilize the proposed model in the training process,
together with the improved hybrid L1-Hoyer regularization
approximation method, to achieve layer-wise activation spar-
sification and evaluate the hardware implementation, aiming
at reducing the energy consumption and processing cycles in
sparse CNN accelerators. To the best of our knowledge, we are
the first to optimize the accelerators by sparsifying layer-wise
activations in the training process. The main contributions of
this paper can be summarized as follows:

• We analyze the relationship between the activation map
sparsity and the performance of CNN accelerators, and
find that higher total sparsity of neural networks doesn’t
always leads to lower energy consumption and higher pro-
cessing speed of CNN accelerators. Based on our analysis
and observation, we propose a layer-wise sparse CNN
training framework targeting at reducing the processing
cycles and energy of accelerators when processing CNNs.

• In order to further improve the effect of our training
framework, we propose a hybrid L1-Hoyer regularization
method to improve the activation optimization capacity.

• We evaluate our proposed method on three different
compact CNNs with Cifar-100 dataset. The experimental
results show that our proposed method achieves 1.67X
average processing speedup and 26.2% average energy
reduction in Eyeriss [13], a sparse CNN accelerator.

The rest of the paper is organized as follows. Section II
introduces our proposed modeling and training framework. The
experiment results are shown in Section III. At last, we draw
conclusions in Section IV.

II. THE PROPOSED METHOD
A. Framework

As shown in Fig. 2, our proposed framework consists of
two parts, modeling and training. For the modeling part, as

illustrated by arrows 1 and 2, we exploit some network features,
together with convolution layer types and layer-wise activation
maps, to construct a primary model that captures the theoretical
computation cost. Besides, we extract the influences of mapping
(dataflow) and complete the modeling procedure, as illustrated
by arrow 3. The modeling details are discussed in Section II-B.

After constructing the model of energy consumption and pro-
cessing cycles with layer-wise activation, we further leverage
the proposed model to finely sparsify the activation maps in the
training part. We also propose a hybrid L1-Hoyer regularization
method to support the back propagation of activation map
sparsity. The details of the training process are presented in
Section II-C.

B. Analysis and Modeling

The energy consumption and processing speed of CNN
accelerators are mainly affected by three factors. The theoretical
computational cost Conv(l) evaluates the operation number of
a single convolution layer l. Data mapping Map(l) describes
the influences when convolution layers are mapped on the
accelerator hardware. The sparsity influence Den(l) (short for
‘Density’) shows the sparsity related optimization in the ac-
celerator. Theoretical factor Conv(l) can be derived explicitly
without the knowledge of accelerator hardware, while the other
two factors are closely related to hardware designs and thus
require the help of simulated results. In all, we combine these
three factors to build our model, which evaluates the energy
consumption and processing cycles of CNN accelerators. The
model can be expressed as:

E =
L∑

l=1

Conv(l) ·MapE(l) ·DenE(l)

C =
L∑

l=1

Conv(l) ·MapC(l) ·DenC(l)
(1)

where E and C represent total energy consumption and pro-
cessing cycles of accelerators, l and L stand for the convolution
layer index and the total number of the convolution layers.

We illustrate the meaning of the three factors and how to
identify them, respectively.

Computation Cost Analysis: We first analyze the layer-wise
differences of computation cost which stands for the operation
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number of a single CNN layer. The computation cost directly
influences the energy and processing cycles of the accelerator
and distinguishes the differences among all the convolution
layers in the same network.

Many parameters of CNN affect operation number thus
change the computation cost. As shown in Equation 2, the
computation cost (Conv(l)) is proportional to the output feature
map height (Hout) and width (Wout), input channel (Cin), out-
put channel (Cout), kernel height (Hker) and width (Wker) and
batch size (B). Note that group convolution is commonly used
in the middle bottleneck layer of some compact CNNs such
as MobileNet [2], [19]. In group convolution layer, the input
and output channels are split into multiple groups. Because
the parameters Cin and Cout represent the input and output
channel sizes in a single group, we should additionally multiply
the number of the groups (G). To conclude, the theoretical
computation cost Conv(l) can be expressed as:

Conv(l) = Hout ·Wout · Cin · Cout ·Hker ·Wker ·B ·G (2)
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Fig. 3. Sparsity optimization, mapping example in Eyeriss [13].

Data Mapping Analysis: The second factor which influences
the energy and cycles is the data mapping (or called dataflow),
the way we schedule operations and data on the accelerator
architecture. Take Eyeriss [13] as an example. As shown in
Fig. 3, Eyeriss uses a three-level storage structure – DRAM,
global buffer, and spad (buffer inside processing elements
(PE)). A convolution problem can be described as a 7D nested
loop over Hout, Wout, Hker, Wker, Cin, Cout and B [18].
Thus, to map the convolution problems, we should break down
the detailed loops and allocate them to different levels of the
storage. Fig. 3 shows an example allocating 256 input channels.
We apply the number of loops to storage levels (4 for DRAM,
2 for global buffer, 32 for PE spad in this example).

Different data mapping results in different hardware opti-
mization. Besides, there are also some mapping constraints
to make sure the validity of current data mapping. Thus,
searching for the optimal mapping is typically complicated. To
characterize the mapping influences Map(l), we use Timeloop
to search for the best valid mapping result in the mapspace [18].
For a given accelerator architecture and convolution problem,
Timeloop searches for the best mapping, which means the best
way to schedule the convolution problem on the accelerator.

Sparsity Analysis: In addition to the computation cost and
data mapping, sparsity of each layer also affects the total energy
and processing cycles of accelerators. To model the impact

of the activation map sparsity, we should figure out how the
accelerator architecture leverages the sparse activation maps
during processing. Sparse design optimization mainly focuses
on skipping multiply-accumulate (MAC) operations, reducing
access to storage unit whenever zero inputs are detected. To
further evaluate this density related factor, we model Den as

DenE(l) = e1 ·D(l) + e0, DenC(l) = c1 ·D(l) + c0 (3)

whereD(l) stands for the percentage of non-zero values in the
l-th convolution layer, e1, e0, c1, c0 are accelerator hardware
related parameters.

We use e1 ·D(l) to denote the energy patterns that tend to be
reduced by the sparse optimization methods. On the contrary,
there also exists inherent energy e0 which is not influenced
by the activation sparsity. As shown in the example of Eyeriss
(Fig. 3), skipping the operation according to activation sparsity
will directly reduce the energy consumption in MAC of PEs.
In addition, accessing to several storage patterns such as the
innermost weight storage (weight spad) can also be skipped.
However, the access to the outermost weight storage (weight
DRAM) remains the same, which contributes to the inherent
energy consumption e0.

Fig. 4. Verify the model on Timeloop [18]: energy consumption (left) and
processing cycles (right) in SqueezeNet.

The modeling of the processing cycles is similar to the
ones of the energy. Note that the inherent processing cycles
pattern c0 is relatively small compared with that of energy
consumption. The reason is that processing operations consume
most of the cycles in the accelerator, while accessing to DRAM
memory takes fewer cycles, resulting in smaller c0.

Unlike Conv(l) which can be determined by Equation (2),
parameters such as Map(l), e1, e0, c1 and c0 are related to
the accelerator architecture and the mapping. Thus, we use
Timeloop to help with the parameter settings and evaluate the
correctness of our model. We determine these parameters by
linear fitting of evaluated results. We use unpruned network to
avoid the optimization influences brought by weight sparsity.
For example, Fig. 4 shows the evaluated energy consumption
and processing cycles of Eyeriss, fed by convolution layer 9
and layer 10 in Squeezenet [3]. Both the energy and processing
cycles show linear relationship with activation map density. The
slope of the fitting line in layer 9 is much larger than the one
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in layer 10, which is mainly caused by the relative theoretical
computation cost (Conv(9)/Conv(10)). In addition, the rel-
ative layer-wise mapping influence (Map(9)/Map(10)) also
causes the differences across the layers.

Note that, the mapping influences not only contribute to the
layer-wise differences, but also affect the linear relationship
in a single layer. Taking layer 10 as an example, we enlarge
several points in Fig. 4 to illustrate the mapping influences.
When the density is lower than 30%, the best mapping allocates
32 input channels to the PE array (Fig. 3). However, when the
density increases, the current mapping is invalid because the
input channels applied to PE array extend the capacity of the
restricted compression metadata buffer. In order to preserve
valid mapping, we must allocate more input channels to the
global buffer. Such mapping difference may cause small gaps
marked as red in Fig. 3. However, the mapping difference
doesn’t affect the parameters much and could be ignored.

C. Sparse Activation Aware Training

The proposed model shows the layer-wise differences and
motivates the sparse activation aware training. Based on the
model as we constructed in Section II-B, we can modify the
loss function in the training process targeting at reduction of
energy consumption and processing cycles. We directly add the
total energy and processing cycles into the loss function as

Loss(w) = Loss0(w)+
1

N

N∑
n=1

L∑
l=0

αE(xl,n)+βC(xl,n) (4)

where w stands for the network weights, Loss(w) and
Loss0(w) denote the modified and original loss function,
respectively. N denotes the number of training batches. xl,n

represents the activation map of layer l with batch size n. α and
β are preset parameters to balance the impact strength between
energy and cycles.

To further apply the model in Equation (1), we drop out
the inherent terms e0 and c0 which can not be optimized by
activation sparsification. Then we rewrite the loss function as

Loss(w) = Loss0(w) +
1

N

N∑
n=1

L∑
l=0

(αel + βcl)λl∥xl,n∥0 (5)

where

el = Conv(l) ·MapE(l)e1, cl = Conv(l) ·MapC(l)c1 (6)

Note that activation map density is represented by L0 reg-
ularization, the number of non-zero values. λl denotes the
regularization parameter of layer l.

Even though L0 regularization shows to be the best descrip-
tion of the activation map density, it is non-differentiable for
further training approach. To approximate L0 regularization,
researchers have utilized L1 regularization (the sum of non-zero
values) or Hoyer regularization for activation sparsification. The
derivative of L1 regularization is constant. Thus, L1 regular-
ization achieves the same magnitude of sparsification of the
whole activation map. On the other hand, Hoyer regularization,
defined as ∥x∥Hoyer =

(
∑d

i=1 |xi|)2∑d
i=1(|xi|)2

, has a decreasing derivative.

The derivative around zero activation values is comparative
large, while the derivative decreases to zero around larger
activation values. Thus, Hoyer regularization tends to sparsify
small values while preserve large values in order to prevent
accuracy loss.
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Fig. 5. Activation map distribution of a convolution layer (MobileNet-V2,
layer 35) of different regularization approximation methods.

Normally, eliminating smaller elements in the activation map
suffers from less accuracy penalty, because smaller elements
contribute less to output patterns. Thus, Hoyer regularization
shows better sparsification performance than L1 regularization
with the same accuracy loss. However, Hoyer regularization
is too conservative to sparsify layers with high level features,
which have more large values. Such layers always have large
input and output channel sizes, and thus gain more energy and
cycles reduction compared with other layers. Therefore, in our
work, we propose a hybrid regularization approximation, which
strengthens the sparsification magnitude on such layers

λl∥xl,n∥0 ≈ λl∥xl,n∥Hybrid = λ
′

l∥xl,n∥1 + λ
′′

l ∥xl,n∥Hoyer

(7)

Note that we break the original regularization parameter λl

into two independent regularization parameters, λ
′

l and λ
′′

l .
Then Equation (5) can be rewritten as:

Loss(w) =Loss0(w)+

1

N

N∑
n=1

L∑
l=0

(αel + βcl)(λ
′

l∥xl,n∥1 + λ
′′

l ∥xl,n∥Hoyer)

(8)
The hybrid regularization approximation tends to sparsify

smaller values and still preserves smaller sparsification mag-
nitude on larger values. The impact of the proposed hybrid
L1-Hoyer regularization approach is shown in Fig. 5. We
select the layer 35 in the MobileNet-V2 as an example, which
contributes to larger energy consumption and processing cycles
than the majority of the layers in the network (See Fig. 6 in
Section III). The proposed hybrid regularization preserves less
large values than Hoyer regularization method. In addition, it
still has a decreasing derivative and thus sparsifies more small
values compared with L1 regularization method. To conclude,
the proposed hybrid regularization method achieves the lowest
activation map density without additional accuracy loss.
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Fig. 6. Layer-wise results: activation map density (top), energy consumption (middle), processing cycles (bottom) in MobileNet-V2.

III. EXPERIMENTAL RESULTS

A. Experiment Setup

In our experiments, we implement our performance-aware
training framework in Pytorch. To evaluate the energy con-
sumption and processing cycles on accelerators, we use
Timeloop [18], an NN accelerator simulator supporting sparsity
optimization evaluation. Timeloop has shown to be an accurate
NN accelerator simulator which achieves less than 8% error
on different types of popular cited accelerators such as Eyeriss
serious [13], [15], SCNN [16], DSTC [20], compared with the
baseline designs [21].

We carry our experiments on three commonly used com-
pact CNNs, MobileNet-V2 [2], SqueezeNet [3] and Inception-
V3 [22]. These networks cover different types of convolu-
tion layers and a large range of network sizes. Some over-
parameterized CNN such as AlexNet [23] and VGG [24] are
shown easy to compress, so they are not evaluated in our work.
The experiments are carried on CIFAR-100 dataset [25]. Cifar
is shown to be the most commonly used deep learning computer
vision datasets [26]. Related work [10] shows similar activation
sparsification effects among different datasets, such as MINST,
Cifar and ImageNet. Thus, Cifar is capable enough to evaluate

our framework. In the future work, we plan to evaluate our
experiments in ImageNet, whose training takes longer time
(days) compared with Cifar (hours).

As for the accelerator, we use the popular accelerator Eyeriss
which leverages activation map sparsity in their architecture
design. However, our proposed framework doesn’t rely on
specific networks and accelerators and can handle most of the
cases.

B. Evaluation of Our Method
In this section, we present the effectiveness of our method.

We compare the following four approaches:
• the baseline network without any sparsification method,
• the sparsity targeting method which sparsifies the average

activation in the network [11],
• our proposed method which aims at sparsifying the energy

consumption and processing cycles in the accelerator, with
Hoyer regularization approximation method,

• our proposed method which aims at sparsifying the energy
consumption and processing cycles in the accelerator, with
L1-Hoyer hybrid regularization approximation method.

Fig. 6 shows layer-wise results of MobileNet-V2. The top
most subfigure shows the activation map density across 36
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sparse convolution layers in the MobileNet-V2. The sparsity
targeting method achieves the best result in highest activation
sparsity. However, as discussed in Section I, the average spar-
sity may not be directly related with the overall hardware per-
formance. The next two figures show the evaluated energy con-
sumption and processing cycles, respectively. We can observe
that the convolution layers with even indexes consume much
less energy and processing cycles. These convolution layers
correspond to the group convolution layers in the bottleneck
architecture [2], whose channel size is 1. Thus, the other layers
with even indexes are more sensitive to the sparsification of
the activation map. Our proposed method guides the training
process to strengthen the magnitude of sparsifying even layers.
In summary, our proposed method (marked as green) achieves
additional 9.8% energy reduction and 0.31X processing speed
across all convolution layers, compared with the sparsity tar-
geting method (marked as orange).

The comparison between the last two methods (marked
as green and red in Fig. 6) shows the effects of proposed
hybrid L1-Hoyer regularization approximation approach. As
mentioned in Section II-C, Hoyer regularization are conserva-
tive to cut off larger values in the activation map. Meanwhile,
our proposed hybrid regularization method is more aggressive
to cut off such larger values and achieves less density in last
few layers, which reduces much more energy consumption and
processing cycles. In all, our proposed hybrid L1-Hoyer reg-
ularization approximation method additionally achieves 1.5%
energy reduction and 0.05X processing speed improvement.

TABLE I
COMPARISONS OF ENERGY AND PROCESSING SPEED.

Sparsity Proposed method Proposed method
targeting [11] with Hoyer with hybrid

Network Energy Speed Energy Speed Energy Speed
MobileNet-V2 80.0% 1.61X 70.2% 1.92X 68.7% 1.97X

SqueezeNet 88.0% 1.16X 80.1% 1.37X 79.4% 1.40X
Inception-V3 82.6% 1.35X 74.6% 1.59X 73.4% 1.65X

Due to the limitation on paper length, layer-wise details
of SqueezeNet and Inception-V3 are not presented in this
paper. Table I summarizes the results on these three networks,
applied with sparsity targeting method [11] and our proposed
method. All the results are compared with the baseline. Note
that for both methods, the regularization parameters are tuned,
which adds an intensive search over the parameter space to
ensure similar and acceptable accuracy loss (less than 1% Top1
accuracy loss compared with the pre-trained model). As shown
in Table I, SqueezeNet is harder to sparsify compared with
the other two networks. Inception-V3 network has complicated
network architectures with much more various sizes of convolu-
tions. Our proposed method achieves 1.67X average processing
speedup and 26.2% average energy reduction in all these three
compact CNNs, which shows to be more effective compared
with sparsity target method.

IV. CONCLUSION

In this paper, we analyze the relationship between layer-wise
activation map density and hardware improvements of sparse
CNN accelerators. Based on the analysis, we propose a sparse

activation aware training framework targeting at reducing the
processing cycles and energy consumption for accelerators
executing CNNs. We evaluate our method on three compact
CNNS, MobileNet-V2, SqueezeNet and Inception-V3 using
Timeloop. Results show that our proposed training framework
can achieve 31.33%, 20.6% and 26.6% energy reduction and
1.96X , 1.4X , 1.65X speedup respectively compared with
the baseline models. In our future work, we will evaluate
our proposed method on larger dataset, ImageNet, with more
accelerator architectures.
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